Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes

Total Page:16

File Type:pdf, Size:1020Kb

Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes Satoe Aratake1, Tomohiko Tomura1, Seikoh Saitoh2, Ryouma Yokokura3, Yuichi Kawanishi2, Ryuichi Shinjo4, James Davis Reimer5, Junichi Tanaka3, Hideaki Maekawa2* 1 Graduate School of Science and Engineering, University of the Ryukyus, Nishihara, Okinawa, Japan, 2 Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan, 3 Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan, 4 Department of Physics and Earth Sciences, University of the Ryukyus, Nishihara, Okinawa, Japan, 5 Rising Star Program, TRO-SIS, University of the Ryukyus, Nishihara, Okinawa, Japan Abstract Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus. Citation: Aratake S, Tomura T, Saitoh S, Yokokura R, Kawanishi Y, et al. (2012) Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes. PLoS ONE 7(1): e30410. doi:10.1371/journal.pone.0030410 Editor: Dirk Steinke, Biodiversity Insitute of Ontario - University of Guelph, Canada Received September 8, 2011; Accepted December 15, 2011; Published January 17, 2012 Copyright: ß 2012 Aratake et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The project of ‘‘Research of insertion mechanism into the genome of movable gene with its transporter and development of the general gene introduction system’’ was supported by Ministry of Education, Culture, Sports, Science and Technology Japan. International Research Hub Project for Climate Change and Coral Reef/Island Dynamics, University of the Ryukyus. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction revised the classification of Sarcophyton after gross morphological and microscopic examination of Sarcophyton species’ type speci- Soft corals (Cnidaria: Anthozoa: Octocorallia) often equal or mens. Since the taxonomic revision by Verseveldt [7], who exceed the total coverage of scleractinian corals in coral reef considered Sarcophyton to contain 35 valid species, an additional six ecosystems [1–4], and as dominant space-occupiers, important species of Sarcophyton have been described [8–13]. structural components of coral reef communities, and contributors Recently, McFadden et al. [14] reported on the utility of to coral reef biomass [4,5], have been the subjects of biological mitochondrial protein-coding gene MutS homolog (msh1) sequenc- studies since the nineteenth century. es for Sarcophyton and Lobophytum species identification. The study The subclass Octocorallia includes soft corals, gorgonians, and sea showed that within Sarcophyton, specimens initially identified as pens. Most soft corals belong to the order Alcyonacea, which is Sarcophyton glaucum by morphology could be divided into six very comprised of the families Xeniidae, Nephtheidae, and Alcyoniidae. distinct genetic clades, suggesting that this morphologically The family Alcyoniidae contains the genera Sinularia, Lobophytum and heterogeneous species is actually a complex of cryptic species [14]. Sarcophyton, and members of this group are among the dominant The soft coral genera Lobophytum and Sarcophyton are known to benthic organisms in the coral reefs in Okinawa and other Pacific have many secondary metabolites [15–17]. Secondary metabolites Ocean areas [1,2,4,6]. Sarcophyton species are very hardy and are in soft corals of Sarcophyton have been well characterized with the dominant in many coral reef areas. Sarcophyton species are character- advancement of instrumental analyses over the past four decades. ized by a distinct sterile stalk, a broad, flared, smooth, mushroom- The soft coral egg-specific secondary metabolite PGA2 and some shaped top called a capitulum, and by the shape of their sclerites, diterpenes have been shown to cause contractions of soft coral which are found in the interior coenenchymal tissue of the colony. polyps and the expulsion of eggs during spawning [18], and similar Most soft coral classification and identification has traditionally phenomenon by a secondary metabolite (sarcophytoxide) has been been carried out by sclerite characterization. Verseveldt [7] reported from Sarcophyton glaucum [19]. These examples indicate PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e30410 Chemotype Diversity of Sarcophyton one reproductive isolation factor may be due to chemical signals, F [14], and specimens from this study belonged to four of these and that secondary metabolites may have important function. In clades: four sequences within clade B sensu McFadden et al. [14], addition, some metabolites are toxic and used in competition for one within C, five within D, and six within F. space with scleractinian corals [20], and it is believed that octocorals release chemical substances into the water as a Major compound analyses: Cembrene diterpenes commonly used strategy to inhibit growth and survival of their In total eight cembranoid diterpenes were identified (chemo- neighbors [21]. Furthermore, it is known in Sarcophyton glaucum that types 1–8) (Fig. 2). The abundance of each chemotype at each secondary metabolites such as sarcophytoxide cause allelopathic collection site is shown in Table 1. Among the detected effects [19]. Thus, by focusing attention on secondary metabolites chemotypes, 20 specimens of chemotype 1 (2S,7S,8S-sarcophyt- it may be possible to better understand the environmental role of oxide) were most abundant, followed by chemotype 2 (2S,7R,8R- soft corals in tropical waters. sarcophytoxide) and chemotype 3 (2S,7R,8R-isosarcophytoxide). One molecule, sarcophytol A, has attracted attention due to its The cembrenes found from the 34 specimens were as follows: antitumor promoting activity [22]. As sarcophytol A was discovered chemotype 1 - 2S,7S,8S-sarcophytoxide, 20 specimens (Sunabe 1, from Sarcophyton collected at Ishigaki Island, Okinawa, southern 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, Zanpa 1, 5, 9, Japan, researchers have investigated the chemical activity and three- Mizugama 6, 8, 11); chemotype 2 - 2S,7R,8R-sarcophytoxide, six dimensional structure of the chemical [23–25]. Additionally, Koh et specimens (Sunabe 1, 2, 5, 16, 17, Mizugama 7); chemotype 3 - al. [26] investigated the distribution of Sarcophyton species containing 2S,7R,8R-isosarcophytoxide, three specimens (Sunabe 6, 19, sarcophytol A in Okinawa, and their study indicated that Mizugama 4); chemotype 4–7,8-epoxy-1,3,11-cembratrien-15-ol, composition of cembranoids in Sarcophyton is not related with one specimen (Sunabe 1); chemotype 5 - Sarcophytol A, one morphologically identified species. Subsequently, it was found that specimen (Mizugama 4); chemotype 6 - Emblide, two specimens two species, Sarcophyton trocheliophorum and Sarcophyton crassocaule, (Zampa 6, 10); chemotype 7 - 7-hydroxy-1,3,11-cembratrien-20,8- appeared to be the source organisms of sarcophytol A [27], and not olide, two specimens (Zampa 3, 4); chemotype 8 - 7S,8S-epoxy- only Sarcophyton glaucum as originally reported. During this study, it 1,3,11-cembratriene (Sunabe 10). was also noted that Sarcophyton glaucum’s chemical content varied to a All specimens of Sarcophyton trocheliophorum included the same large degree and it was concluded there are at least nine chemotypes chemotype, chemotype 1. Specimens of Sarcophyton glaucum clade F within S. glaucum [27]. included two chemotypes, 6 and 7. Chemotypes 6 and 7 have Thus, it is difficult to conclusively identify the source Sarcophyton lactone function and could be easily distinguished from the other species of secondary
Recommended publications
  • Slow Population Turnover in the Soft Coral Genera Sinularia and Sarcophyton on Mid- and Outer-Shelf Reefs of the Great Barrier Reef
    MARINE ECOLOGY PROGRESS SERIES Vol. 126: 145-152,1995 Published October 5 Mar Ecol Prog Ser l Slow population turnover in the soft coral genera Sinularia and Sarcophyton on mid- and outer-shelf reefs of the Great Barrier Reef Katharina E. Fabricius* Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia ABSTRACT: Aspects of the life history of the 2 common soft coral genera Sinularja and Sarcophyton were investigated on 360 individually tagged colonies over 3.5 yr. Measurements included rates of growth, colony fission, mortality, sublethal predation and algae infection, and were carried out at 18 sites on 6 mid- and outer-shelf reefs of the Australian Great Barrier Reef. In both Sinularia and Sarco- phyton, average radial growth was around 0.5 cm yr.', and relative growth rates were size-dependent. In Sinularia, populations changed very slowly over time. Their per capita mortality was low (0.014 yr.') and size-independent, and indicated longevity of the colonies. Colonies with extensions of up to 10 X 10 m potentially could be several hundreds of years old. Mortality was more than compensated for by asexual reproduction through colony fission (0.035 yr.'). In Sarcophyton, mortality was low in colonies larger than 5 cm disk diameter (0.064 yr-l), and significantly higher in newly recruited small colonies (0.88 yr-'). Photographic monitoring of about 500 additional colonies from 16 soft coral genera showed that rates of mortality and recruitment In the family Alcyoniidae differed fundamentally from those of the commonly more 'fugitive' families Xeniidae and Nephtheidae. Rates of recruitment by larval set- tlement were very low in a majority of the soft coral taxa.
    [Show full text]
  • Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands
    国立科博専報,(52), pp. 65–94 , 2018 年 3 月 28 日 Mem. Natl. Mus. Nat. Sci., Tokyo, (52), pp. 65–94, March 28, 2018 Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands Yukimitsu Imahara1* and Hiroshi Namikawa2 1Wakayama Laboratory, Biological Institute on Kuroshio, 300–11 Kire, Wakayama, Wakayama 640–0351, Japan *E-mail: [email protected] 2Showa Memorial Institute, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan Abstract. Approximately 400 octocoral specimens were collected from the Ogasawara Islands by SCUBA diving during 2013–2016 and by dredging surveys by the R/V Koyo of the Tokyo Met- ropolitan Ogasawara Fisheries Center in 2014 as part of the project “Biological Properties of Bio- diversity Hotspots in Japan” at the National Museum of Nature and Science. Here we report on 52 lots of these octocoral specimens that have been identified to 42 species thus far. The specimens include seven species of three genera in two families of Stolonifera, 25 species of ten genera in two families of Alcyoniina, one species of Scleraxonia, and nine species of four genera in three families of Pennatulacea. Among them, three species of Stolonifera: Clavularia cf. durum Hick- son, C. cf. margaritiferae Thomson & Henderson and C. cf. repens Thomson & Henderson, and five species of Alcyoniina: Lobophytum variatum Tixier-Durivault, L. cf. mirabile Tixier- Durivault, Lohowia koosi Alderslade, Sarcophyton cf. boletiforme Tixier-Durivault and Sinularia linnei Ofwegen, are new to Japan. In particular, Lohowia koosi is the first discovery since the orig- inal description from the east coast of Australia.
    [Show full text]
  • Planula Release, Settlement, Metamorphosis and Growth in Two Deep-Sea Soft Corals
    REPRODUCTIVE BIOLOGY OF DEEP-SEA SOFT CORALS IN THE NEWFOUNDLAND AND LABRADOR REGION by ©Zhao Sun A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Ocean Sciences Centre and Department of Biology, Memorial University, St. John's (Newfoundland and Labrador) Canada 28 April2009 ABSTRACT This research integrates processing of pre erved samples and, for the first time, long-term monitoring of live colonies and the study of planula behaviour and settlement preferences in four deep-sea brooding octocorals (Alcyonacea: Nephtheidae). Results indicate that reproduction can be correlated to bottom temperature, photoperiod, wind speed and fluctuations in phytoplankton abundance. Large planula larvae are polymorphic, exhibit ubstratum selectivity and can fuse together or with a parent colony. Planulae of two Drifa species are also able to metamorphose in the water column before ettlement. Thi research thus brings evidence of both the resilience (i.e., extended breeding period, demersal larvae with a long competency period) and vulnerability (i.e., substratum selectivity, slow growth) of deep-water corals; and open up new perspectives on experimental tudies of deep-sea organisms. II ACKNOWLEDGEMENTS I would like to thank my supervisor Annie Mercier, as well a Jean-Fran~oi Hamel, for their continuou guidance, support and encouragement. With great patience and pas ion, they helped me adapt to graduate studies. I would also like to thank my co- upervisor Evan Edinger, committee member Paul Snelgrove and examiners Catherine McFadden and Robert Hooper for providing valuable input and for comment on the manuscripts and thesis.
    [Show full text]
  • Casbane Diterpenes from Red Sea Coral Sinularia Polydactyla
    molecules Article Casbane Diterpenes from Red Sea Coral Sinularia polydactyla Mohamed-Elamir F. Hegazy 1, Tarik A. Mohamed 1, Abdelsamed I. Elshamy 2, Montaser A. Al-Hammady 3, Shinji Ohta 4 and Paul W. Paré 5,* 1 Department of Phytochemistry, National Research Centre, El-Tahrir Street, Dokki, Giza 12622, Egypt; [email protected] (M.-E.F.H.); [email protected] (T.A.M.) 2 Department of Natural Compound Chemistry, National Research Centre, El-Tahrir Street, Dokki, Giza 12622, Egypt; [email protected] 3 National Institute of Oceanography and Fisheries, Red Sea Branch, Hurghada 84511, Egypt; [email protected] 4 Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan; [email protected] 5 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected]; Tel.: +1-806-834-0461; Fax: +1-806-742-1289 Academic Editor: Derek J. McPhee Received: 11 February 2016 ; Accepted: 29 February 2016 ; Published: 3 March 2016 Abstract: The soft coral genus Sinularia is a rich source of bioactive metabolites containing a diverse array of chemical structures. A solvent extract of Sinularia polydactyla resulted in the isolation of three new casbane diterpenes: sinularcasbane M (1), sinularcasbane N (2) and sinularcasbane O (3); in addition, known metabolites (4–5) were isolated. Compounds were elucidated on the basis of spectroscopic analyses; the absolute configuration was confirmed by X-ray analysis. Keywords: soft coral; alcyoniidae; Sinularia polydactyla; diterpenes 1. Introduction In Alcyonacean soft coral, the genus Sinularia is a rich source of diverse natural products with over 500 metabolites including sesquiterpenes, diterpenes, polyhydroxylated steroids, alkaloids and polyamines already having been chemically characterized [1–5].
    [Show full text]
  • Two New Records of Dendronephthya Octocorals (Family: Nephtheidae) from Andaman and Nicobar Islands, India
    Indian Journal of Geo Marine Sciences Vol. 48 (03), March 2019, pp. 343-348 Two new records of Dendronephthya octocorals (Family: Nephtheidae) from Andaman and Nicobar Islands, India J.S. Yogesh Kumar1*, S. Geetha2, C. Raghunathan3, & R. Sornaraj2 1 Marine Aquarium and Regional Centre, Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, Digha, West Bengal, India 2 Research Department of Zoology, Kamaraj College (Manonmaniam Sundaranar University), Thoothukudi, Tamil Nadu, India 3 Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, M Block, New Alipore, Kolkata, India *[E-mail: [email protected]] Received 04 August 2017: revised 23 November 2017 An extensive survey to explore the variety and distribution of octocorals and associated faunal community in and around the Andaman and Nicobar Islands yielded two species (Dendronephthya mucronata and D. savignyi), which is new zoogeographical record in India. The elaborate description, distribution and morphological characters are presented in this paper. The literature reveals that so far 55 species of Dendronephthya octocorals have been recorded from India. [Keywords: Soft corals, Octocorals, Dendronephthya, Carnation corals, Andaman and Nicobar islands] Introduction circumscribed to the works of Henderson17. The The genus Dendronephthya (Cnidaria: Octocorallia: above studies reported 53 new species. Henderson's Alcyonacea: Nephtheidae) is an azooxanthellate and work was based on the material made available from colourful soft coral reported in the warm coastal the Royal Indian Marine Survey ship collections from waters of the Indo-Pacific region, supporting reef several Indian Ocean locations, of which 34 species formation of coral reef ecosystems throughout the were reported from Andaman and Nicobar islands.
    [Show full text]
  • Energetic Costs of Chronic Fish Predation on Reef-Building Corals
    ResearchOnline@JCU This file is part of the following reference: Cole, Andrew (2011) Energetic costs of chronic fish predation on reef-building corals. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/37611/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/37611/ The energetic costs of chronic fish predation on reef-building corals Thesis submitted by Andrew Cole BSc (Hons) September 2011 For the degree of Doctor of Philosophy in Marine Biology ARC Centre of Excellence for Coral Reef Studies and the School of Marine and Tropical Biology James Cook University Townsville, Queensland, Australia Statement of Access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. 09/09/2011 (signature) (Date) ii Statement of Sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Rearing Cuttings of the Soft Coral Sarcophyton Glaucum (Octocorallia, Alcyonacea): Towards Mass Production in a Closed Seawater System
    Aquaculture Research, 2010, 41,1748^1758 doi:10.1111/j.1365-2109.2009.02475.x Rearing cuttings of the soft coral Sarcophyton glaucum (Octocorallia, Alcyonacea): towards mass production in a closed seawater system Ido Sella & Yehuda Benayahu Department of Zoology,George S.Wise Faculty of Life Sciences,Tel-Aviv University,Tel-Aviv, Israel Correspondence: I Sella, Department of Zoology,George S.Wise Faculty of Life Sciences,Tel-Aviv University,Tel-Aviv 69978, Israel. E-mail: [email protected] Abstract for diverse natural products with pharmaceutical or cosmetic value (e.g., Blunt, Copp, Munro, Northcote & The octcoral Sarcophyton glaucum has a wide Indo- Prinsep 2005; Slattery, Gochfeld & Kamel 2005; Sip- Paci¢c distribution and is known for its diverse con- kema, Osinga, Schatton, Mendola,Tramper & Wij¡els tent of natural products.The aim of the current study 2005), as well as for the reef-aquarium trade (Wab- was to establish a protocol for rearing miniature cut- nitz,Taylor, Grenn & Razak 2003). The increased de- tings of S. glaucum in a closed seawater system. In or- mand for these organisms has led to their massive der to determine the optimal conditions for rearing, harvesting (Castanaro & Lasker 2003) and has raised the survival, average dry weight, percentage of or- the need for e⁄cient farming methodologies (Ellis & ganic weight and development of the cuttings were Ellis 2002; Mendola 2003). monitored under di¡erent temperature, light, salinity Coral propagation has been commonly used for the and feeding regimes. At 26 1C, the highest dry weight production of daughter colonies, rather than harvest- was obtained, and at 20 1C, the highest percentage of ing naturally grown ones (e.g., Soong & Chen 2003; organic weight.
    [Show full text]
  • New Cytotoxic Cembranoid from Indonesian Soft Coral Sarcophyton Sp
    Pharmacogn. Res. ORIGINAL ARTICLE A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products www.phcogres.com | www.phcog.net New Cytotoxic Cembranoid from Indonesian Soft Coral Sarcophyton sp. Hedi Indra Januar1,2, Neviaty Putri Zamani2, Dedi Soedharma2, Ekowati Chasanah1 1Department of Biotechnology, Indonesian Research and Development Center for Marine and Fisheries Products Processing and Biotechnology, Jakarta, 2Department of Marine Science, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor, Indonesia ABSTRACT Context: Sarcophyton is a soft coral species that contains various secondary metabolites with cytotoxic activity. The production of cytotoxic compounds in soft corals is suggested as their allelochemical to win space competition. Therefore, if a particular soft coral species dominates a reef area, it may suggest to contain interesting bioactive compounds. Aims: This research aimed to characterize the cytotoxic compounds in dominant soft coral species (Sarcophyton sp.) on the reef at the Western side of Mahengetang Island, Indonesia. Subjects and Methods: Isolation of cytotoxic compounds through ethanol extracts had been done with preparative high-performance liquid chromatography and bioassay-guided fractionation by MCF-7 (breast) cancer cell lines. The structures of each cytotoxic compounds were elucidated on the basis of mass and nuclear magnetic resonance spectroscopic studies. Results: Elucidation through all compounds found a new cembranoid, namely, 2-hydroxy-crassocolide E (1), Abbreviations Used: SCUBA: Self-contained underwater breathing apparatus; alongside with 5 known cembranoids; sarcophytoxide (2), sarcrassin E HPLC: High performance liquid chromatography; NMR: Nuclear magnetic (3), 3,7,11-cembreriene-2,15-diol (4), 11,12-epoxy-Sarcophytol A (5), and resonance; IT-TOF: Ion trap-time of flight; MTT: 3-(4,5-dimethylthiazol-2-yl)-2; sarcophytol A (6).
    [Show full text]
  • Search for Mesophotic Octocorals (Cnidaria, Anthozoa) and Their Phylogeny: I
    A peer-reviewed open-access journal ZooKeys 680: 1–11 (2017) New sclerite-free mesophotic octocoral 1 doi: 10.3897/zookeys.680.12727 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea Yehuda Benayahu1, Catherine S. McFadden2, Erez Shoham1 1 School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel 2 Department of Biology, Harvey Mudd College, Claremont, CA 91711-5990, USA Corresponding author: Yehuda Benayahu ([email protected]) Academic editor: B.W. Hoeksema | Received 15 March 2017 | Accepted 12 May 2017 | Published 14 June 2017 http://zoobank.org/578016B2-623B-4A75-8429-4D122E0D3279 Citation: Benayahu Y, McFadden CS, Shoham E (2017) Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea. ZooKeys 680: 1–11. https://doi.org/10.3897/ zookeys.680.12727 Abstract This communication describes a new octocoral, Altumia delicata gen. n. & sp. n. (Octocorallia: Clavu- lariidae), from mesophotic reefs of Eilat (northern Gulf of Aqaba, Red Sea). This species lives on dead antipatharian colonies and on artificial substrates. It has been recorded from deeper than 60 m down to 140 m and is thus considered to be a lower mesophotic octocoral. It has no sclerites and features no symbiotic zooxanthellae. The new genus is compared to other known sclerite-free octocorals. Molecular phylogenetic analyses place it in a clade with members of families Clavulariidae and Acanthoaxiidae, and for now we assign it to the former, based on colony morphology.
    [Show full text]
  • Title a DISTRIBUTION STUDY of the OCTOCORALLIA OF
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository A DISTRIBUTION STUDY OF THE OCTOCORALLIA OF Title OREGON Author(s) Belcik, Francis P. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1977), 24(1-3): 49-52 Issue Date 1977-11-30 URL http://hdl.handle.net/2433/175960 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University A DISTRIBUTION STUDY OF THE OCTOCORALLIA OF OREGON FRANCIS P. BELCIK Department of Biology, East Carolina University, Greenville, North Carolina 27834, U.S.A. With Text-figure 1 and Tables 1-2 Introduction: The purpose of this report was to identify the species of octocorals, note their occurrence or distribution and also their numbers. The Octocorals of this report were collected :rhainly from the Oregonian Region. The majority of specimens were collected by the Oceanography Department of Oregon State University at depths below 86 meters. A few inshore species were collected at various sites along the Oregon Coast (see Fig. 1). Only two species were found in the Intertidal Zone; the bulk of the Octocoral fauna occur offshore in deeper water. Most of the deep water specimens are now deposited in the Oceanography Department of Oregon State University in Corvallis, Oregon. The inshore speci­ mens have remained in my personal collection. Identification Methods: No references have been published for the soft corals of Oregon; although col­ lections have possibly been made in the past. Helpful sources for identification, after the standard methods of corrosion, and spicule measurements have been made are: Bayer, 1961; Hickson, 1915; Kiikenthal, 1907, and 1913; Nutting, 1909 and 1912; Utinomi, 1960, 1961, and 1966 and Verrill, 1922.
    [Show full text]
  • Diversity, Distribution, and Molecular Systematics of Octocorals (Coelenterata: Anthozoa) of the Penghu Archipelago, Taiwan
    Zoological Studies 51(8): 1529-1548 (2012) Diversity, Distribution, and Molecular Systematics of Octocorals (Coelenterata: Anthozoa) of the Penghu Archipelago, Taiwan Yehuda Benayahu1,*, Leendert Pieter van Ofwegen2, Chang-feng Dai3, Ming-Shiou Jeng4, Keryea Soong5, Alex Shlagman1, Henryi J. Hsieh6, and Catherine S. McFadden7 1Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv Univ., Ramat Aviv 69978, Israel 2Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands 3Institute of Oceanography, National Taiwan Univ., Taipei 106, Taiwan 4Research Center for Biodiversity, Academia Sinica, Nankang, Taipei 115, Taiwan 5Institute of Marine Biology, National Sun Yat-sen Univ., Kaohsiung 804, Taiwan 6Penghu Marine Biology Research Center, Fisheries Research Institute, Penghu 880, Taiwan 7Department of Biology, Harvey Mudd College, Claremont, CA 91711-5990, USA (Accepted November 2, 2012) Yehuda Benayahu, Leendert Pieter van Ofwegen, Chang-feng Dai, Ming-Shiou Jeng, Keryea Soong, Alex Shlagman, Henryi J. Hsieh, and Catherine S. McFadden (2012) Diversity, distribution, and molecular systematics of octocorals (Coelenterata: Anthozoa) of the Penghu Archipelago, Taiwan. Zoological Studies 51(8): 1529-1548. The 1st ever surveys of octocorals in the Penghu Archipelago, Taiwan were conducted in 2006 and 2009. Scuba collections were carried out at 17 sites in northern, eastern, south-central, and southern parts of the archipelago. The collection, comprising about 250 specimens, yielded 34 species of the family Alcyoniidae belonging to Aldersladum, Cladiella, Klyxum, Lobophytum, Sarcophyton, and Sinularia. These include 6 new species that were recently described and another 15 records new to Taiwanese reefs. The northern collection sites featured a lower number of species compared to most of the central/southern or southern ones.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]