Riemann Mapping Theorem

Total Page:16

File Type:pdf, Size:1020Kb

Riemann Mapping Theorem Riemann Mapping Theorem Juan Kim 2020 Abstract The purpose of this report is to reproduce the proof of Riemann Mapping Theorem. We assume the readers are familiar with the basic results in real and complex analysis upto and including the Residue Theorem. Following the approach of Riesz and Fejer, we define F to be a family of holomorphic injective functions, uniformly bounded by 1 on a given domain. After showing that F is not empty by constructing a function in F, we will use Montel's theorem to show that there is a sequence in F that converges locally uniformly to some holomorphic injective function in f : U ! B1(0) where at z0 0 such that fn(z0) = 0 for all n, jfn(z0)j ≤ jf (z0)j. We then use Hurwitz's theorem to show injectivity of f and proof by contradiction to show that such f is surjective to the unit disk. Contents 1 Notations 2 2 Basic Results 3 2.1 General Cauchy Theorem . 3 2.2 Properties of Mobius Transformations . 4 2.3 Sequences of Functions . 4 3 Montel's Theorem 6 4 Hurwitz's Theorem 8 5 Proof of the Riemann Mapping Theorem 11 6 Bibliography 16 1 1 Notations Here we list some of notation that will be used throughout this report. If A is a set, A will denote the closure of A. The unit disk is denoted by B1(0) = fz 2 C : jzj < 1g. If f : U ! C is a function and A ⊂ U a set, then f(A) will denote image set of f. If γ :[a; b] ! C is a curve, γ∗ := γ([a; b]) is the image set of the curve. The sequence (an)n2N will be written (an). P1 P The series n=0 an will be denoted an. If (fn) is a sequence of functions then it's subsequence (fnk )k2N will be denoted (fnk ) or i sometimes (fn) to mean the ith subsequence of (fn). If [a; b] is a real interval and P = fa0:::ang a partition of [a; b], we denote the ith subinterval by ∆i := [ai−1; ai]: The annulus centred at z0 with inner radius r1, outer radius r2 is the set A(z0; r1; r2) = fz 2 C : r1 < jz − z0j < r2g. 2 2 Basic Results Here we state the relevant definitions and some of the basic results from real and complex analysis for the sake of completeness. These results will be used throughout the proofs of some of the main theorems involved in proving the Riemann Mapping Theorem. 2.1 General Cauchy Theorem Definition 1. Let U be an open subset of C and γ1 :[a0; b0] ! U and γ2 :[a1; b1] ! U be closed curves in U. We say γ1 is homotopic to γ2 if there exists a continuous function φ : [0; 1] × [0; 1] ! U such that φ(t; 0) = γ1(a0 + t(b0 − a0)) for all t 2 [0; 1] φ(t; 1) = γ1(a1 + t(b1 − a1)) for all t 2 [0; 1] φ(0; s) = φ(1; s) for all s 2 [0; 1]. The function φ is called a homotopy from γ1 to γ2 in U. If γ1 is homotopic to a constant curve, then γ1 is said to be null homotopic in U. Definition 2. a simply connected set is a set in which every closed, pieces wise smooth curve is null homotopic. Theorem 1 (Homotopy Theorem). Let U ⊂ C be an open set and f : U ! C a holomorphic function. If γ1 and γ2 are curves in U, homotopic to each other then Z Z f(z)dz = f(z)dz γ1 γ2 . The proof of the Homotopy Theorem is not included in this article but can be found in page 93 of, Complex Analysis by E. M. Stein and R. Sharkarchi. As a Corollary, we obtain the Cauchy's theorem for simply connected sets. Theorem 2 (Cauchy). Let S ⊂ C be an open and simply connected set, f : S ! C a holomorphic function and γ a closed piecewise smooth curve in U, then Z f(z)dz = 0 γ . Theorem 3 (Morera). Suppose f is a continuous complex function in an open set U such that Z f(z)dz = 0 @4 for every closed triangle 4 2 U. Then f is holomorphic 3 The proof of Morera's Theorem can be found in page 224 of Real and Complex Anal- ysis 2nd edition by W. Rudin. Definition 3. Let 0 ≤ r1 < r2 ≤ 1 and z0 2 C. Let f : A(z0; r1; r2) ! C be a P1 −k P1 k holomorphic function. Suppose 1 α−k(z − z0) + 0 αk(z − z0) is the Laurent Series of f about z0. Then α−1 is the residue of f at z0 denoted α−1. Theorem 4 (Residue Theorem). Let U ⊂ C be an open set and A ⊂ U. Suppose U=A is open. Let f : U=A ! C be a holomorphic function. Suppose f has a isolated singularity at each a 2 A. Let γ be a closed piecewise smooth curve in U=A which is null homotopic in U. Then N 1 Z X f(z)dz = (Res f)Ind (a ) 2πi ak γ k γ k=1 . 2.2 Properties of Mobius Transformations Mobius transformations are used to construct an example of a holomorphic injective function bounded by 1 in a given open simply connected set. It is necessary to show that the family of functions on U that are holomorphic, injective and bounded by 1 is not empty, for if such family was empty, the Riemann mapping theorem is trivially false. Definition 4. Let U ! C be an open, simply connected set. The function f : U ! C is az+b a mobius transformation if for some a; b; c; d 2 C, f(z) = cz+d . −d Proposition 1. Let U ! C be an open set and a; b; c; d 2 C such that c 62 U and az+b ad − bc 6= 0. If f : U ! C is defined by f(z) = cz+d for all z 2 C, then f is injective and holomorphic in U. Proof. Holomorphicity is trivial since the mapping z 7! az + b and z 7! cz + d are holo- −d morphic and for all z 2 C, cz + d 6= 0 as c 62 U. Suppose that for some w; z 2 C, f(z) = f(w), then we get (ad − bc)z = (ad − bc)w. By hypothesis (ad − bc) 6= 0 so z = w. So f is injective. 2.3 Sequences of Functions In defining a non-empty family of holomorphic, injective functions, bounded by 1, we wish to show that such family always contains a sequence of functions converging to a function with the same properties (such is the content of Montel's Theorem and Weier- strass Theorem). Here we give the sufficient conditions for the limit of a sequence to inherit the properties of the functions in that sequence. Definition 5. Let U ⊂ C be open, (fn)N a sequence of functions on U. The sequence (fn)N is said to be pointwise convergent to f if for each z 2 U, the sequence (fn(z))N converges to f(z). 4 Definition 6. Let U ⊂ C be open, and fn : U ! C for each n 2 N functions on U. The sequence (fn)N is said to be uniformly convergent to f in U if for each ", there exists N 2 N such that for each z 2 U, for all n 2 N with N < n we have jfn(z) − f(z)j < ". Definition 7. Let U ⊂ C be open, and fn : U ! C for each n 2 N functions on U. The sequence (fn)N is said to be locally uniformly convergent to f if for each z 2 U there exist 0 < r such that Br(z) ⊂ U and the sequence (fn)N converges uniformly to f in Br(z). Theorem 5. Let [a; b] be a closed interval in R and (fn)N a sequence of integrable functions from [a; b] to C. If (fn)N converges uniformly to f :[a; b] ! C, then f is R b R b integrable and a f(x)dx = limn!1 a fn(x)dx. Proof. Since the integral of complex valued function f of real variables are defined in- terms of the individual integral of the real and imaginary components of f, it is sufficient to prove the case for the sequence of real valued functions of real variable. Suppose (fn) is a sequence of integrable functions from the interval [a,b] to R, uni- formly convergent to f :[a; b] ! R. Let " be given and N 2 N such that for all x 2 [a; b], N < n, we have jfn(x) − f(x)j < ". Pick N < n and let P = fa0; :::; ang be a partition of [a; b] such that U(P; fn) − L(P; fn) < ". We have fn(x) − " < f(x) < fn(x) + " for all x 2 [a; b] and thus for each subinterval ∆i we have infx2∆i fn(x) − " < infx2∆i f(x) ≤ supx2∆i f(x) < supx2∆i fn(x) + ". R − R We Thus have 0 ≤ f(x)dx− − f(x)dx ≤ U(P; f)−L(P; f) < U(P; fn +")−L(P; fn − ") = U(P; fn) − L(P; fn) + "(b − a) < "(1 + b − a). R − R Since 0 < " was arbitrary, f(x)dx = − f(x)dx and so f is Rieman Integrable. For each n 2 N let "n = supx2[a;b]jf(x) − fn(x)j then limn!1"n = 0.
Recommended publications
  • Informal Lecture Notes for Complex Analysis
    Informal lecture notes for complex analysis Robert Neel I'll assume you're familiar with the review of complex numbers and their algebra as contained in Appendix G of Stewart's book, so we'll pick up where that leaves off. 1 Elementary complex functions In one-variable real calculus, we have a collection of basic functions, like poly- nomials, rational functions, the exponential and log functions, and the trig functions, which we understand well and which serve as the building blocks for more general functions. The same is true in one complex variable; in fact, the real functions we just listed can be extended to complex functions. 1.1 Polynomials and rational functions We start with polynomials and rational functions. We know how to multiply and add complex numbers, and thus we understand polynomial functions. To be specific, a degree n polynomial, for some non-negative integer n, is a function of the form n n−1 f(z) = cnz + cn−1z + ··· + c1z + c0; 3 where the ci are complex numbers with cn 6= 0. For example, f(z) = 2z + (1 − i)z + 2i is a degree three (complex) polynomial. Polynomials are clearly defined on all of C. A rational function is the quotient of two polynomials, and it is defined everywhere where the denominator is non-zero. z2+1 Example: The function f(z) = z2−1 is a rational function. The denomina- tor will be zero precisely when z2 = 1. We know that every non-zero complex number has n distinct nth roots, and thus there will be two points at which the denominator is zero.
    [Show full text]
  • MATH 305 Complex Analysis, Spring 2016 Using Residues to Evaluate Improper Integrals Worksheet for Sections 78 and 79
    MATH 305 Complex Analysis, Spring 2016 Using Residues to Evaluate Improper Integrals Worksheet for Sections 78 and 79 One of the interesting applications of Cauchy's Residue Theorem is to find exact values of real improper integrals. The idea is to integrate a complex rational function around a closed contour C that can be arbitrarily large. As the size of the contour becomes infinite, the piece in the complex plane (typically an arc of a circle) contributes 0 to the integral, while the part remaining covers the entire real axis (e.g., an improper integral from −∞ to 1). An Example Let us use residues to derive the formula p Z 1 x2 2 π 4 dx = : (1) 0 x + 1 4 Note the somewhat surprising appearance of π for the value of this integral. z2 First, let f(z) = and let C = L + C be the contour that consists of the line segment L z4 + 1 R R R on the real axis from −R to R, followed by the semi-circle CR of radius R traversed CCW (see figure below). Note that C is a positively oriented, simple, closed contour. We will assume that R > 1. Next, notice that f(z) has two singular points (simple poles) inside C. Call them z0 and z1, as shown in the figure. By Cauchy's Residue Theorem. we have I f(z) dz = 2πi Res f(z) + Res f(z) C z=z0 z=z1 On the other hand, we can parametrize the line segment LR by z = x; −R ≤ x ≤ R, so that I Z R x2 Z z2 f(z) dz = 4 dx + 4 dz; C −R x + 1 CR z + 1 since C = LR + CR.
    [Show full text]
  • Math 336 Sample Problems
    Math 336 Sample Problems One notebook sized page of notes will be allowed on the test. The test will cover up to section 2.6 in the text. 1. Suppose that v is the harmonic conjugate of u and u is the harmonic conjugate of v. Show that u and v must be constant. ∞ X 2 P∞ n 2. Suppose |an| converges. Prove that f(z) = 0 anz is analytic 0 Z 2π for |z| < 1. Compute lim |f(reit)|2dt. r→1 0 z − a 3. Let a be a complex number and suppose |a| < 1. Let f(z) = . 1 − az Prove the following statments. (a) |f(z)| < 1, if |z| < 1. (b) |f(z)| = 1, if |z| = 1. 2πij 4. Let zj = e n denote the n roots of unity. Let cj = |1 − zj| be the n − 1 chord lengths from 1 to the points zj, j = 1, . .n − 1. Prove n that the product c1 · c2 ··· cn−1 = n. Hint: Consider z − 1. 5. Let f(z) = x + i(x2 − y2). Find the points at which f is complex differentiable. Find the points at which f is complex analytic. 1 6. Find the Laurent series of the function z in the annulus D = {z : 2 < |z − 1| < ∞}. 1 Sample Problems 2 7. Using the calculus of residues, compute Z +∞ dx 4 −∞ 1 + x n p0(z) Y 8. Let f(z) = , where p(z) = (z −z ) and the z are distinct and zp(z) j j j=1 different from 0. Find all the poles of f and compute the residues of f at these poles.
    [Show full text]
  • Bounded Holomorphic Functions on Finite Riemann Surfaces
    BOUNDED HOLOMORPHIC FUNCTIONS ON FINITE RIEMANN SURFACES BY E. L. STOUT(i) 1. Introduction. This paper is devoted to the study of some problems concerning bounded holomorphic functions on finite Riemann surfaces. Our work has its origin in a pair of theorems due to Lennart Carleson. The first of the theorems of Carleson we shall be concerned with is the following [7] : Theorem 1.1. Let fy,---,f„ be bounded holomorphic functions on U, the open unit disc, such that \fy(z) + — + \f„(z) | su <5> 0 holds for some ô and all z in U. Then there exist bounded holomorphic function gy,---,g„ on U such that ftEi + - +/A-1. In §2, we use this theorem to establish an analogous result in the setting of finite open Riemann surfaces. §§3 and 4 consider certain questions which arise naturally in the course of the proof of this generalization. We mention that the chief result of §2, Theorem 2.6, has been obtained independently by N. L. Ailing [3] who has used methods more highly algebraic than ours. The second matter we shall be concerned with is that of interpolation. If R is a Riemann surface and if £ is a subset of R, call £ an interpolation set for R if for every bounded complex-valued function a on £, there is a bounded holo- morphic function f on R such that /1 £ = a. Carleson [6] has characterized interpolation sets in the unit disc: Theorem 1.2. The set {zt}™=1of points in U is an interpolation set for U if and only if there exists ô > 0 such that for all n ** n00 k = l;ktn 1 — Z.Zl An alternative proof is to be found in [12, p.
    [Show full text]
  • Complex-Differentiability
    Complex-Differentiability Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0 April 25, 2017 Contents Core Definitions 1 Derivative and Complex-Differential 3 Calculus 5 Cauchy-Riemann Equations 7 Appendix – Terminology and Notation 10 References 11 Core Definitions Definition – Complex-Differentiability & Derivative. Let f : A ⊂ C → C. The function f is complex-differentiable at an interior point z of A if the derivative of f at z, defined as the limit of the difference quotient f(z + h) − f(z) f 0(z) = lim h→0 h exists in C. Remark – Why Interior Points? The point z is an interior point of A if ∃ r > 0, ∀ h ∈ C, |h| < r → z + h ∈ A. In the definition above, this assumption ensures that f(z + h) – and therefore the difference quotient – are well defined when |h| is (nonzero and) small enough. Therefore, the derivative of f at z is defined as the limit in “all directions at once” of the difference quotient of f at z. To question the existence of the derivative of f : A ⊂ C → C at every point of its domain, we therefore require that every point of A is an interior point, or in other words, that A is open. 1 Definition – Holomorphic Function. Let Ω be an open subset of C. A function f :Ω → C is complex-differentiable – or holomorphic – in Ω if it is complex-differentiable at every point z ∈ Ω. If additionally Ω = C, the function is entire. Examples – Elementary Functions. 1. Every constant function f : z ∈ C 7→ λ ∈ C is holomorphic as 0 λ − λ ∀ z ∈ C, f (z) = lim = 0.
    [Show full text]
  • The Riemann Mapping Theorem Christopher J. Bishop
    The Riemann Mapping Theorem Christopher J. Bishop C.J. Bishop, Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794-3651 E-mail address: [email protected] 1991 Mathematics Subject Classification. Primary: 30C35, Secondary: 30C85, 30C62 Key words and phrases. numerical conformal mappings, Schwarz-Christoffel formula, hyperbolic 3-manifolds, Sullivan’s theorem, convex hulls, quasiconformal mappings, quasisymmetric mappings, medial axis, CRDT algorithm The author is partially supported by NSF Grant DMS 04-05578. Abstract. These are informal notes based on lectures I am giving in MAT 626 (Topics in Complex Analysis: the Riemann mapping theorem) during Fall 2008 at Stony Brook. We will start with brief introduction to conformal mapping focusing on the Schwarz-Christoffel formula and how to compute the unknown parameters. In later chapters we will fill in some of the details of results and proofs in geometric function theory and survey various numerical methods for computing conformal maps, including a method of my own using ideas from hyperbolic and computational geometry. Contents Chapter 1. Introduction to conformal mapping 1 1. Conformal and holomorphic maps 1 2. M¨obius transformations 16 3. The Schwarz-Christoffel Formula 20 4. Crowding 27 5. Power series of Schwarz-Christoffel maps 29 6. Harmonic measure and Brownian motion 39 7. The quasiconformal distance between polygons 48 8. Schwarz-Christoffel iterations and Davis’s method 56 Chapter 2. The Riemann mapping theorem 67 1. The hyperbolic metric 67 2. Schwarz’s lemma 69 3. The Poisson integral formula 71 4. A proof of Riemann’s theorem 73 5. Koebe’s method 74 6.
    [Show full text]
  • Complex Manifolds
    Complex Manifolds Lecture notes based on the course by Lambertus van Geemen A.A. 2012/2013 Author: Michele Ferrari. For any improvement suggestion, please email me at: [email protected] Contents n 1 Some preliminaries about C 3 2 Basic theory of complex manifolds 6 2.1 Complex charts and atlases . 6 2.2 Holomorphic functions . 8 2.3 The complex tangent space and cotangent space . 10 2.4 Differential forms . 12 2.5 Complex submanifolds . 14 n 2.6 Submanifolds of P ............................... 16 2.6.1 Complete intersections . 18 2 3 The Weierstrass }-function; complex tori and cubics in P 21 3.1 Complex tori . 21 3.2 Elliptic functions . 22 3.3 The Weierstrass }-function . 24 3.4 Tori and cubic curves . 26 3.4.1 Addition law on cubic curves . 28 3.4.2 Isomorphisms between tori . 30 2 Chapter 1 n Some preliminaries about C We assume that the reader has some familiarity with the notion of a holomorphic function in one complex variable. We extend that notion with the following n n Definition 1.1. Let f : C ! C, U ⊆ C open with a 2 U, and let z = (z1; : : : ; zn) be n the coordinates in C . f is holomorphic in a = (a1; : : : ; an) 2 U if f has a convergent power series expansion: +1 X k1 kn f(z) = ak1;:::;kn (z1 − a1) ··· (zn − an) k1;:::;kn=0 This means, in particular, that f is holomorphic in each variable. Moreover, we define OCn (U) := ff : U ! C j f is holomorphicg m A map F = (F1;:::;Fm): U ! C is holomorphic if each Fj is holomorphic.
    [Show full text]
  • THE IMPACT of RIEMANN's MAPPING THEOREM in the World
    THE IMPACT OF RIEMANN'S MAPPING THEOREM GRANT OWEN In the world of mathematics, scholars and academics have long sought to understand the work of Bernhard Riemann. Born in a humble Ger- man home, Riemann became one of the great mathematical minds of the 19th century. Evidence of his genius is reflected in the greater mathematical community by their naming 72 different mathematical terms after him. His contributions range from mathematical topics such as trigonometric series, birational geometry of algebraic curves, and differential equations to fields in physics and philosophy [3]. One of his contributions to mathematics, the Riemann Mapping Theorem, is among his most famous and widely studied theorems. This theorem played a role in the advancement of several other topics, including Rie- mann surfaces, topology, and geometry. As a result of its widespread application, it is worth studying not only the theorem itself, but how Riemann derived it and its impact on the work of mathematicians since its publication in 1851 [3]. Before we begin to discover how he derived his famous mapping the- orem, it is important to understand how Riemann's upbringing and education prepared him to make such a contribution in the world of mathematics. Prior to enrolling in university, Riemann was educated at home by his father and a tutor before enrolling in high school. While in school, Riemann did well in all subjects, which strengthened his knowl- edge of philosophy later in life, but was exceptional in mathematics. He enrolled at the University of G¨ottingen,where he learned from some of the best mathematicians in the world at that time.
    [Show full text]
  • A Formal Proof of Cauchy's Residue Theorem
    A Formal Proof of Cauchy's Residue Theorem Wenda Li and Lawrence C. Paulson Computer Laboratory, University of Cambridge fwl302,[email protected] Abstract. We present a formalization of Cauchy's residue theorem and two of its corollaries: the argument principle and Rouch´e'stheorem. These results have applications to verify algorithms in computer alge- bra and demonstrate Isabelle/HOL's complex analysis library. 1 Introduction Cauchy's residue theorem | along with its immediate consequences, the ar- gument principle and Rouch´e'stheorem | are important results for reasoning about isolated singularities and zeros of holomorphic functions in complex anal- ysis. They are described in almost every textbook in complex analysis [3, 15, 16]. Our main motivation of this formalization is to certify the standard quantifier elimination procedure for real arithmetic: cylindrical algebraic decomposition [4]. Rouch´e'stheorem can be used to verify a key step of this procedure: Collins' projection operation [8]. Moreover, Cauchy's residue theorem can be used to evaluate improper integrals like Z 1 itz e −|tj 2 dz = πe −∞ z + 1 Our main contribution1 is two-fold: { Our machine-assisted formalization of Cauchy's residue theorem and two of its corollaries is new, as far as we know. { This paper also illustrates the second author's achievement of porting major analytic results, such as Cauchy's integral theorem and Cauchy's integral formula, from HOL Light [12]. The paper begins with some background on complex analysis (Sect. 2), fol- lowed by a proof of the residue theorem, then the argument principle and Rouch´e'stheorem (3{5).
    [Show full text]
  • Introduction to Holomorphic Functions of Several Variables, by Robert C
    BOOK REVIEWS 205 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 25, Number 1, July 1991 ©1991 American Mathematical Society 0273-0979/91 $1.00+ $.25 per page Introduction to holomorphic functions of several variables, by Robert C. Gunning. Wadsworth & Brooks/Cole, vol. 1, Function the­ ory, 202 pp. ISBN 0-534-13308-8; vol. 2, Local theory, 215 pp. ISBN 0-534-13309-6; vol. 3, Homological theory, 194 pp. ISBN 0-534-13310-X What is several complex variables? The answer depends on whom you ask. Some will speak of coherent analytic sheaves, commutative al­ gebra, and Cousin problems (see for instance [GRR1, GRR2]). Some will speak of Kàhler manifolds and uniformization—how many topologically trivial complex manifolds are there of strictly negative (bounded from zero) curvature (see [KOW])? (In one complex variable the important answer is one,) Some will speak of positive line bundles (see [GRA]). Some will speak of partial differential equations, subelliptic es­ timates, and noncoercive boundary value problems (see [FOK]). Some will speak of intersection theory, orders of contact of va­ rieties with real manifolds, and algebraic geometry (see [JPDA]). Some will speak of geometric function theory (see [KRA]). Some will speak of integral operators and harmonic analysis (see [STE1, STE2, KRA]). Some will speak of questions of hard analysis inspired by results in one complex variable (see [RUD1, RUD2]). As with any lively and diverse field, there are many points of view, and many different tools that may be used to obtain useful results. Several complex variables, perhaps more than most fields, seems to be a meeting ground for an especially rich array of tech­ niques.
    [Show full text]
  • Lecture Note for Math 220A Complex Analysis of One Variable
    Lecture Note for Math 220A Complex Analysis of One Variable Song-Ying Li University of California, Irvine Contents 1 Complex numbers and geometry 2 1.1 Complex number field . 2 1.2 Geometry of the complex numbers . 3 1.2.1 Euler's Formula . 3 1.3 Holomorphic linear factional maps . 6 1.3.1 Self-maps of unit circle and the unit disc. 6 1.3.2 Maps from line to circle and upper half plane to disc. 7 2 Smooth functions on domains in C 8 2.1 Notation and definitions . 8 2.2 Polynomial of degree n ...................... 9 2.3 Rules of differentiations . 11 3 Holomorphic, harmonic functions 14 3.1 Holomorphic functions and C-R equations . 14 3.2 Harmonic functions . 15 3.3 Translation formula for Laplacian . 17 4 Line integral and cohomology group 18 4.1 Line integrals . 18 4.2 Cohomology group . 19 4.3 Harmonic conjugate . 21 1 5 Complex line integrals 23 5.1 Definition and examples . 23 5.2 Green's theorem for complex line integral . 25 6 Complex differentiation 26 6.1 Definition of complex differentiation . 26 6.2 Properties of complex derivatives . 26 6.3 Complex anti-derivative . 27 7 Cauchy's theorem and Morera's theorem 31 7.1 Cauchy's theorems . 31 7.2 Morera's theorem . 33 8 Cauchy integral formula 34 8.1 Integral formula for C1 and holomorphic functions . 34 8.2 Examples of evaluating line integrals . 35 8.3 Cauchy integral for kth derivative f (k)(z) . 36 9 Application of the Cauchy integral formula 36 9.1 Mean value properties .
    [Show full text]
  • Introduction to Complex Analysis Michael Taylor
    Introduction to Complex Analysis Michael Taylor 1 2 Contents Chapter 1. Basic calculus in the complex domain 0. Complex numbers, power series, and exponentials 1. Holomorphic functions, derivatives, and path integrals 2. Holomorphic functions defined by power series 3. Exponential and trigonometric functions: Euler's formula 4. Square roots, logs, and other inverse functions I. π2 is irrational Chapter 2. Going deeper { the Cauchy integral theorem and consequences 5. The Cauchy integral theorem and the Cauchy integral formula 6. The maximum principle, Liouville's theorem, and the fundamental theorem of al- gebra 7. Harmonic functions on planar regions 8. Morera's theorem, the Schwarz reflection principle, and Goursat's theorem 9. Infinite products 10. Uniqueness and analytic continuation 11. Singularities 12. Laurent series C. Green's theorem F. The fundamental theorem of algebra (elementary proof) L. Absolutely convergent series Chapter 3. Fourier analysis and complex function theory 13. Fourier series and the Poisson integral 14. Fourier transforms 15. Laplace transforms and Mellin transforms H. Inner product spaces N. The matrix exponential G. The Weierstrass and Runge approximation theorems Chapter 4. Residue calculus, the argument principle, and two very special functions 16. Residue calculus 17. The argument principle 18. The Gamma function 19. The Riemann zeta function and the prime number theorem J. Euler's constant S. Hadamard's factorization theorem 3 Chapter 5. Conformal maps and geometrical aspects of complex function the- ory 20. Conformal maps 21. Normal families 22. The Riemann sphere (and other Riemann surfaces) 23. The Riemann mapping theorem 24. Boundary behavior of conformal maps 25. Covering maps 26.
    [Show full text]