Pricing Options and Computing Implied Volatilities Using Neural Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seeking Income: Cash Flow Distribution Analysis of S&P 500
RESEARCH Income CONTRIBUTORS Berlinda Liu Seeking Income: Cash Flow Director Global Research & Design Distribution Analysis of S&P [email protected] ® Ryan Poirier, FRM 500 Buy-Write Strategies Senior Analyst Global Research & Design EXECUTIVE SUMMARY [email protected] In recent years, income-seeking market participants have shown increased interest in buy-write strategies that exchange upside potential for upfront option premium. Our empirical study investigated popular buy-write benchmarks, as well as other alternative strategies with varied strike selection, option maturity, and underlying equity instruments, and made the following observations in terms of distribution capabilities. Although the CBOE S&P 500 BuyWrite Index (BXM), the leading buy-write benchmark, writes at-the-money (ATM) monthly options, a market participant may be better off selling out-of-the-money (OTM) options and allowing the equity portfolio to grow. Equity growth serves as another source of distribution if the option premium does not meet the distribution target, and it prevents the equity portfolio from being liquidated too quickly due to cash settlement of the expiring options. Given a predetermined distribution goal, a market participant may consider an option based on its premium rather than its moneyness. This alternative approach tends to generate a more steady income stream, thus reducing trading cost. However, just as with the traditional approach that chooses options by moneyness, a high target premium may suffocate equity growth and result in either less income or quick equity depletion. Compared with monthly standard options, selling quarterly options may reduce the loss from the cash settlement of expiring calls, while selling weekly options could incur more loss. -
Buying Options on Futures Contracts. a Guide to Uses
NATIONAL FUTURES ASSOCIATION Buying Options on Futures Contracts A Guide to Uses and Risks Table of Contents 4 Introduction 6 Part One: The Vocabulary of Options Trading 10 Part Two: The Arithmetic of Option Premiums 10 Intrinsic Value 10 Time Value 12 Part Three: The Mechanics of Buying and Writing Options 12 Commission Charges 13 Leverage 13 The First Step: Calculate the Break-Even Price 15 Factors Affecting the Choice of an Option 18 After You Buy an Option: What Then? 21 Who Writes Options and Why 22 Risk Caution 23 Part Four: A Pre-Investment Checklist 25 NFA Information and Resources Buying Options on Futures Contracts: A Guide to Uses and Risks National Futures Association is a Congressionally authorized self- regulatory organization of the United States futures industry. Its mission is to provide innovative regulatory pro- grams and services that ensure futures industry integrity, protect market par- ticipants and help NFA Members meet their regulatory responsibilities. This booklet has been prepared as a part of NFA’s continuing public educa- tion efforts to provide information about the futures industry to potential investors. Disclaimer: This brochure only discusses the most common type of commodity options traded in the U.S.—options on futures contracts traded on a regulated exchange and exercisable at any time before they expire. If you are considering trading options on the underlying commodity itself or options that can only be exercised at or near their expiration date, ask your broker for more information. 3 Introduction Although futures contracts have been traded on U.S. exchanges since 1865, options on futures contracts were not introduced until 1982. -
Implied Volatility Modeling
Implied Volatility Modeling Sarves Verma, Gunhan Mehmet Ertosun, Wei Wang, Benjamin Ambruster, Kay Giesecke I Introduction Although Black-Scholes formula is very popular among market practitioners, when applied to call and put options, it often reduces to a means of quoting options in terms of another parameter, the implied volatility. Further, the function σ BS TK ),(: ⎯⎯→ σ BS TK ),( t t ………………………………(1) is called the implied volatility surface. Two significant features of the surface is worth mentioning”: a) the non-flat profile of the surface which is often called the ‘smile’or the ‘skew’ suggests that the Black-Scholes formula is inefficient to price options b) the level of implied volatilities changes with time thus deforming it continuously. Since, the black- scholes model fails to model volatility, modeling implied volatility has become an active area of research. At present, volatility is modeled in primarily four different ways which are : a) The stochastic volatility model which assumes a stochastic nature of volatility [1]. The problem with this approach often lies in finding the market price of volatility risk which can’t be observed in the market. b) The deterministic volatility function (DVF) which assumes that volatility is a function of time alone and is completely deterministic [2,3]. This fails because as mentioned before the implied volatility surface changes with time continuously and is unpredictable at a given point of time. Ergo, the lattice model [2] & the Dupire approach [3] often fail[4] c) a factor based approach which assumes that implied volatility can be constructed by forming basis vectors. Further, one can use implied volatility as a mean reverting Ornstein-Ulhenbeck process for estimating implied volatility[5]. -
Show Me the Money: Option Moneyness Concentration and Future Stock Returns Kelley Bergsma Assistant Professor of Finance Ohio Un
Show Me the Money: Option Moneyness Concentration and Future Stock Returns Kelley Bergsma Assistant Professor of Finance Ohio University Vivien Csapi Assistant Professor of Finance University of Pecs Dean Diavatopoulos* Assistant Professor of Finance Seattle University Andy Fodor Professor of Finance Ohio University Keywords: option moneyness, implied volatility, open interest, stock returns JEL Classifications: G11, G12, G13 *Communications Author Address: Albers School of Business and Economics Department of Finance 901 12th Avenue Seattle, WA 98122 Phone: 206-265-1929 Email: [email protected] Show Me the Money: Option Moneyness Concentration and Future Stock Returns Abstract Informed traders often use options that are not in-the-money because these options offer higher potential gains for a smaller upfront cost. Since leverage is monotonically related to option moneyness (K/S), it follows that a higher concentration of trading in options of certain moneyness levels indicates more informed trading. Using a measure of stock-level dollar volume weighted average moneyness (AveMoney), we find that stock returns increase with AveMoney, suggesting more trading activity in options with higher leverage is a signal for future stock returns. The economic impact of AveMoney is strongest among stocks with high implied volatility, which reflects greater investor uncertainty and thus higher potential rewards for informed option traders. AveMoney also has greater predictive power as open interest increases. Our results hold at the portfolio level as well as cross-sectionally after controlling for liquidity and risk. When AveMoney is calculated with calls, a portfolio long high AveMoney stocks and short low AveMoney stocks yields a Fama-French five-factor alpha of 12% per year for all stocks and 33% per year using stocks with high implied volatility. -
OPTION-BASED EQUITY STRATEGIES Roberto Obregon
MEKETA INVESTMENT GROUP BOSTON MA CHICAGO IL MIAMI FL PORTLAND OR SAN DIEGO CA LONDON UK OPTION-BASED EQUITY STRATEGIES Roberto Obregon MEKETA INVESTMENT GROUP 100 Lowder Brook Drive, Suite 1100 Westwood, MA 02090 meketagroup.com February 2018 MEKETA INVESTMENT GROUP 100 LOWDER BROOK DRIVE SUITE 1100 WESTWOOD MA 02090 781 471 3500 fax 781 471 3411 www.meketagroup.com MEKETA INVESTMENT GROUP OPTION-BASED EQUITY STRATEGIES ABSTRACT Options are derivatives contracts that provide investors the flexibility of constructing expected payoffs for their investment strategies. Option-based equity strategies incorporate the use of options with long positions in equities to achieve objectives such as drawdown protection and higher income. While the range of strategies available is wide, most strategies can be classified as insurance buying (net long options/volatility) or insurance selling (net short options/volatility). The existence of the Volatility Risk Premium, a market anomaly that causes put options to be overpriced relative to what an efficient pricing model expects, has led to an empirical outperformance of insurance selling strategies relative to insurance buying strategies. This paper explores whether, and to what extent, option-based equity strategies should be considered within the long-only equity investing toolkit, given that equity risk is still the main driver of returns for most of these strategies. It is important to note that while option-based strategies seek to design favorable payoffs, all such strategies involve trade-offs between expected payoffs and cost. BACKGROUND Options are derivatives1 contracts that give the holder the right, but not the obligation, to buy or sell an asset at a given point in time and at a pre-determined price. -
Option Prices Under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗
Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗ Massimo Guidolin† Allan Timmermann University of Virginia University of California, San Diego JEL codes: G12, D83. Abstract This paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolve on a binomial lattice with unknown but recursively updated probabilities we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of- sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model. ∗We wish to thank four anonymous referees for their extensive and thoughtful comments that greatly improved the paper. We also thank Alexander David, Jos´e Campa, Bernard Dumas, Wake Epps, Stewart Hodges, Claudio Michelacci, Enrique Sentana and seminar participants at Bocconi University, CEMFI, University of Copenhagen, Econometric Society World Congress in Seattle, August 2000, the North American Summer meetings of the Econometric Society in College Park, June 2001, the European Finance Association meetings in Barcelona, August 2001, Federal Reserve Bank of St. Louis, INSEAD, McGill, UCSD, Universit´edeMontreal,andUniversity of Virginia for discussions and helpful comments. -
November 4, 2016 Ms. Susan M. Cosper Technical Director Financial Accounting Standards Board 401 Merritt 7 P.O. Box 5116 Norwalk
November 4, 2016 Ms. Susan M. Cosper Technical Director Financial Accounting Standards Board 401 Merritt 7 P.O. Box 5116 Norwalk, CT 06856-5116 By email: [email protected] Re: File Reference Number 2016-310, Exposure Draft, Derivatives and Hedging (Topic 815) – Targeted Improvements to Accounting for Hedging Activities Dear Ms. Cosper, The International Swaps and Derivatives Association’s (ISDA)1 Accounting Policy Committee appreciates the opportunity to comment on the Financial Accounting Standards Board’s (“FASB”) Exposure Draft, Derivatives and Hedging (Topic 815): Targeted Improvements to Accounting for Hedging Activities (the “Exposure Draft”). Collectively, the Committee members have substantial professional expertise and practical experience addressing accounting policy issues related to financial instruments and specifically derivative financial instruments. This letter provides our organization’s overall views on the Exposure Draft and our responses to the questions for respondents included within the Exposure Draft. Overview ISDA supports the FASB’s efforts to simplify the accounting for hedging activities and address practice issues that have arisen under current generally accepted accounting principles (“GAAP”). We believe the Exposure Draft achieves the FASB’s objectives of improving the financial reporting of cash flow and fair value hedge relationships to better portray the economic results of an entity’s risk management activities in its financial statements and simplifying the application of hedge accounting guidance in current GAAP. 1 Since 1985, the International Swaps and Derivatives Association has worked to make the global derivatives markets safer and more efficient. ISDA’s pioneering work in developing the ISDA Master Agreement and a wide range of related documentation materials, and in ensuring the enforceability of their netting and collateral provisions, has helped to significantly reduce credit and legal risk. -
Monte Carlo Strategies in Option Pricing for Sabr Model
MONTE CARLO STRATEGIES IN OPTION PRICING FOR SABR MODEL Leicheng Yin A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Statistics and Operations Research. Chapel Hill 2015 Approved by: Chuanshu Ji Vidyadhar Kulkarni Nilay Argon Kai Zhang Serhan Ziya c 2015 Leicheng Yin ALL RIGHTS RESERVED ii ABSTRACT LEICHENG YIN: MONTE CARLO STRATEGIES IN OPTION PRICING FOR SABR MODEL (Under the direction of Chuanshu Ji) Option pricing problems have always been a hot topic in mathematical finance. The SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. To price options under SABR model, there are analytical and probability approaches. The probability approach i.e. the Monte Carlo method suffers from computation inefficiency due to high dimensional state spaces. In this work, we adopt the probability approach for pricing options under the SABR model. The novelty of our contribution lies in reducing the dimensionality of Monte Carlo simulation from the high dimensional state space (time series of the underlying asset) to the 2-D or 3-D random vectors (certain summary statistics of the volatility path). iii To Mom and Dad iv ACKNOWLEDGEMENTS First, I would like to thank my advisor, Professor Chuanshu Ji, who gave me great instruction and advice on my research. As my mentor and friend, Chuanshu also offered me generous help to my career and provided me with great advice about life. Studying from and working with him was a precious experience to me. -
Empirical Properties of Straddle Returns
EDHEC RISK AND ASSET MANAGEMENT RESEARCH CENTRE 393-400 promenade des Anglais 06202 Nice Cedex 3 Tel.: +33 (0)4 93 18 32 53 E-mail: [email protected] Web: www.edhec-risk.com Empirical Properties of Straddle Returns December 2008 Felix Goltz Head of applied research, EDHEC Risk and Asset Management Research Centre Wan Ni Lai IAE, University of Aix Marseille III Abstract Recent studies find that a position in at-the-money (ATM) straddles consistently yields losses. This is interpreted as evidence for the non-redundancy of options and as a risk premium for volatility risk. This paper analyses this risk premium in more detail by i) assessing the statistical properties of ATM straddle returns, ii) linking these returns to exogenous factors and iii) analysing the role of straddles in a portfolio context. Our findings show that ATM straddle returns seem to follow a random walk and only a small percentage of their variation can be explained by exogenous factors. In addition, when we include the straddle in a portfolio of the underlying asset and a risk-free asset, the resulting optimal portfolio attributes substantial weight to the straddle position. However, the certainty equivalent gains with respect to the presence of a straddle in a portfolio are small and probably do not compensate for transaction costs. We also find that a high rebalancing frequency is crucial for generating significant negative returns and portfolio benefits. Therefore, from an investor's perspective, straddle trading does not seem to be an attractive way to capture the volatility risk premium. JEL Classification: G11 - Portfolio Choice; Investment Decisions, G12 - Asset Pricing, G13 - Contingent Pricing EDHEC is one of the top five business schools in France. -
Introduction to Options Mark Welch and James Mintert*
E-499 RM2-2.0 01-09 Risk Management Introduction To Options Mark Welch and James Mintert* Options give the agricultural industry a flexi- a put option can convert an option position into ble pricing tool that helps with price risk manage- a short futures position, established at the strike ment. Options offer a type of insurance against price, by exercising the put option. Similarly, the adverse price moves, require no margin deposits buyer of a call option can convert an option posi- for buyers, and allow buyers to participate in tion into a long futures position, established at favorable price moves. Commodity options are the strike price, by exercising the call option. The adaptable to a wide range of pricing situations. option buyer also can sell the option to someone For example, agricultural producers can use com- else or do nothing and let the option expire. The modity options to establish an approximate price choice of action is left entirely to the option buyer. floor, or ceiling, for their production or inputs. The option buyer obtains this right by paying the With today’s large price fluctuations, the financial premium to the option seller. payoff in controlling price risk and protecting What about the option seller? The option seller profits can be substantial. receives the premium from the option buyer. If the option buyer exercises the option, the option What is an Option? seller is obligated to take the opposite futures An option is simply the right, but not the position at the same strike price. Because of the obligation, to buy or sell a futures contract at seller’s obligation to take a futures position if the some predetermined price within a specified option is exercised, an option seller must post a time period. -
Derivative Instruments and Hedging Activities
www.pwc.com 2015 Derivative instruments and hedging activities www.pwc.com Derivative instruments and hedging activities 2013 Second edition, July 2015 Copyright © 2013-2015 PricewaterhouseCoopers LLP, a Delaware limited liability partnership. All rights reserved. PwC refers to the United States member firm, and may sometimes refer to the PwC network. Each member firm is a separate legal entity. Please see www.pwc.com/structure for further details. This publication has been prepared for general information on matters of interest only, and does not constitute professional advice on facts and circumstances specific to any person or entity. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication. The information contained in this material was not intended or written to be used, and cannot be used, for purposes of avoiding penalties or sanctions imposed by any government or other regulatory body. PricewaterhouseCoopers LLP, its members, employees and agents shall not be responsible for any loss sustained by any person or entity who relies on this publication. The content of this publication is based on information available as of March 31, 2013. Accordingly, certain aspects of this publication may be superseded as new guidance or interpretations emerge. Financial statement preparers and other users of this publication are therefore cautioned to stay abreast of and carefully evaluate subsequent authoritative and interpretative guidance that is issued. This publication has been updated to reflect new and updated authoritative and interpretative guidance since the 2012 edition. -
Finding the Roots Or Solving Nonlinear Equations
Chapter 6: Finding the Roots or Solving Nonlinear Equations Instructor: Dr. Ming Ye Solving Nonlinear Equations and Sets of Linear Equations •Equations can be solved analytically Solution of y=mx+b Solution of ax2+bx+c=0 •Large systems of linear equations •Higher order equations Specific energy equation •Nonlinear algebraic equationsx=g(x) Manning’s equation Topics Covered in This Chapter •Preliminaries •Fixed-Point Iteration •Bisection •Newton’s Method •The Secant Method •Hybrid Methods •Roots of Polynomials Roots of f(x)=0 General Considerations • Is this a special function that will be evaluated often? If so, some analytical study and possibly some algebraic manipulation of the function will be a good idea. Devise a custom iterative scheme. •How much precision is needed? Engineering calculations often require only a few significant figures. •How fast and robust must the method be? A robust procedure is relatively immune to the initial guess, and it converges quickly without being overly sensitive to the behavior of f(x) in the expected parameter space. • Is the function a polynomial? There are special procedure for finding the roots of polynomials. •Does the function have singularities? Some root finding procedures will converge to a singularity, as well as converge to a root. There is no single root-finding method that is best for all situations. The Basic Root-Finding Procedure 1.5 1 ) 0.5 3 0 f(h) (m f(h) -0.5 The basic strategy is -1 -1.5 -1.5 -1 -0.5 0 0.5 1 1.5 1. Plot the function. h (m) The plot provides an initial guess, and an indication of potential problems.