Cohomological Finite Generation for Restricted Lie Superalgebras and Finite Supergroup Schemes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1812.11658V1 [Hep-Th] 31 Dec 2018 Genitors of Black Holes And, Via the Brane-World, As Entire Universes in Their Own Right
IMPERIAL-TP-2018-MJD-03 Thirty years of Erice on the brane1 M. J. Duff Institute for Quantum Science and Engineering and Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, 77840, USA & Theoretical Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom & Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, United Kingdom Abstract After initially meeting with fierce resistance, branes, p-dimensional extended objects which go beyond particles (p=0) and strings (p=1), now occupy centre stage in theo- retical physics as microscopic components of M-theory, as the seeds of the AdS/CFT correspondence, as a branch of particle phenomenology, as the higher-dimensional pro- arXiv:1812.11658v1 [hep-th] 31 Dec 2018 genitors of black holes and, via the brane-world, as entire universes in their own right. Notwithstanding this early opposition, Nino Zichichi invited me to to talk about su- permembranes and eleven dimensions at the 1987 School on Subnuclear Physics and has continued to keep Erice on the brane ever since. Here I provide a distillation of my Erice brane lectures and some personal recollections. 1Based on lectures at the International Schools of Subnuclear Physics 1987-2017 and the International Symposium 60 Years of Subnuclear Physics at Bologna, University of Bologna, November 2018. Contents 1 Introduction 5 1.1 Geneva and Erice: a tale of two cities . 5 1.2 Co-authors . 9 1.3 Nomenclature . 9 2 1987 Not the Standard Superstring Review 10 2.1 Vacuum degeneracy and the multiverse . 10 2.2 Supermembranes . -
Arxiv:Hep-Th/9905112V1 17 May 1999 C E a -Al [email protected]
SU-ITP-99/22 KUL-TF-99/16 PSU-TH-208 hep-th/9905112 May 17, 1999 Supertwistors as Quarks of SU(2, 2|4) Piet Claus†a, Murat Gunaydin∗b, Renata Kallosh∗∗c, J. Rahmfeld∗∗d and Yonatan Zunger∗∗e † Instituut voor theoretische fysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium ∗ Physics Department, Penn State University, University Park, PA, 1682, USA ∗∗ Physics Department, Stanford University, Stanford, CA 94305-4060, USA Abstract 5 The GS superstring on AdS5 × S has a nonlinearly realized, spontaneously arXiv:hep-th/9905112v1 17 May 1999 broken SU(2, 2|4) symmetry. Here we introduce a two-dimensional model in which the unbroken SU(2, 2|4) symmetry is linearly realized. The basic vari- ables are supertwistors, which transform in the fundamental representation of this supergroup. The quantization of this supertwistor model leads to the complete oscillator construction of the unitary irreducible representations of the centrally extended SU(2, 2|4). They include the states of d = 4 SYM theory, massless and KK states of AdS5 supergravity, and the descendants on AdS5 of the standard mas- sive string states, which form intermediate and long massive supermultiplets. We present examples of long massive supermultiplets and discuss possible states of solitonic and (p,q) strings. a e-mail: [email protected]. b e-mail: [email protected]. c e-mail: [email protected]. d e-mail: [email protected]. e e-mail: [email protected]. 1 Introduction Supertwistors have not yet been fully incorporated into the study of the AdS/CFT correspondence [1]. -
Arxiv:1801.00045V1 [Math.RT] 29 Dec 2017 Eetto Hoyof Theory Resentation finite-Dimensional Olw Rmwr Frmr Elr N El[T] for [RTW]
WEBS OF TYPE Q GORDON C. BROWN AND JONATHAN R. KUJAWA Abstract. We introduce web supercategories of type Q. We describe the structure of these categories and show they have a symmetric braiding. The main result of the paper shows these diagrammatically defined monoidal supercategories provide combinatorial models for the monoidal supercategories generated by the supersymmetric tensor powers of the natural supermodule for the Lie superalgebra of type Q. 1. Introduction 1.1. Background. The enveloping algebra of a complex Lie algebra, U(g), is a Hopf algebra. Conse- quently one can consider the tensor product and duals of U(g)-modules. In particular, the category of finite-dimensional U(g)-modules is naturally a monoidal C-linear category. In trying to understand the rep- resentation theory of U(g) it is natural to ask if one can describe this category (or well-chosen subcategories) as a monoidal category. Kuperberg did this for the rank two Lie algebras by giving a diagrammatic presen- tation for the monoidal subcategory generated by the fundamental representations [Ku]. The rank one case follows from work of Rumer, Teller, and Weyl [RTW]. For g = sl(n) a diagrammatic presentation for the monoidal category generated by the fundamental representations was conjectured for n = 4 by Kim in [Ki] and for general n by Morrison [Mo]. Recently, Cautis-Kamnitzer-Morrison gave a complete combinatorial description of the monoidal category generated by the fundamental representations of U(sl(n)) [CKM]; that is, the full subcategory of all modules k1 kt of the form Λ (Vn) Λ (Vn) for t, k1,...,kt Z≥0, where Vn is the natural module for sl(n). -
Mathematical Foundations of Supersymmetry
MATHEMATICAL FOUNDATIONS OF SUPERSYMMETRY Lauren Caston and Rita Fioresi 1 Dipartimento di Matematica, Universit`adi Bologna Piazza di Porta S. Donato, 5 40126 Bologna, Italia e-mail: [email protected], fi[email protected] 1Investigation supported by the University of Bologna 1 Introduction Supersymmetry (SUSY) is the machinery mathematicians and physicists have developed to treat two types of elementary particles, bosons and fermions, on the same footing. Supergeometry is the geometric basis for supersymmetry; it was first discovered and studied by physicists Wess, Zumino [25], Salam and Strathde [20] (among others) in the early 1970’s. Today supergeometry plays an important role in high energy physics. The objects in super geometry generalize the concept of smooth manifolds and algebraic schemes to include anticommuting coordinates. As a result, we employ the techniques from algebraic geometry to study such objects, namely A. Grothendiek’s theory of schemes. Fermions include all of the material world; they are the building blocks of atoms. Fermions do not like each other. This is in essence the Pauli exclusion principle which states that two electrons cannot occupy the same quantum me- chanical state at the same time. Bosons, on the other hand, can occupy the same state at the same time. Instead of looking at equations which just describe either bosons or fermions separately, supersymmetry seeks out a description of both simultaneously. Tran- sitions between fermions and bosons require that we allow transformations be- tween the commuting and anticommuting coordinates. Such transitions are called supersymmetries. In classical Minkowski space, physicists classify elementary particles by their mass and spin. -
Arxiv:2105.02776V2 [Hep-Th] 19 May 2021
DESY 21-060 Intersecting Defects and Supergroup Gauge Theory Taro Kimuraa and Fabrizio Nierib aInstitut de Math´ematiquesde Bourgogne Universit´eBourgogne Franche-Comt´e,21078 Dijon, France. bDESY Theory Group Notkestraße 85, 22607 Hamburg, Germany. E-mail: [email protected], [email protected] Abstract: We consider 5d supersymmetric gauge theories with unitary groups in the Ω- background and study codim-2/4 BPS defects supported on orthogonal planes intersecting at the origin along a circle. The intersecting defects arise upon implementing the most generic Higgsing (geometric transition) to the parent higher dimensional theory, and they are described by pairs of 3d supersymmetric gauge theories with unitary groups interacting through 1d matter at the intersection. We explore the relations between instanton and gen- eralized vortex calculus, pointing out a duality between intersecting defects subject to the Ω-background and a deformation of supergroup gauge theories, the exact supergroup point being achieved in the self-dual or unrefined limit. Embedding our setup into refined topo- logical strings and in the simplest case when the parent 5d theory is Abelian, we are able to identify the supergroup theory dual to the intersecting defects as the supergroup version of refined Chern-Simons theory via open/closed duality. We also discuss the BPS/CFT side of the correspondence, finding an interesting large rank duality with super-instanton counting. arXiv:2105.02776v3 [hep-th] 21 Sep 2021 Keywords: Supersymmetric gauge theory, defects, -
MONOIDAL SUPERCATEGORIES 1. Introduction 1.1. in Representation
MONOIDAL SUPERCATEGORIES JONATHAN BRUNDAN AND ALEXANDER P. ELLIS Abstract. This work is a companion to our article \Super Kac-Moody 2- categories," which introduces super analogs of the Kac-Moody 2-categories of Khovanov-Lauda and Rouquier. In the case of sl2, the super Kac-Moody 2-category was constructed already in [A. Ellis and A. Lauda, \An odd cate- gorification of Uq(sl2)"], but we found that the formalism adopted there be- came too cumbersome in the general case. Instead, it is better to work with 2-supercategories (roughly, 2-categories enriched in vector superspaces). Then the Ellis-Lauda 2-category, which we call here a Π-2-category (roughly, a 2- category equipped with a distinguished involution in its Drinfeld center), can be recovered by taking the superadditive envelope then passing to the under- lying 2-category. The main goal of this article is to develop this language and the related formal constructions, in the hope that these foundations may prove useful in other contexts. 1. Introduction 1.1. In representation theory, one finds many monoidal categories and 2-categories playing an increasingly prominent role. Examples include the Brauer category B(δ), the oriented Brauer category OB(δ), the Temperley-Lieb category TL(δ), the web category Web(Uq(sln)), the category of Soergel bimodules S(W ) associated to a Coxeter group W , and the Kac-Moody 2-category U(g) associated to a Kac-Moody algebra g. Each of these categories, or perhaps its additive Karoubi envelope, has a definition \in nature," as well as a diagrammatic description by generators and relations. -
Jhep03(2009)040
Published by IOP Publishing for SISSA Received: January 20, 2009 Accepted: February 10, 2009 Published: March 5, 2009 Non-perturbative effects on a fractional D3-brane JHEP03(2009)040 Gabriele Ferrettia and Christoffer Peterssona,b aDepartment of Fundamental Physics, Chalmers University of Technology, 412 96 G¨oteborg, Sweden bPH-TH Division, CERN, CH-1211 Geneva, Switzerland E-mail: [email protected], [email protected] Abstract: In this note we study the = 1 abelian gauge theory on the world volume of a N single fractional D3-brane. In the limit where gravitational interactions are not completely decoupled we find that a superpotential and a fermionic bilinear condensate are generated by a D-brane instanton effect. A related situation arises for an isolated cycle invariant under an orientifold projection, even in the absence of any gauge theory brane. Moreover, in presence of supersymmetry breaking background fluxes, such instanton configurations induce new couplings in the 4-dimensional effective action, including non-perturbative con- tributions to the cosmological constant and non-supersymmetric mass terms. Keywords: D-branes, Nonperturbative Effects ArXiv ePrint: 0901.1182 c SISSA 2009 doi:10.1088/1126-6708/2009/03/040 Contents 1 Introduction 1 2 D-instanton effects in N = 1 world volume theories 2 2.1 Fractional D3-branes at an orbifold singularity 3 2.2 Non-perturbative effects in pure U(1) gauge theory 7 2.3 Computation of the superpotential and the condensates 9 JHEP03(2009)040 2.4 The pure Sp(0) case 11 3 Instanton effects in flux backgrounds 12 1 Introduction The construction of the instanton action by means of string theory [1–6] has helped elu- cidating the physical meaning of the ADHM construction [7] and allowed for an explicit treatment of a large class of non-perturbative phenomena in supersymmetric theories. -
World-Sheet Supersymmetry and Supertargets
Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook World-sheet supersymmetry and supertargets Peter Browne Rønne University of the Witwatersrand, Johannesburg Chapel Hill, August 19, 2010 arXiv:1006.5874 Thomas Creutzig, PR Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Sigma-models on supergroups/cosets The Wess-Zumino-Novikov-Witten (WZNW) model of a Lie supergroup is a CFT with additional affine Lie superalgebra symmetry. Important role in physics • Statistical systems • String theory, AdS/CFT Notoriously hard: Deformations away from WZNW-point Use and explore the rich structure of dualities and correspondences in 2d field theories Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Sigma models on supergroups: AdS/CFT The group of global symmetries of the gauge theory and also of the dual string theory is a Lie supergroup G. The dual string theory is described by a two-dimensional sigma model on a superspace. PSU(2; 2j4) AdS × S5 supercoset 5 SO(4; 1) × SO(5) PSU(1; 1j2) AdS × S2 supercoset 2 U(1) × U(1) 3 AdS3 × S PSU(1; 1j2) supergroup 3 3 AdS3 × S × S D(2; 1; α) supergroup Obtained using GS or hybrid formalism. What about RNS formalism? And what are the precise relations? Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook 3 4 AdS3 × S × T D1-D5 brane system on T 4 with near-horizon limit 3 4 AdS3 × S × T . After S-duality we have N = (1; 1) WS SUSY WZNW model on SL(2) × SU(2) × U4. -
Singlet Glueballs in Klebanov-Strassler Theory
Singlet Glueballs In Klebanov-Strassler Theory A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY IVAN GORDELI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy ARKADY VAINSHTEIN April, 2016 c IVAN GORDELI 2016 ALL RIGHTS RESERVED Acknowledgements First of all I would like to thank my scientific adviser - Arkady Vainshtein for his incredible patience and support throughout the course of my Ph.D. program. I would also like to thank my committee members for taking time to read and review my thesis, namely Ronald Poling, Mikhail Shifman and Alexander Voronov. I am deeply grateful to Vasily Pestun for his support and motivation. Same applies to my collaborators Dmitry Melnikov and Anatoly Dymarsky who have suggested this research topic to me. I am thankful to my other collaborator - Peter Koroteev. I would like to thank Emil Akhmedov, A.Yu. Morozov, Andrey Mironov, M.A. Olshanetsky, Antti Niemi, K.A. Ter-Martirosyan, M.B. Voloshin, Andrey Levin, Andrei Losev, Alexander Gorsky, S.M. Kozel, S.S. Gershtein, M. Vysotsky, Alexander Grosberg, Tony Gherghetta, R.B. Nevzorov, D.I. Kazakov, M.V. Danilov, A. Chervov and all other great teachers who have shaped everything I know about Theoretical Physics. I am deeply grateful to all my friends and colleagues who have contributed to discus- sions and supported me throughout those years including A. Arbuzov, L. Kushnir, K. Kozlova, A. Shestov, V. Averina, A. Talkachova, A. Talkachou, A. Abyzov, V. Poberezh- niy, A. Alexandrov, G. Nozadze, S. Solovyov, A. Zotov, Y. Chernyakov, N. -
Simple Weight Q2(ℂ)-Supermodules
U.U.D.M. Project Report 2009:12 Simple weight q2( )-supermodules Ekaterina Orekhova ℂ Examensarbete i matematik, 30 hp Handledare och examinator: Volodymyr Mazorchuk Juni 2009 Department of Mathematics Uppsala University Simple weight q2(C)-supermodules Ekaterina Orekhova June 6, 2009 1 Abstract The first part of this paper gives the definition and basic properties of the queer Lie superalgebra q2(C). This is followed by a complete classification of simple h-supermodules, which leads to a classification of all simple high- est and lowest weight q2(C)-supermodules. The paper also describes the structure of all Verma supermodules for q2(C) and gives a classification of finite-dimensional q2(C)-supermodules. 2 Contents 1 Introduction 4 1.1 General definitions . 4 1.2 The queer Lie superalgebra q2(C)................ 5 2 Classification of simple h-supermodules 6 3 Properties of weight q-supermodules 11 4 Universal enveloping algebra U(q) 13 5 Simple highest weight q-supermodules 15 5.1 Definition and properties of Verma supermodules . 15 5.2 Structure of typical Verma supermodules . 27 5.3 Structure of atypical Verma supermodules . 28 6 Finite-Dimensional simple weight q-supermodules 31 7 Simple lowest weight q-supermodules 31 3 1 Introduction Significant study of the characters and blocks of the category O of the queer Lie superalgebra qn(C) has been done by Brundan [Br], Frisk [Fr], Penkov [Pe], Penkov and Serganova [PS1], and Sergeev [Se1]. This paper focuses on the case n = 2 and gives explicit formulas, diagrams, and classification results for simple lowest and highest weight q2(C) supermodules. -
Arxiv:2009.00393V2 [Hep-Th] 26 Jan 2021 Supersymmetric Localisation and the Conformal Bootstrap
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 17 (2021), 007, 38 pages Harmonic Analysis in d-Dimensional Superconformal Field Theory Ilija BURIC´ DESY, Notkestraße 85, D-22607 Hamburg, Germany E-mail: [email protected] Received September 02, 2020, in final form January 15, 2021; Published online January 25, 2021 https://doi.org/10.3842/SIGMA.2021.007 Abstract. Superconformal blocks and crossing symmetry equations are among central in- gredients in any superconformal field theory. We review the approach to these objects rooted in harmonic analysis on the superconformal group that was put forward in [J. High Energy Phys. 2020 (2020), no. 1, 159, 40 pages, arXiv:1904.04852] and [J. High Energy Phys. 2020 (2020), no. 10, 147, 44 pages, arXiv:2005.13547]. After lifting conformal four-point functions to functions on the superconformal group, we explain how to obtain compact expressions for crossing constraints and Casimir equations. The later allow to write superconformal blocks as finite sums of spinning bosonic blocks. Key words: conformal blocks; crossing equations; Calogero{Sutherland models 2020 Mathematics Subject Classification: 81R05; 81R12 1 Introduction Conformal field theories (CFTs) are a class of quantum field theories that are interesting for several reasons. On the one hand, they describe the critical behaviour of statistical mechanics systems such as the Ising model. Indeed, the identification of two-dimensional statistical systems with CFT minimal models, first suggested in [2], was a celebrated early achievement in the field. For similar reasons, conformal theories classify universality classes of quantum field theories in the Wilsonian renormalisation group paradigm. On the other hand, CFTs also play a role in the description of physical systems that do not posses scale invariance, through certain \dualities". -
MODULAR REPRESENTATIONS of the SUPERGROUP Q(N), I
MODULAR REPRESENTATIONS OF THE SUPERGROUP Q(n), I JONATHAN BRUNDAN AND ALEXANDER KLESHCHEV To Professor Steinberg with admiration 1. Introduction The representation theory of the algebraic supergroup Q(n) has been studied quite intensively over the complex numbers in recent years, especially by Penkov and Serganova [18, 19, 20] culminating in their solution [21, 22] of the problem of computing the characters of all irreducible finite dimensional representations of Q(n). The characters of one important family of irreducible representations, the so-called polynomial representations, had been determined earlier by Sergeev [24], exploiting an analogue of Schur-Weyl duality connecting polynomial representations of Q(n) to the representation theory of the double covers Sn of the symmetric groups. In [2], we used Sergeev's ideas to classify for the first timeb the irreducible representations of Sn over fields of positive characteristic p > 2. In the present article and its sequel,b we begin a systematic study of the representation theory of Q(n) in positive characteristic, motivated by its close relationship to Sn. Let us briefly summarize the main facts proved in thisb article by purely algebraic techniques. Let G = Q(n) defined over an algebraically closed field k of character- istic p = 2, see 2-3 for the precise definition. In 4 we construct the superalgebra Dist(G6) of distributionsxx on G by reduction modulox p from a Kostant Z-form for the enveloping superalgebra of the Lie superalgebra q(n; C). This provides one of the main tools in the remainder of the paper: there is an explicit equivalence be- tween the category of representations of G and the category of \integrable" Dist(G)- supermodules (see Corollary 5.7).