Probiotics for Oral Health: Myth Or Reality?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Administration of L. Salivarius Expressing 3D8 Scfv As a Feed Additive Improved the Growth Performance, Immune Homeostasis, and Gut Microbiota of Chickens
Received: 22 January 2020 | Revised: 2 April 2020 | Accepted: 24 April 2020 DOI: 10.1111/asj.13399 ORIGINAL ARTICLE Administration of L. salivarius expressing 3D8 scFv as a feed additive improved the growth performance, immune homeostasis, and gut microbiota of chickens Shanmugam Sureshkumar1,2 | Sun Keun Jung1 | Dongjun Kim3 | Keon Bong Oh1 | Hyeon Yang1 | Hwi Cheul Lee1 | Yong Jin Jo1 | Hae Sun Lee1 | Sukchan Lee3 | Sung June Byun1 1Animal Biotechnology Division, National Institute of Animal Science, Rural Abstract Development Administration, Wanju-gun, Probiotics have been defined as live microorganisms that are administered in an ap- Republic of Korea propriate amount to provide health benefits to the host animal. In this study, we in- 2Department of Animal Resource and Science, Dankook University, Cheonan, vestigated the effect of L. salivarius DJ-sa-01 secreting the 3D8 single-chain variable Republic of Korea fragment (3D8 scFv) on the growth performance, cytokine secretion, and intestinal 3Department of Integrative Biotechnology, Sungkyunkwan University, Gyeonggi-do, microbial flora of chickens. The experiment was divided into the control group and Republic of Korea L. salivarius expressing 3D8 scFv experimental group. Chicken was fed 109 colony- Correspondence forming units (CFUs) of wild-type (WT) L. salivarius or 3D8 scFv-secreting L. salivarius Sung June Byun, Animal Biotechnology daily for 35 days. The administration of L. salivarius expressing 3D8 scFv signifi- Division, National Institute of Animal Science, Rural Development Administration, cantly improved the body weight of chickens compared with the administration of 1500, Wanju-gun, 441-706, Republic of WT L. salivarius. A 16S ribosomal RNA metagenomic analysis showed that Firmicutes, Korea. -
Guide to Probiotics
Department of Nutrition and Dietetics 01935 384250 Guide to Probiotics If you would like this leaflet in another format or in a different language, please contact the hospital’s communications Department of Nutrition department on 01935 384233 or email and Dietetics— 01935 384250 [email protected] Leaflet No: 88061014 Date: 12/14 Review by: 12/16 www.yeovilhospital.nhs.uk Bio-Kult Bacillus subtilis Minimum 2 Tablet Online Bifidobacterium bifidum billion live www.bio-kult.com Bifidobacterium breve microorganisms Bifidobacterium infantis per capsule Also available in some Bifidobacterium longum shops. Lactobacillus acidophilus L.delbrueckii ssp. Bulgaricus L. casei L. plantarum L. rhamnosus L. Helveticus L. Salivarius Lactococcus lactis ssp. Lactis Streptococcus thermophiles Biogaia Lactobacillus reu- Minimum 200 Lozenge Online teri Protectis million live www.biogaia.co.uk bacteria in 1 lozenge Recommended use: Please note that some patients experience a slight increase in their symptoms in the first week of us- ing a high dose probiotic. Just bear with it but if you are concerned, please contact us. Introduction The human gut contains millions of bacteria living in balance with each other. This balance can be upset for various reasons including antibiotic use or following an upset stomach when certain bacteria grow in higher numbers than usual. What are probiotics? Available Available from Hollandand Barrett Online www.symprove.com Or via telephone 01252 413600 Available from Probiotics are live bacteria often referred to as ‘good’ or ‘friendly’ bacteria, which may have health benefits by improving the balance of our gut bacteria. They may help if suffering with wind, bloating or constipation or if affected by antibiotic associated bacteria. -
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
Current Trends of Enterococci in Dairy Products: a Comprehensive Review of Their Multiple Roles
foods Review Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles Maria de Lurdes Enes Dapkevicius 1,2,* , Bruna Sgardioli 1,2 , Sandra P. A. Câmara 1,2, Patrícia Poeta 3,4 and Francisco Xavier Malcata 5,6,* 1 Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal; [email protected] (B.S.); [email protected] (S.P.A.C.) 2 Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal 3 Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; [email protected] 4 Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisboa, Portugal 5 LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 420-465 Porto, Portugal 6 FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.d.L.E.D.); [email protected] (F.X.M.) Abstract: As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, Citation: Dapkevicius, M.d.L.E.; and rheological properties, thus contributing to the development of its typical sensorial properties. Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autoly- Malcata, F.X. -
Oral Administration of Lactobacillus Gasseri SBT2055 Is Effective In
www.nature.com/scientificreports OPEN Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas Received: 23 June 2015 Accepted: 7 March 2017 gingivalis-accelerated periodontal Published: xx xx xxxx disease R. Kobayashi1, T. Kobayashi2, F. Sakai3, T. Hosoya3, M. Yamamoto1 & T. Kurita-Ochiai1 Probiotics have been used to treat gastrointestinal disorders. However, the effect of orally intubated probiotics on oral disease remains unclear. We assessed the potential of oral administration of Lactobacillus gasseri SBT2055 (LG2055) for Porphyromonas gingivalis infection. LG2055 treatment significantly reduced alveolar bone loss, detachment and disorganization of the periodontal ligament, and bacterial colonization by subsequent P. gingivalis challenge. Furthermore, the expression and secretion of TNF-α and IL-6 in gingival tissue was significantly decreased in LG2055-administered mice after bacterial infection. Conversely, mouse β-defensin-14 (mBD-14) mRNA and its peptide products were significantly increased in distant mucosal components as well as the intestinal tract to which LG2055 was introduced. Moreover, IL-1β and TNF-α production from THP-1 monocytes stimulated with P. gingivalis antigen was significantly reduced by the addition of humanβ -defensin-3. These results suggest that gastrically administered LG2055 can enhance immunoregulation followed by periodontitis prevention in oral mucosa via the gut immune system; i.e., the possibility of homing in innate immunity. Porphyromonas gingivalis, a Gram-negative anaerobe, is one of the major pathogens associated with chronic periodontitis, a disease that causes the destruction of alveolar bone, and, as a consequence, tooth loss1. Recent evidence suggests that this bacterium contributes to periodontitis by functioning as a keystone pathogen2, 3. -
Bacteriocin‐Like Inhibitory Activities of Seven Lactobacillus Delbrueckii
Letters in Applied Microbiology ISSN 0266-8254 ORIGINAL ARTICLE Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains L. Boyanova, G. Gergova, R. Markovska, D. Yordanov and I. Mitov Department of Medical Microbiology, Medical University of Sofia, Sofia, Bulgaria Significance and Impact of the Study: In this study, anti-Helicobacter pylori activity of seven Lactobacil- lus delbrueckii subsp. bulgaricus (GLB) strains was evaluated by four cell-free supernatant (CFS) types. The GLB strains produced heat-stable bacteriocin-like inhibitory substances (BLISs) with a strong anti-H. pylori activity and some neutralized, catalase- and heat-treated CFSs inhibited >83% of the test strains. Bacteriocin-like inhibitory substance production of GLB strains can render them valuable probiotics in the control of H. pylori infection. Keywords Abstract antibiotics, bacteriocins, Helicobacter, Lactobacillus, probiotics. The aim of the study was to detect anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains by four cell-free Correspondence supernatant (CFS) types. Activity of non-neutralized and non-heat-treated Lyudmila Boyanova, Department of Medical (CFSs1), non-neutralized and heat-treated (CFSs2), pH neutralized, catalase- Microbiology, Medical University of Sofia, treated and non-heat-treated (CFSs3), or neutralized, catalase- and heat-treated Zdrave Street 2, 1431 Sofia, Bulgaria. (CFSs4) CFSs against 18 H. pylori strains (11 of which with antibiotic E-mail: [email protected] resistance) was evaluated. All GLB strains produced bacteriocin-like inhibitory 2017/1069: received 3 June 2017, revised 27 substances (BLISs), the neutralized CFSs of two GLB strains inhibited >81% of August 2017 and accepted 25 September test strains and those of four GLB strains were active against >71% of 2017 antibiotic resistant strains. -
Characterization of a Lactobacillus Brevis Strain with Potential Oral Probiotic Properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3
Fang et al. BMC Microbiology (2018) 18:221 https://doi.org/10.1186/s12866-018-1369-3 RESEARCHARTICLE Open Access Characterization of a Lactobacillus brevis strain with potential oral probiotic properties Fang Fang1,2* , Jie Xu1,2, Qiaoyu Li1,2, Xiaoxuan Xia1,2 and Guocheng Du1,3 Abstract Background: The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health. Results: An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co- incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system. Conclusions: L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products. Keywords: Lactobacillus brevis, Antimicrobial activity, Hydrogen peroxide, Adhesion, Immunomodulation Background properties may prevent the colonization of oral patho- Oral infectious diseases, such as dental caries and peri- gens through different mechanisms. -
Table S5. Components of the Probiotics in Each Included Clinical and Preclinical Literature
Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2021 Table S5. Components of the probiotics in each included clinical and preclinical literature. Study Type of strains Randomized controlled trials Ebrahim Kouchaki Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum and Lactobacillus (2017) fermentum Mahmoud Salami Bifidobacterium infantis, Bifidobacterium lactis, Lactobacillus reuteri, Lactobacillus casei, (2019) Lactobacillus plantarum and Lactobacillus fermentum Mehran Bacillus subtilis PXN 21, Bifidobacterium bifidum PXN 23, Bifidobacterium breve PXN 25, Rahimlou(2020) Bifidobacterium infantis PXN 27, Bifidobacterium longum PXN 30, Lactobacillus acidophilus PXN 35, Lactobacillus delbrueckii ssp. bulgaricus PXN 39, Lactobacillus casei PXN 37, Lactobacillus plantarum PXN 47, Lactobacillus rhamnosus PXN 54, Lactobacillus helveticus PXN 45, Lactobacillus salivarius PXN 57, Lactococcus lactis ssp. lactis PXN 63, Streptococcus thermophilus PXN 66 Preclinical studies Kobayashi et al Lactobacillus casei strain Shirota, Bifidobacterium breve strain Yakult (2009) Lavasani et al Lactobacillus paracasei, DSM 13434; Lactobacillus plantarum, DSM 15312 (HEAL9); (2010) Lactobacillus plantarum, DSM 15313 (HEAL19); Lactobacillus paracasei, PCC (Probi Culture Collection) 101 and Lactobacillus delbrueckii, subsp. bulgaricus, DSM 20081 Ochoa-Repáraz et al Bacteroides fragilis (2010) Takata et al Pediococcus acidilactici R037 (2011) Kobayashi et al Lactobacillus casei strain -
Oral Ecologixtm Oral Health & Microbiome Profile Phylo Bioscience Laboratory
Oral EcologiXTM Oral Health & Microbiome Profile Phylo Bioscience Laboratory INTERPRETIVE GUIDE DISCLAIMER: THIS INFORMATION IS PROVIDED FOR THE USE OF PHYSICIANS AND OTHER LICENSED HEALTH CARE PRACTITIONERS ONLY. THIS INFORMATION IS NOT FOR USE BY CONSUMERS. THE INFORMATION AND OR PRODUCTS ARE NOT INTENDED FOR USE BY CONSUMERS OR PHYSICIANS AS A MEANS TO CURE, TREAT, PREVENT, DIAGNOSE OR MITIGATE ANY DISEASE OR OTHER MEDICAL CONDITION. THE INFORMATION CONTAINED IN THIS DOCUMENT IS IN NO WAY TO BE TAKEN AS PRESCRIPTIVE NOR TO REPLACE THE PHYSICIANS DUTY OF CARE AND PERSONALISED CARE PRACTICES. INTERPRETIVE GUIDE Oral EcologiX™ INTRODUCTION Due to recent advancements in culture-independent techniques, it is now possible to measure the composition of the human microbiota. The oral cavity is a complex ecosystem, comprising several habitats including the teeth, gums, tongue and tonsils, all colonised by bacteria1. The oral microbiota is comprised of approximately 600 taxa at the species level, with different groups and subsets inhabiting different niches. The microbiota of the oral cavity exists as a complex biofilm that remains stable despite environmental changes. However, dysbiosis, in form of infection, injury, dietary changes and risk-associated factors (e.g. smoking) may disrupt the biofilm community, favouring colonisation and invasion of pathogens. Disruption of the biofilm community to a pathogenic profile, induces host immune responses, chronic inflammation and ultimately development of local and systemic diseases. However, much of this damage is reversible if pathogenic communities are removed, and homeostasis is restored. To this end, Phylobioscience have developed the Oral EcologiXTM oral health and microbiome profile, a ground breaking tool for analysis of oral microbiota composition and host immune responses. -
Irritable Bowel Syndrome and Probiotics: from Rationale to Clinical Use Elena F
Irritable bowel syndrome and probiotics: from rationale to clinical use Elena F. Verdu and Stephen M. Collins Purpose of review Introduction Few therapies are of proven efficacy in irritable bowel In this review we discuss the gut-driven pathophysiologic syndrome. Thus, there is great interest in the development pathways involved in gut dysfunction and symptom gen- of a natural therapy that can be both safe and effective. An eration in irritable bowel syndrome (IBS), including immune understanding that probiotics are heterogeneous, with activation, dysmotility, altered mucosal barrier function, multiple targets and mechanisms of action, is fundamental and visceral perception. This allows us to logically review to the development of clinical trials. the possible targets of probiotic therapy in IBS. Finally, we Recent findings evaluate the relevant clinical trials published to date on A bidirectional model for the pathogenesis of irritable bowel probiotics and IBS. syndrome is proposed in which gut-driven and brain-driven mechanisms contribute to the genesis of gut dysfunction and symptoms. In-vitro and animal studies have generated Gut dysfunction in irritable bowel syndrome most of the mechanistic rationale for the use of probiotics The current goal of treatment in IBS is to alleviate symp- in functional bowel disorders. A MEDLINE search of toms and improve quality of life. The gut-driven patho- publications from 1989 to date revealed only eight physiologic mechanisms believed to be involved in the placebo-controlled clinical trials on the subject of origin or maintenance of IBS symptoms include intestinal probiotics and irritable bowel syndrome. All these studies infection and immune activation, dysmotility, abnormal • suffer from methodologic problems. -
Antimicrobial Activity of Lactococcus Lactis Subsp. Lactis Isolated
microorganisms Article Antimicrobial Activity of Lactococcus lactis subsp. lactis Isolated from a Stranded Cuvier’s Beaked Whale (Ziphius cavirostris) against Gram-Positive and -Negative Bacteria Akihiko Suzuki and Miwa Suzuki * Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-4668-43677 Abstract: In the present study, we isolated and characterized Lactococcus lactis (L. lactis) subsp. lactis from a female Cuvier’s beaked whale (Ziphius cavirostris) stranded in Shizuoka, Japan. Only five isolates (CBW1-5), grown on Lactobacilli de Man Rogosa Sharpe (MRS) agar plates prepared using 50% artificial seawater, were positive in L. lactis species-specific primer PCR. Their 16S rRNA sequences were highly similar to those of L. lactis subsp. lactis JCM 5805T. The Gram reaction, motility, gas production from glucose, catalase production, and growth conditions were consistent with those of the type strain. Additionally, carbohydrate utilization of the strains was consistent with previously reported marine organism-derived strains. The pH-neutralized cell-free culture supernatant of strain CBW2 inhibited the growth of Bacillus subtilis subsp. subtilis ATCC 6051 and Vibrio alginolyticus ATCC 17749, whereas protease treatment eliminated or diminished its inhibitory Citation: Suzuki, A.; Suzuki, M. activity. The strain possesses a precursor of the nisin structural gene (nisA), which showed 100% Antimicrobial Activity of Lactococcus homology with nisin Z, and nisin biosynthesis-related genes (nisB, nisC, nisT, nisP, nisF, nisI, and lactis subsp. lactis Isolated from a nisRK), suggesting that the strain produces a nisin-like substance.