A Tale of Theories and Data-Structures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES . -
Quantum Heaps, Cops and Heapy Categories
Mathematical Communications 12(2007), 1-9 1 Quantum heaps, cops and heapy categories Zoran Skodaˇ ∗ Abstract. A heap is a structure with a ternary operation which is intuitively a group with a forgotten unit element. Quantum heaps are associative algebras with a ternary cooperation which are to Hopf algebras what heaps are to groups, and, in particular, the category of copointed quantum heaps is isomorphic to the category of Hopf algebras. There is an intermediate structure of a cop in a monoidal category which is in the case of vector spaces to a quantum heap about what a coalge- bra is to a Hopf algebra. The representations of Hopf algebras make a rigid monoidal category. Similarly, the representations of quantum heaps make a kind of category with ternary products, which we call a heapy category. Key words: quantum algebra, rings, algebras AMS subject classifications: 20N10, 16A24 Received January 25, 2007 Accepted February 1, 2007 1. Classical background: heaps A reference for this section is [1]. 1.1 Before forgetting: group as heap. Let G be a group. Then the ternary operation t : G × G × G → G given by t(a, b, c)=ab−1c, (1) satisfies the following relations: t(b, b, c)=c = t(c, b, b) (2) t(a, b, t(c, d, e)) = t(t(a, b, c),d,e) Aheap(H, t) is a pair of nonempty set H and a ternary operation t : H × H × H satisfying relation (2). A morphism f :(H, t) → (H,t) of heaps is a set map f : H → H satisfying t ◦ (f × f × f)=f ◦ t. -
Sage 9.4 Reference Manual: Monoids Release 9.4
Sage 9.4 Reference Manual: Monoids Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Monoids 3 2 Free Monoids 5 3 Elements of Free Monoids 9 4 Free abelian monoids 11 5 Abelian Monoid Elements 15 6 Indexed Monoids 17 7 Free String Monoids 23 8 String Monoid Elements 29 9 Utility functions on strings 33 10 Hecke Monoids 35 11 Automatic Semigroups 37 12 Module of trace monoids (free partially commutative monoids). 47 13 Indices and Tables 55 Python Module Index 57 Index 59 i ii Sage 9.4 Reference Manual: Monoids, Release 9.4 Sage supports free monoids and free abelian monoids in any finite number of indeterminates, as well as free partially commutative monoids (trace monoids). CONTENTS 1 Sage 9.4 Reference Manual: Monoids, Release 9.4 2 CONTENTS CHAPTER ONE MONOIDS class sage.monoids.monoid.Monoid_class(names) Bases: sage.structure.parent.Parent EXAMPLES: sage: from sage.monoids.monoid import Monoid_class sage: Monoid_class(('a','b')) <sage.monoids.monoid.Monoid_class_with_category object at ...> gens() Returns the generators for self. EXAMPLES: sage: F.<a,b,c,d,e>= FreeMonoid(5) sage: F.gens() (a, b, c, d, e) monoid_generators() Returns the generators for self. EXAMPLES: sage: F.<a,b,c,d,e>= FreeMonoid(5) sage: F.monoid_generators() Family (a, b, c, d, e) sage.monoids.monoid.is_Monoid(x) Returns True if x is of type Monoid_class. EXAMPLES: sage: from sage.monoids.monoid import is_Monoid sage: is_Monoid(0) False sage: is_Monoid(ZZ) # The technical math meaning of monoid has ....: # no bearing whatsoever on the result: it's ....: # a typecheck which is not satisfied by ZZ ....: # since it does not inherit from Monoid_class. -
Ordered Groupoids and the Holomorph of an Inverse Semigroup
ORDERED GROUPOIDS AND THE HOLOMORPH OF AN INVERSE SEMIGROUP N.D. GILBERT AND E.A. MCDOUGALL ABSTRACT. We present a construction for the holomorph of an inverse semi- group, derived from the cartesian closed structure of the category of ordered groupoids. We compare the holomorph with the monoid of mappings that pre- serve the ternary heap operation on an inverse semigroup: for groups these two constructions coincide. We present detailed calculations for semilattices of groups and for the polycyclic monoids. INTRODUCTION The holomorph of a group G is the semidirect product of Hol(G) = Aut(G) n G of G and its automorphism group (with the natural action of Aut(G) on G). The embedding of Aut(G) into the symmetric group ΣG on G extends to an embedding of Hol(G) into ΣG where g 2 G is identified with its (right) Cayley representation ρg : a 7! ag. Then Hol(G) is the normalizer of G in ΣG ([15, Theorem 9.17]). A second interesting characterization of Hol(G) is due to Baer [1] (see also [3] and [15, Exercise 520]). The heap operation on G is the ternary operation defined by ha; b; ci = ab−1c. Baer shows that a subset of G is closed under the heap operation if and only if it is a coset of some subgroup, and that the subset of ΣG that preserves h· · ·i is precisely Hol(G): that is, if σ 2 ΣG, then for all a; b; c; 2 G we have ha; b; ciσ = haσ; bσ; cσi if and only if σ 2 Hol(G). -