Positronium and Muonium Two Photon Laser Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
Positronium and Muonium two photon laser spectroscopy Paolo Crivelli Institute for Particle Physics and Astrophysics, ETH Zurich LEAP 2018- 16th of March 2018 – Paris (France) Leptonic atoms PrecisePrecise test test of of FundamentalFundamental boundbound state state QED QED freefree from from finite finite size size effects effects constantsconstants PositroniumPositronium (Ps) (Ps) MuoniumMuonium (Mu) (Mu) ee- - ee+ + TestTest of of the the fundamental fundamental TestTest the the effect effect of of gravity gravity symmetriessymmetries and and search search onon forfor new new physics physics anti-matteranti-matter See talks Vargas and Moskal See talk A. Soter ApplicationsApplications in in material material TODAY: arXiv:1803.05744 [hep-ex] sciencescience Ps/Mu energy levels Ps Energy levels Mu Energy levels n n 4 4 3S 3P 3D 3S 3P 3D 3 3 3 2 S 1.1 s 2P 3.2 ns 2S 2.2 s 2P 1.6 ns 2 1 2 2 photons transition: 2 photons transition: =486 nm =244 nm Natural linewidth: Natural linewidth: 1.2 MHz 144 kHz 3S 142 ns 1S 2.2 s 1 1 1 Positronium 1S-2S transition S. G. Karshenboim, Phys. Rep. 422, 1 (2005) Theory: νtheory=1233607222.2(6 ) MHz K. Pachucki and S. G. Karshenboim, Phys. Rev. A60, 2792 (1999), K. Melnikov and A. Yelkhovsky, Phys. Lett. B458, 143 (1999)¨. Adkins, Kim, Parsons and Fell, PRL 115 233401 (2015) Experiments: νa=1233607216 .4 (3.2 ) MHz M. S. Fee et al., Phys. Rev. Lett. 70, 1397 (1993) S. Chu, A. P. Mills, Jr. and J. Hall, Phys. Rev. Lett. 52,1689 (1984) New measurement ongoing at ETHZ: goal 0.5 MHz 1) Check QED calculations (7m) 2) Stringent test of SME See talk A.Vargas 3) Positron to electron mass ratio Paolo Crivelli Muonium 1S-2S spectroscopy Experiment: Meyer et al. PRL84, 1136 (2000): Theory: Limited by knowledge of muon mass. QED calculations at 20 kHz S. G. Karshenboim, Phys. Rep. 422, 1 (2005) Reduced mass contribution: 1.187 THz (4800 ppm) Additionally: Muonium 1S-2S spectroscopy Muon g-2 FNAL hadronic contribution hadronic lbl contribution New Physics MUSEUM -HFS Mu-MASS QED DnHFS, n=1 Dn1S-2S m m QED corrections QED corrections Rydberg weak contribution Adapted from K. Jungmann Paolo Crivelli DPG 2017 (Mainz) Positronium/Muonium formation Porous Silica thin film ~1000nm 3-4 nm pore size e+/+ (1-20 keV) Vacuum Paolo Crivelli Positronium formation Porous Silica thin film ~1000nm 3-4 nm pore size e+ Ps e+ oPs Ps e+ Vacuum 30% of the incident positrons are converted in positronium emitted into vacuum with 40 meV (almost 105 m/s). P. Crivelli et al. , Phys. Rev. A81, 052703 (2010) Paolo Crivelli Ps as a particle in a box P. Crivelli et al. , Phys. Rev. A81, 052703 (2010) Paolo Crivelli Muonium (Mu) Paolo Crivelli Polarized surface muon beam generation Paolo Crivelli Low energy muon (LEM) beam @PSI ~ 11000 +/s ~1.9 •108 +/s Ar 500nm E~15eV ~ 5000 +/s Paolo Crivelli MuSR results for SiO2 porous and bulk Larmor frequency: MuSR → Mu is formed but is this emitted in vacuum? Paolo Crivelli Positron shielding technique (PST) Upstream detector Downstream detector e+ B-field Mu/+ Cryostat + Sample Usual SR sample position spin momentum 10 cm No emission into vacuum Paolo Crivelli Positron shielding technique (PST) Upstream detector Downstream detector e+ B-field Mu Cryostat + Sample Usual SR sample position spin momentum 10 cm Emission into vacuum Paolo Crivelli PST principle Vacuum Yield: Paolo Crivelli PST results A. Antognini (ETHZ), P. Crivelli (ETHZ), K. S. Khaw (ETHZ), K. Kirch,(ETHZ/PSI), B Barbiellini (NU Boston), L. Liszkay (CEA),T. Prokscha (PSI), E. Morenzoni (PSI), Z. Salman (PSI), A. Suter (PSI), PRL 108, 143401 (2012) Paolo Crivelli Muonium spatial confinement K. S. Khaw, A. Antognini, T. Prokscha, K. Kirch, L. Liszkay, Z., Salman, P. Crivelli, PRA 94, 022716 (2016) DATA-SIM 1mm Factor 5 enhancement in exc. probability Laser spectroscopy Paolo Crivelli The laser system 486/488 nm TOPTICA 972 nm diode LASER laser Requirements: - High power (~kW) at 486 nm -> detectable signal - Long term stability (continuous data taking ~days) Tapered - Scanning of the laser ± 100 MHz Amplifier 2.4 W Incoming laser beam SHG cavity with LBO crystal Light at 486/488 nm 750mW, 200kHz Space for a 2nd SHG cavity for light generation @ 244 nm for Mu spectroscopy Paolo Crivelli The laser system 486/488 nm TOPTICA 972 nm diode LASER laser Requirements: - High power (~kW) at 486 nm -> detectable signal - Long term stability (continuous data taking ~days) Tapered - Scanning of the laser ± 100 MHz Amplifier 2.4 W Incoming e+ beam laser beam oPs SHG cavity with LBO crystal Light at 486/488 nm Ps target Vacuum 10-9 mBar 750mW, 200kHz Mirror 1 mounted in double piezo-actuator Mirror 2 High finesse resonator for power build up 500 mW 1 kW Space for a 2nd SHG cavity for light generation @ 244 nm for Mu spectroscopy 500 W circulating power Paolo Crivelli Detection of Ps annihilations in the 2S state CW slow positron beam setup D.Cooke, PC et al, Hyp. Interact. 233 (2015) 1-3, 67 S/N ratio should be improved. Use bunched beam (buffer gas trap) → Noise from accidentals reduced by 2 orders of magnitude → Reduction and correction of systematic effects New beam line based on positron buffer gas trap Solenoid 1kG Gamma Detectors Positron Source (many thanks to D. van der Werf and the Swansea group of M. Charlton) Excitation region Paolo Crivelli Bunching and extraction to a field free e-m region D. A. Cooke PC et al. , J. Phys. B: At. Mol. Opt. Phys. 49 014001 (2016) e+ (7 eV), Dt= 50 ns, =1 mm, B= 120 G e+ ON TARGET (@ground): Dt= 1 ns, =1 mm, B<0.1 G, 90 % efficiency Paolo Crivelli See talk Alonso See talk SSPALS 1) Photo-ionized Ps in the 2S excitation laser detected either by PaoloCrivelli target SiO 2 Ps(2S) or e PbWO4 + or e PI e+ or e- - Mu-metal shield in an MCP in an MCP Detection schemes- PI in the 2S exc. Laser PI intheDetection 2S exc. schemes- MCP MCP Probability (arb. units) e + 2) Photo-ionization: PaoloCrivelli target SiO 2S photoionization with nm 532 laser 2S photoionization nm 486 in laser Photo-ionization 2 Ps(2S) PI e+ or e- Mu-metal shield external laser 532 nm Detection schemes- externalDetection schemes- PI MCP MCP Probability (arb. units) e + (corrected via extrapolation) → → 3) Excitation 2S->20P: PaoloCrivelli target SiO Other main systematic: AC AC Stark shift Other main systematic: correction for the 2 2 Ps(2S) 30mm/TOF300ns 30mm/TOF300ns PI e+ or e- Mu-metal shield nd laser at 735 nm detection via field ionization order Doppler shift Detection schemes- field ionization of field ionization Detection schemes- Ps* MCP MCP Probability (arb. units) e + “Quasi” Doppler free excitation → Ps velocity distribution Camera vacuum chamber positrons ring MCP detector Ps tiltable beam silica piezo sampler thin film mount target Paolo Crivelli “Quasi” Doppler free excitation → Ps velocity distribution Camera vacuum chamber positrons ring MCP detector tilt by angle δ Ps tiltable beam silica piezo sampler thin film mount target Δ ν ∝ v Ps⋅δ ) s t i n u . b r a ( y t i l i b a b o r P Paolo Crivelli Outlook of 1S -2S experiment NEXT STEPS → Combine CW laser with bunched positron beam. → Absolute frequency reference: upgrade with output @ 972 nm frequency comb of Prof. Esslinger group (ETHZ). GOAL: current source (10000 Ps/pulse @ 40 meV) → Measurement of 1S-2S of Ps at a level about 5x10-10 → check QED calculation, SME test (sidereal variations) POTENTIAL IMPROVEMENTS → GBAR LINAC → Colder Ps source? Paolo Crivelli MuoniuM lAser SpectroScopy Paolo Crivelli Current (1999) 1S-2S results BKG: 2.5 counts/day ~20 MHz (FWHM) PULSED F. Maas, Physics Letter A 187, 247 (1994) Meyer et al. PRL84, 1136 (2000) 3500 mu+/pulse, 50 Hz, 80 Mu/pulse Paolo Crivelli 1S-2S Mu CW spectroscopy Mu @ 100 K HP 244 nm laser light (Z. Burkley et al., Appl. Phys. B 123, 5 (2016) and arXiv:1801.08536) First CW spectroscopy Paolo Crivelli Pulsed vs CW spectroscopy For CW reduction of the transition linewidth by a factor >20! Paolo Crivelli Pulsed vs CW spectroscopy Systematic related to pulsed excitation eliminated Paolo Crivelli Pulsed vs CW spectroscopy → Improvement in reach using the LEM beamline at PSI Paolo Crivelli Outlook -Mu spectroscopy NEXT STEPS - Upgrade Ps laser with fiber amplifier and SHG (CLBO) + UV enhancement cavity. - Develop laser: Mu(2S) → Mu* enhance the signal and measure atoms velocity. - Test new targets for Mu prodution (see talk A. Soter) GOAL: → Improve muon mass (1 ppb) adn q /q (1 ppt) e Combined with HFS: → stringent test of bound state QED (rel. accuracy 1 ppt) → Rydberg costant free of finite size effects (few ppt), a (1 ppb) → Test of SME POTENTIAL IMPROVEMENTS: 1S-2S results will be statistically limited → New low energy beam lines under development at PSI (Kirch group, ETHZ/PSI) and at JPARC → 2 orders of magnitude more low energy muons expected. Paolo Crivelli Thank you to the organizers for the very kind invitation and your attention Paolo Crivelli.