VU Research Portal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Urabe VK, Et Al. Influences on U2 Snrna Structure U2
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.451154; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Urabe VK, et al. Influences on U2 snRNA structure U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors Veronica K. Urabe1, Meredith Stevers1, Arun K. Ghosh3 and Melissa S. Jurica1,2 * 1Department of Molecular Cell and Developmental Biology and 2Center for Molecular Biology of RNA, University of California, Santa Cruz, California, United States of America 3Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana United States of America *Corresponding author E-mail: [email protected] (MSJ) bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.451154; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Urabe VK, et al. Influences on U2 snRNA structure Abstract U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. -
SF3B2 Monoclonal Antibody (M01J), Clone 5D2
SF3B2 monoclonal antibody (M01J), clone 5D2 Catalog # : H00010992-M01J 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant Western Blot (Cell lysate) Description: SF3B2. Immunogen: SF3B2 (NP_006833, 592 a.a. ~ 645 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: YEGKEFETRLKEKKPGDLSDELRISLGMPVGPNAHKVPPPWLIAMQRYG PPPSY enlarge Western Blot (Cell lysate) Host: Mouse Reactivity: Human, Mouse, Rat Preparation Cell Culture Production Method: (CX Grade Antibody List) enlarge Isotype: IgG2a Kappa Western Blot (Recombinant protein) Quality Control Antibody Reactive Against Recombinant Protein. Immunofluorescence Testing: enlarge Immunohistochemistry (Formalin/PFA-fixed paraffin- embedded sections) Western Blot detection against Immunogen (31.68 KDa) . Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. enlarge Instruction: Sandwich ELISA (Recombinant protein) MSDS: Download Interspecies Mouse (98); Rat (98) Antigen Sequence: Datasheet: Download enlarge ELISA Applications Western Blot (Cell lysate) Page 1 of 3 2021/6/15 SF3B2 monoclonal antibody (M01J), clone 5D2. Western Blot analysis of SF3B2 expression in Hela S3 NE. Protocol Download Western Blot (Cell lysate) SF3B2 monoclonal antibody (M01J), clone 5D2. Western Blot analysis of SF3B2 expression in Jurkat. Protocol Download Western Blot (Recombinant protein) Protocol Download Immunofluorescence enlarge this image Immunofluorescence of monoclonal antibody to SF3B2 on HeLa cell . [antibody concentration 10 ug/ml] Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) enlarge this image Page 2 of 3 2021/6/15 Immunoperoxidase of monoclonal antibody to SF3B2 on formalin-fixed paraffin-embedded human kidney. [antibody concentration 6 ug/ml] Protocol Download Sandwich ELISA (Recombinant protein) Detection limit for recombinant GST tagged SF3B2 is 0.1 ng/ml as a capture antibody. -
Genome-Wide Association Study of Copy Number Variations (Cnvs) with Opioid Dependence
Neuropsychopharmacology (2015) 40, 1016–1026 & 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 www.neuropsychopharmacology.org Genome-Wide Association Study of Copy Number Variations (CNVs) with Opioid Dependence Dawei Li*,1,2,3,4, Hongyu Zhao5,6, Henry R Kranzler7, Ming D Li8, Kevin P Jensen1, Tetyana Zayats1, Lindsay A Farrer9 and Joel Gelernter1,6,10 1 2 Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA; Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA; 3Department of Computer Science, University of Vermont, Burlington, VT, USA; 4Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, VT, USA; 5Department of Biostatistics, Yale School of Public Health, New Haven, 6 7 CT, USA; Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA; Department of Psychiatry, University of 8 Pennsylvania School of Medicine and VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, PA, USA; Department of Psychiatry and 9 Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA; Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Genetics and Genomics, Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA; 10VA Connecticut Healthcare Center, Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA Single-nucleotide polymorphisms that have been associated with opioid dependence (OD) altogether account for only a small proportion of the known heritability. Most of the genetic risk factors are unknown. Some of the ‘missing heritability’ might be explained by copy number variations (CNVs) in the human genome. We used Illumina HumanOmni1 arrays to genotype 5152 African-American and European-American OD cases and screened controls and implemented combined CNV calling methods. -
SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression
Published OnlineFirst August 20, 2019; DOI: 10.1158/0008-5472.CAN-18-3965 Cancer Molecular Cell Biology Research SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression Norihiko Kawamura1,2, Keisuke Nimura1, Kotaro Saga1, Airi Ishibashi1, Koji Kitamura1,3, Hiromichi Nagano1, Yusuke Yoshikawa4, Kyoso Ishida1,5, Norio Nonomura2, Mitsuhiro Arisawa4, Jun Luo6, and Yasufumi Kaneda1 Abstract Androgen receptor splice variant-7 (AR-V7) is a General RNA splicing SF3B2 complex-mediated alternative RNA splicing constitutively active AR variant implicated in U2 castration-resistant prostate cancers. Here, we show U2 snRNA that the RNA splicing factor SF3B2, identified by 3’ 3’ in silico and CRISPR/Cas9 analyses, is a critical 5’ 3’ splice site 5’ SF3B7 AR-V7 5’ A U2AF2 AGA Exon ? determinant of expression and is correlated SF3B6(p14) SF3B4 SF3B1 SF3B4 SF3B1 with aggressive cancer phenotypes. Transcriptome SF3B5 SF3B2 SF3B3 SF3B2 SF3B3 and PAR-CLIP analyses revealed that SF3B2 con- SF3A3 SF3B2 complex SF3A3 SF3A1 SF3A1 SF3b complex trols the splicing of target genes, including AR, to AR pre-mRNA drive aggressive phenotypes. SF3B2-mediated CE3 aggressive phenotypes in vivo were reversed by AR-V7 mRNA AR mRNA AR-V7 knockout. Pladienolide B, an inhibitor of CE3 a splicing modulator of the SF3b complex, sup- Drive malignancy pressed the growth of tumors addicted to high While the SF3b complex is critical for general RNA splicing, SF3B2 promotes inclusion of the target exon through recognizing a specific RNA motif. SF3B2 expression. These findings support the idea © 2019 American Association for Cancer Research that alteration of the splicing pattern by high SF3B2 expression is one mechanism underlying prostate cancer progression and therapeutic resistance. -
Essential Genes and Their Role in Autism Spectrum Disorder
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality. -
Original Article CDC5L Contributes to Malignant Cell Proliferation in Human Osteosarcoma Via Cell Cycle Regulation
Int J Clin Exp Pathol 2016;9(10):10451-10457 www.ijcep.com /ISSN:1936-2625/IJCEP0031885 Original Article CDC5L contributes to malignant cell proliferation in human osteosarcoma via cell cycle regulation Yu Wang1,4*, Hong Chang2,4*, Di Gao3,4, Lei Wang4, Nan Jiang4, Bin Yu4 1Department of Orthopaedics, Chifeng Hospital, Inner Mongolia, China; 2Department of Orthopaedics, 421 Hospital of PLA, Guangzhou, China; 3Department of Orthopaedics, The University of Hong Kang, Shenzhen Hospital, Shenzhen, China; 4Department of Orthopaedics and Traumatology, Nanfang Hospital Southern Medical University, Guangzhou, China. *Equal contributors. Received May 9, 2016; Accepted July 22, 2016; Epub October 1, 2016; Published October 15, 2016 Abstract: Cell division cycle 5-like (CDC5L) has been reported in overexpressed in osteosarcoma (OS). However, its biological function in tumor biology was still unclear. Here, we firstly determined the expression of CDC5L in several OS cell lines, including Saos-2, SF-86, U2OS and SW1353, and found it was commonly upregulated in these four OS cells. Subsequently, Saos-2 and U2OS cells with higher CDC5L expression were transfected with interfering RNA tar- geting CDC5L. A set of functional assay was conducted on the two cell lines, including CCK-8, colony formation and flow cytometry assay. Our results indicated that CDC5L silencing significantly inhibited cell proliferation and arrested cell cycle at G2/M phase. Mechanically, Western blot analysis further confirmed knockdown of CDC5L remarkably down regulated the protein levels of CDK1, Cyclin B and PCNA. There findings further demonstrated that CDC5L play a crucial role in OS development and might be a promising therapeutic target of OS. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China. -
Prp19 Arrests Cell Cycle Via Cdc5l in Hepatocellular Carcinoma Cells
International Journal of Molecular Sciences Article Prp19 Arrests Cell Cycle via Cdc5L in Hepatocellular Carcinoma Cells Renzheng Huang 1, Ruyi Xue 1, Di Qu 2, Jie Yin 1,* and Xi-Zhong Shen 1,2,3,* 1 Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; [email protected] (R.H.); [email protected] (R.X.) 2 Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200032, China; [email protected] 3 Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China * Correspondence: [email protected] (J.Y.); [email protected] (X.-Z.S.); Tel.: +86-21-6404-1990 (ext. 2070) (J.Y. & X.-Z.S.); Fax: +86-21-6403-8038 (J.Y. & X.-Z.S.) Academic Editor: Akihiro Tamori Received: 16 January 2017; Accepted: 31 March 2017; Published: 7 April 2017 Abstract: Pre-mRNA processing factor 19 (Prp19) is involved in many cellular events including pre-mRNA processing and DNA damage response. Recently, it has been identified as a candidate oncogene in hepatocellular carcinoma (HCC). However, the role of Prp19 in tumor biology is still elusive. Here, we reported that Prp19 arrested cell cycle in HCC cells via regulating G2/M transition. Mechanistic insights revealed that silencing Prp19 inhibited the expression of cell division cycle 5-like (Cdc5L) via repressing the translation of Cdc5L mRNA and facilitating lysosome-mediated degradation of Cdc5L in HCC cells. Furthermore, we found that silencing Prp19 induced cell cycle arrest could be partially resumed by overexpressing Cdc5L. -
Frequent Somatic Mutations in Components of the RNA Processing Machinery in Chronic Lymphocytic Leukemia
Letters to the Editor 1600 CONFLICT OF INTEREST 2 Sokol L, Loughran TP Jr. Large granular lymphocyte leukemia. Oncologist 2006; 11: WK, CH, TH and SS are part owners of the MLL Munich Leukemia Laboratory. AF and 263–273. VG are employed by the MLL Munich Leukemia Laboratory. 3 Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 2012; 366: 1905–1913. ACKNOWLEDGEMENTS 4 Jerez A, Clemente MJ, Makishima H, Koskela H, Leblanc F, Ng KP et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative dis- We thank all clinicians for sending samples to our laboratory for diagnostic purposes, orders of NK cells and T cell large granular lymphocyte leukemia. Blood 2012; 120: and for providing clinical information and follow-up data. In addition, we would like 3048–3057. to thank all co-workers at the MLL Munich Leukemia Laboratory for approaching 5 Kern W, Bacher U, Haferlach C, Alpermann T, Dicker F, Schnittger S et al. together many aspects in the field of leukemia diagnostics and research. In addition, Frequency and prognostic impact of the aberrant CD8 expression in 5,523 we are grateful for the data management support performed by Tamara Alpermann. patients with chronic lymphocytic leukemia. Cytometry B Clin Cytom 2012; 82: 145–150. A Fasan, W Kern, V Grossmann, C Haferlach, 6 van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL T Haferlach and S Schnittger et al. Design and standardization of PCR primers and protocols for detection of MLL Munich Leukemia Laboratory, Munich, Germany clonal immunoglobulin and T-cell receptor gene recombinations in suspect lym- E-mail: [email protected] phoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. -
Structural Insights Into How Prp5 Proofreads the Pre-Mrna Branch Site
Article Structural insights into how Prp5 proofreads the pre-mRNA branch site https://doi.org/10.1038/s41586-021-03789-5 Zhenwei Zhang1, Norbert Rigo2, Olexandr Dybkov2, Jean-Baptiste Fourmann2, Cindy L. Will2, Vinay Kumar2, Henning Urlaub3,4, Holger Stark1 ✉ & Reinhard Lührmann2 ✉ Received: 10 December 2020 Accepted: 30 June 2021 During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 Published online: 4 August 2021 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the Open access spliceosomal A complex—a poorly understood, multistep process that is facilitated by Check for updates the DEAD-box helicase Prp5 (refs. 1–4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2–BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identifed assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2–BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. -
Direct Interaction Between Hnrnp-M and CDC5L/PLRG1 Proteins Affects Alternative Splice Site Choice
Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond To cite this version: David Llères, Marco Denegri, Marco Biggiogera, Paul Ajuh, Angus Lamond. Direct interaction be- tween hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Reports, EMBO Press, 2010, 11 (6), pp.445 - 451. 10.1038/embor.2010.64. hal-03027049 HAL Id: hal-03027049 https://hal.archives-ouvertes.fr/hal-03027049 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. scientificscientificreport report Direct interaction between hnRNP-M and CDC5L/ PLRG1 proteins affects alternative splice site choice David Lle`res1*, Marco Denegri1*w,MarcoBiggiogera2,PaulAjuh1z & Angus I. Lamond1+ 1Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, UK, and 2LaboratoriodiBiologiaCellulareandCentrodiStudioperl’IstochimicadelCNR,DipartimentodiBiologiaAnimale, Universita’ di Pavia, Pavia, Italy Heterogeneous nuclear ribonucleoprotein-M (hnRNP-M) is an and affect the fate of heterogeneous nuclear RNAs by influencing their abundant nuclear protein that binds to pre-mRNA and is a structure and/or by facilitating or hindering the interaction of their component of the spliceosome complex.