Teaching with Technology: a More Effective Method of Learning

Total Page:16

File Type:pdf, Size:1020Kb

Teaching with Technology: a More Effective Method of Learning Teaching with Technology: A More Effective Method of Learning Organic Spectroscopy Dan Hopkins, Liam Feehery, Joshua Schrier Department of Chemistry, Haverford College, Haverford, PA 19041 Hundreds of thousands of undergraduate chemistry students learn to interpret infrared spectra during their collegiate study of organic chemistry. Traditionally, students learn to identify functional groups in spectra primarily through unsupervised practice exercises. A significant number of students struggle with this task and must seek supervised practice with faculty and teaching assistants so that they may receive immediate feedback and useful direction toward appropriate supplementary information. We propose to apply learning psychology strategies – commonly used by popular websites like Memrise and DuoLingo for the purpose of foreign language acquisition – to accelerate and improve learning of spectral analysis without the presence of faculty members or TAs. These strategies include: (i) Testing Effect: frequent low-stakes testing with immediate feedback and direction to appropriate resources. (ii) Spacing Effect: avoid short-term memory saturation through spaced practice intervals – robustly enforced by the website. (iii) Scheduling: minimize the time needed for a student to reach proficiency by testing weaker material with more relative frequency. With these strategies in mind, we’ve developed a website that aims to accomplish this task by using: (i) HTML5 + JavaScript – no plugins necessary! (ii) Open source spectral data from ChemSpider (iii) Parse database of molecules and spectral data indexed by SMILES strings Our poster will go into detail in regards to the database schema, technical specifications, and show screenshots of the website in action. Additionally, Dan Hopkins will run a live demo of the most current build of the website. We plan to test the use of this website during Haverford College’s introductory chemistry courses in the fall of 2015, and are interested in finding other Colleges and Universities that are willing to help us test this product. .
Recommended publications
  • A Queueing-Theoretic Foundation for Optimal Spaced Repetition
    A Queueing-Theoretic Foundation for Optimal Spaced Repetition Siddharth Reddy [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 Igor Labutov [email protected] Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850 Siddhartha Banerjee [email protected] School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850 Thorsten Joachims [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 1. Extended Abstract way back to 1885 and the pioneering work of Ebbinghaus (Ebbinghaus, 1913), identify two critical variables that de- In the study of human learning, there is broad evidence that termine the probability of recalling an item: reinforcement, our ability to retain a piece of information improves with i.e., repeated exposure to the item, and delay, i.e., time repeated exposure, and that it decays with delay since the since the item was last reviewed. Accordingly, scientists last exposure. This plays a crucial role in the design of ed- have long been proponents of the spacing effect for learn- ucational software, leading to a trade-off between teaching ing: the phenomenon in which periodic, spaced review of new material and reviewing what has already been taught. content improves long-term retention. A common way to balance this trade-off is spaced repe- tition, which uses periodic review of content to improve A significant development in recent years has been a grow- long-term retention. Though spaced repetition is widely ing body of work that attempts to ‘engineer’ the process used in practice, e.g., in electronic flashcard software, there of human learning, creating tools that enhance the learning is little formal understanding of the design of these sys- process by building on the scientific understanding of hu- tems.
    [Show full text]
  • Spaced Learning Strategy in Teaching Mathematics Ace T
    International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 851 ISSN 2229-5518 Spaced Learning Strategy in Teaching Mathematics Ace T. Ceremonia, Remalyn Q. Casem Abstract—Students’ low mastery of the lesson in Mathematics is one of the alarming problems confronted by Mathematics teachers. It is in this light that this study was conceptualized to determine the effectiveness of spaced learning strategy on the performance and mastery of DMMMSU Laboratory High School students (Grade 7) in Mathematics. This study used the true experimental design, specifically the pretest-posttest control group design. The main instrument used to gather data was the pretest-posttest which was subjected to validity and reliability tests. It was found out that the experimental and control groups were comparable in the pretest and posttest. Comparison on their gain scores revealed significant difference with the performance of the experimental higher than the control group. It was also found out that the effect size of using the spaced learning strategy was large. This indicates that the intervention is effective in increasing the performance and mastery of high school students in Mathematics. It is recommended the use of the Spaced Learning Strategy to improve the performance of the high school students in Mathematics. Index Terms— basic education, effect size, mathematics performance, spaced learning strategy. —————————— —————————— 1 INTRODUCTION 1.1 Situation Analysis results, such as the 2003 TIMSS (Trends in International Mathematics and Science Study), the Philippines ranked 34th out uality education is reflected on the exemplary outputs and of 38 countries in HS II Math and ranked 43rd out of 46 countries Q outstanding performances of students in academics and in HS II Science; for grade 4, the Philippines ranked 23rd out of 25 related co-curricular activities (Glossary Education Reform, participating countries in both Math and Science.
    [Show full text]
  • Universidad De Almería
    UNIVERSIDAD DE ALMERÍA MÁSTER EN PROFESORADO DE EDUCACIÓN SECUNDARIA OBLIGATORIA Y BACHILLERATO, FORMACIÓN PROFESIONAL Y ENSEÑANZA DE IDIOMAS ESPECIALIDAD EN LENGUA INGLESA Curso Académico: 2015/2016 Convocatoria: Junio Trabajo Fin de Máster: Spaced Retrieval Practice Applied to Vocabulary Learning in Secondary Education Autor: Héctor Daniel León Romero Tutora: Susana Nicolás Román ABSTRACT Spaced retrieval practice is a learning technique which has been long studied (Ebbinghaus, 1885/1913; Gates, 1917) and long forgotten at the same time in education. It is based on the spacing and the testing effects. In recent reviews, spacing and retrieving practices have been highly recommended as there is ample evidence of their long-term retention benefits, even in educational contexts (Dunlosky, Rawson, Marsh, Nathan & Willingham, 2013). An experiment in a real secondary education classroom was conducted in order to show spaced retrieval practice effects in retention and student’s motivation. Results confirm the evidence, spaced retrieval practice showed higher long-term retention (26 days since first study session) of English vocabulary words compared to massed practice. Also, student’s motivation remained high at the end of the experiment. There is enough evidence to suggest educational institutions should promote the use of spaced retrieval practice in classrooms. RESUMEN La recuperación espaciada es una técnica de aprendizaje que se lleva estudiando desde hace muchos años (Ebbinghaus, 1885/1913; Gates, 1917) y que al mismo tiempo ha permanecido como una gran olvidada en los sistemas educativos. Se basa en los efectos que producen el repaso espaciado y el uso de test. En recientes revisiones de la literatura se promueve encarecidamente el uso de estas prácticas, ya que aumentan la retención de recuerdos en la memoria a largo plazo, incluso en contextos educativos (Dunlosky, Rawson, Marsh, Nathan & Willingham, 2013).
    [Show full text]
  • Learning Efficiency Correlates of Using Supermemo with Specially Crafted Flashcards in Medical Scholarship
    Learning efficiency correlates of using SuperMemo with specially crafted Flashcards in medical scholarship. Authors: Jacopo Michettoni, Alexis Pujo, Daniel Nadolny, Raj Thimmiah. Abstract Computer-assisted learning has been growing in popularity in higher education and in the research literature. A subset of these novel approaches to learning claim that predictive algorithms called Spaced Repetition can significantly improve retention rates of studied knowledge while minimizing the time investment required for learning. SuperMemo is a brand of commercial software and the editor of the SuperMemo spaced repetition algorithm. Medical scholarship is well known for requiring students to acquire large amounts of information in a short span of time. Anatomy, in particular, relies heavily on rote memorization. Using the SuperMemo web platform1 we are creating a non-randomized trial, inviting medical students completing an anatomy course to take part. Usage of SuperMemo as well as a performance test will be measured and compared with a concurrent control group who will not be provided with the SuperMemo Software. Hypotheses A) Increased average grade for memorization-intensive examinations If spaced repetition positively affects average retrievability and stability of memory over the term of one to four months, then consistent2 users should obtain better grades than their peers on memorization-intensive examination material. B) Grades increase with consistency There is a negative relationship between variability of daily usage of SRS and grades. 1 https://www.supermemo.com/ 2 Defined in Criteria for inclusion: SuperMemo group. C) Increased stability of memory in the long-term If spaced repetition positively affects knowledge stability, consistent users should have more durable recall even after reviews of learned material have ceased.
    [Show full text]
  • Serial Position Effects and Forgetting Curves: Implications in Word
    Studies in English Language Teaching ISSN 2372-9740 (Print) ISSN 2329-311X (Online) Vol. 2, No. 3, 2014 www.scholink.org/ojs/index.php/selt Original Paper Serial Position Effects and Forgetting Curves: Implications in Word Memorization Guijun Zhang1* 1 Department of Foreign Languages, China Pharmaceutical University, Nanjing, China * Guijun Zhang, E-mail:[email protected] Abstract Word memorization is important in English learning and teaching. The theory and implications of serial position effects and forgetting curves are discussed in this paper. It is held that they help students understand the psychological mechanisms underlying word memorization. The serial position effects make them to consider the application the chunking theory in word memorization; the forgetting curve reminds them to repeat the words in long-term memory in proper time. Meanwhile the spacing effect and elaborative rehearsal effect are also discussed as they are related to the forgetting curve. Keywords serial position effects, forgetting curves, word memorization 1. Introduction English words are extraordinarily significant for English foreign language (EFL) learners because they are the essential basis of all language skills. As Wilkins said, “...while without grammar very little can be conveyed, without vocabulary nothing can be conveyed” (Wilkins, 1972). Effective word memorization plays a significant role in the process of vocabulary learning. Researchers have and are still pursuing and summarizing the effective memory methods. Schmitt, for example, classified vocabulary memory strategies into more than twenty kinds (Schmitt, 1997, p. 34). However, it is hard to improve the efficiency of the vocabulary memory in that different students remember the huge amount of words with some certain method or methods that may not suit them.
    [Show full text]
  • Osmosis Study Guide
    How to Study in Medical School How to Study in Medical School Written by: Rishi Desai, MD, MPH • Brooke Miller, PhD • Shiv Gaglani, MBA • Ryan Haynes, PhD Edited by: Andrea Day, MA • Fergus Baird, MA • Diana Stanley, MBA • Tanner Marshall, MS Special Thanks to: Henry L. Roediger III, PhD • Robert A. Bjork, PhD • Matthew Lineberry, PhD About Osmosis Created by medical students at Johns Hopkins and the former Khan Academy Medicine team, Os- mosis helps more than 250,000 current and future clinicians better retain and apply knowledge via a web- and mobile platform that takes advantage of cutting-edge cognitive techniques. © Osmosis, 2017 Much of the work you see us do is licensed under a Creative Commons license. We strongly be- lieve educational materials should be made freely available to everyone and be as accessible as possible. We also want to thank the people who support us financially, so we’ve made this exclu- sive book for you as a token of our thanks. This book unlike much of our work, is not under an open license and we reserve all our copyright rights on it. We ask that you not share this book liberally with your friends and colleagues. Any proceeds we generate from this book will be spent on creat- ing more open content for everyone to use. Thank you for your continued support! You can also support us by: • Telling your classmates and friends about us • Donating to us on Patreon (www.patreon.com/osmosis) or YouTube (www.youtube.com/osmosis) • Subscribing to our educational platform (www.osmosis.org) 2 Contents Problem 1: Rapid Forgetting Solution: Spaced Repetition and 1 Interleaved Practice Problem 2: Passive Studying Solution: Testing Effect and 2 "Memory Palace" Problem 3: Past Behaviors Solution: Fogg Behavior Model and 3 Growth Mindset 3 Introduction Students don’t get into medical school by accident.
    [Show full text]
  • Where Companies Go Wrong with Learning and Development by Steve Glaveski
    REPRINT H055J1 PUBLISHED ON HBR.ORG OCTOBER 02, 2019 ARTICLE BUSINESS EDUCATION Where Companies Go Wrong with Learning and Development by Steve Glaveski This article is made available to you with compliments of EGN for your personal use. Further posting, copying, or distribution is not permitted. BUSINESS EDUCATION Where Companies Go Wrong with Learning and Development by Steve Glaveski OCTOBER 02, 2019 GREGOR SCHUSTER/GETTY IMAGES Organizations spent $359 billion globally on training in 2016, but was it worth it? Not when you consider the following: • 75% of 1,500 managers surveyed from across 50 organizations were dissatisfied with their company’s Learning & Development (L&D) function; COPYRIGHT © 2019 HARVARD BUSINESS SCHOOL PUBLISHING CORPORATION. ALL RIGHTS RESERVED. 2 • 70% of employees report that they don’t have mastery of the skills needed to do their jobs; • Only 12% of employees apply new skills learned in L&D programs to their jobs; and • Only 25% of respondents to a recent McKinsey survey believe that training measurably improved performance. Not only is the majority of training in today’s companies ineffective, but the purpose, timing, and content of training is flawed. Learning for the Wrong Reasons Bryan Caplan, professor of economics at George Mason University, and author of The Case Against Education, says in his book that education often isn’t so much about learning useful job skills, but about people showing off, or “signaling.” Today’s employees often signal through continuous professional education (CPE) credits so that they can make a case for a promotion. L&D staff also signal their worth by meeting flawed KPIs, such as the total CPE credits employees earn, rather than focusing on the business impact created.
    [Show full text]
  • Teaching the Science of Learning Yana Weinstein1* , Christopher R
    Weinstein et al. Cognitive Research: Principles and Implications (2018) 3:2 Cognitive Research: Principles DOI 10.1186/s41235-017-0087-y and Implications TUTORIALREVIEW Open Access Teaching the science of learning Yana Weinstein1* , Christopher R. Madan2,3 and Megan A. Sumeracki4 Abstract The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies. Keywords: Education, Learning, Memory, Teaching Significance educators who might be interested in integrating the Education does not currently adhere to the medical strategies into their teaching practice, (b) science of learn- model of evidence-based practice (Roediger, 2013). ing researchers who are looking for open questions to help However, over the past few decades, our field has made determine future research priorities, and (c) researchers in significant advances in applying cognitive processes to other subfields who are interested in the ways that princi- education. From this work, specific recommendations ples from cognitive psychology have been applied to can be made for students to maximize their learning effi- education. ciency (Dunlosky, Rawson, Marsh, Nathan, & Willing- While the typical teacher may not be exposed to this ham, 2013; Roediger, Finn, & Weinstein, 2012).
    [Show full text]
  • Nicolas Schweighofer's Curriculum Vitae
    CURRICULUM VITAE NICOLAS SCHWEIGHOFER, PhD PERSONAL INFORMATION University Address: Division of Biokinesiology and Physical Therapy University of Southern California Los Angeles, CA, 90089-9006 Phone: (1) 323 -442 -1838 Email: [email protected] Lab website: http://pt.usc.edu/labs/cnrl EDUCATION AND PROFESSIONAL APPOINTMENTS UNIVERSITY EDUCATION 1991-1995 PhD, University of Southern California, Los Angeles: Neuroscience, (Computational Neuroscience Emphasis) (Advisor: Dr. M. Arbib) 1988-1990 Diplôme d’Ingénieur, Ecole Nationale Supérieure de Mécanique, Nantes, France (since ‘Ecole Centrale de Nantes’): Mechanics and Control System Engineering 1985-1987 Undergraduate training: Mathématiques Spéciales P’, Lycée Descartes, Tours, France: Advanced Mathematics and Physics POST-GRADUATE TRAINING 1996-1997 Postdoctoral Fellow, Human Information Science, ATR, Kyoto, Japan: Computational Neuroscience (Mentor: Dr. M. Kawato) APPOINTMENTS 2011-Present Associate Professor (with Tenure), Division of Biokinesiology & Physical Therapy, University of Southern California 2011-Present Joint Appointment (courtesy), Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California 2004-Present Joint Appointment (courtesy), Department of Computer Science, Viterbi School of Engineering, University of Southern California 2004-Present Joint Appointment (courtesy), Neuroscience Graduate Program, University of Southern California 2004-2010 Assistant Professor (Tenure track), Division of Biokinesiology & Physical Therapy, University
    [Show full text]
  • Testing Effect”: a Review
    Trends in Neuroscience and Education 5 (2016) 52–66 Contents lists available at ScienceDirect Trends in Neuroscience and Education journal homepage: www.elsevier.com/locate/tine Review article Neurocognitive mechanisms of the “testing effect”: A review Gesa van den Broek a,n,1, Atsuko Takashima a,1, Carola Wiklund-Hörnqvist b,c, Linnea Karlsson Wirebring b,c,d, Eliane Segers a, Ludo Verhoeven a, Lars Nyberg b,d,e a Radboud University, Behavioural Science Institute, 6500 HC Nijmegen, The Netherlands b Umeå University, Umeå Center for Functional Brain Imaging (UFBI), 901 87 Umeå, Sweden c Umeå University, Department of Psychology, 901 87 Umeå, Sweden d Umeå University, Department of Integrative Medical Biology, 901 87 Umeå, Sweden e Umeå University, Department of Radiation Sciences, 901 87 Umeå, Sweden article info abstract Article history: Memory retrieval is an active process that can alter the content and accessibility of stored memories. Of Received 16 October 2015 potential relevance for educational practice are findings that memory retrieval fosters better retention Received in revised form than mere studying. This so-called testing effect has been demonstrated for different materials and po- 27 May 2016 pulations, but there is limited consensus on the neurocognitive mechanisms involved. In this review, we Accepted 30 May 2016 relate cognitive accounts of the testing effect to findings from recent brain-imaging studies to identify Available online 2 June 2016 neurocognitive factors that could explain the testing effect. Results indicate that testing facilitates later Keywords: performance through several processes, including effects on semantic memory representations, the se- Testing effect lective strengthening of relevant associations and inhibition of irrelevant associations, as well as po- Retrieval tentiation of subsequent learning.
    [Show full text]
  • Modelling Language Learning of Duolingo Users
    Modelling language learning of Duolingo users Floor Dikker STUDENT NUMBER: 2017217 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN DATA SCIENCE & SOCIETY DEPARTMENT OF COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE SCHOOL OF HUMANITIES AND DIGITAL SCIENCES TILBURG UNIVERSITY Thesis committee: Dr. Hendrickson Dr. Alishahi Tilburg University School of Humanities and Digital Sciences Department of Cognitive Science & Artificial Intelligence Tilburg, The Netherlands June, 2019 Data Science and Society 2019 2 Data Science and Society 2019 Preface Dear reader, I present to you my thesis about modelling language learning of users of Duolingo. First of all, I would like to thank Dr. Hendrickson for his guidance. I have found our meetings and your suggestions very helpful. Moreover, your enthusiasm is very contagious which made writing this thesis a more fun experience. I would also like to thank my parents and brother for offering support during my entire studies and always offering a listening ear. Finally, I would like to thank my boyfriend for supporting me all the way. I hope you enjoy reading my thesis, Floor Dikker 3 Data Science and Society 2019 Table of Contents 1. Introduction ....................................................................................................... 6 2. Related Work..................................................................................................... 9 2.1 The SLAM challenge ...................................................................................
    [Show full text]
  • Probabilistic Models of Student Learning and Forgetting
    Probabilistic Models of Student Learning and Forgetting by Robert Lindsey B.S., Rensselaer Polytechnic Institute, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science 2014 This thesis entitled: Probabilistic Models of Student Learning and Forgetting written by Robert Lindsey has been approved for the Department of Computer Science Michael Mozer Aaron Clauset Vanja Dukic Matt Jones Sriram Sankaranarayanan Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. IRB protocol #0110.9, 11-0596, 12-0661 iii Lindsey, Robert (Ph.D., Computer Science) Probabilistic Models of Student Learning and Forgetting Thesis directed by Prof. Michael Mozer This thesis uses statistical machine learning techniques to construct predictive models of human learning and to improve human learning by discovering optimal teaching methodologies. In Chapters 2 and 3, I present and evaluate models for predicting the changing memory strength of material being studied over time. The models combine a psychological theory of memory with Bayesian methods for inferring individual differences. In Chapter 4, I develop methods for delivering efficient, systematic, personalized review using the statistical models. Results are presented from three large semester-long experiments with middle school students which demonstrate how this \big data" approach to education yields substantial gains in the long-term retention of course material. In Chapter 5, I focus on optimizing various aspects of instruction for populations of students.
    [Show full text]