Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284 1521-0111/90/3/177–187$25.00 http://dx.doi.org/10.1124/mol.116.104737 MOLECULAR PHARMACOLOGY Mol Pharmacol 90:177–187, September 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Characterization of a Novel M1 Muscarinic Acetylcholine Receptor Positive Allosteric Modulator Radioligand, [3H]PT-1284 Deborah L. Smith, Jennifer E. Davoren, Jeremy R. Edgerton, John T. Lazzaro, Che-Wah Lee, Sarah Neal, Lei Zhang, and Sarah Grimwood Neuroscience and Pain Research Unit (D.L.S., J.R.E., S.N., S.G.) and Worldwide Medicinal Chemistry (J.E.D., L.Z.), Pfizer Inc., Cambridge, Massachusetts; Primary Pharmacology Group (J.T.L.) and Worldwide Medicinal Chemistry (C.-W.L.), Pfizer Inc., Groton, Connecticut Received April 14, 2016; accepted June 30, 2016 Downloaded from ABSTRACT 3 3 Selective activation of the M1 muscarinic acetylcholine recep- of ACh required to inhibit [ H]N-methylscopolamine ([ H]NMS) tor (mAChR) via a positive allosteric modulator (PAM) is a new binding to M1, left-shifting the ACh Ki approximately 19-fold at approach for the treatment of the cognitive impairments asso- 10 mM. Saturation analysis of a human M1 mAChR stable cell line 3 molpharm.aspetjournals.org ciated with schizophrenia and Alzheimer’s disease. Herein, showed that [ H]PT-1284 bound to M1 mAChR in the presence of we describe the characterization of an M1 PAM radioligand, 1mMAChwithKd, 4.23 nM, and saturable binding capacity (Bmax), 8-((1S,2S)-2-hydroxycyclohexyl)-5-((6-(methyl-t3)pyridin-3-yl)- 6.38 pmol/mg protein. M1 selective PAMs were shown to inhibit methyl)-8,9-dihydro-7H-pyrrolo[3,4-hour]quinolin-7-one [3H]PT-1284 binding in a concentration-responsive manner, whereas 3 ([ H]PT-1284), as a tool for characterizing the M1 allosteric M1 allosteric and orthosteric agonists showed weak affinity (.30 mM). 2 binding site, as well as profiling novel M1 PAMs. 8-((1S,2S)-2- A strong positive correlation (R 5 0.86) was found to exist Hydroxycyclohexyl)-5-((6-methylpyridin-3-yl)methyl)-8,9- between affinity values generated for nineteen M1 PAMs in the 3 dihydro-7H-pyrrolo[3,4-hour]quinolin-7-one (PT-1284 (1)) was [ H]PT-1284 binding assay and the EC50 values of these ligands shown to potentiate acetylcholine (ACh) in an M1 fluorometric in a FLIPR functional potentiation assay. These data indicate that imaging plate reader (FLIPR) functional assay (EC50, 36 nM) and there is a strong positive correlation between M1 PAM binding carbachol in a hippocampal slice electrophysiology assay affinity and functional activity, and that [3H]PT-1284 can serve as at ASPET Journals on September 26, 2021 (EC50, 165 nM). PT-1284 (1) also reduced the concentration a tool for pharmacological investigation of M1 mAChR PAMs. Introduction hippocampus, striatum, and cerebral cortex (Wall et al., 1991; Levey 1996; Porter et al., 2002) and activation of these Muscarinic acetylcholine receptors (mAChRs) are mem- receptors in regions known for memory and cognitive func- bers of the superfamily of G protein-coupled receptors (GPCR). tion are expected to bestow a procognitive effect (Caulfield Five mammalian subtypes have been identified and are re- et al., 1983; Hagan et al., 1987; Messer et al., 1990). ferred to as M –M , with distribution in the central nervous 1 5 The orthosteric agonist xanomeline achieved proof of con- system as well as the periphery. mAChR subtypes M1,M3,and cept in human clinical trials for improvements in positive, M5 couple to Gq/11 proteins, which results in IP3 production and negative, and cognitive symptoms associated with schizophre- subsequent calcium mobilization, whereas subtypes M2 and M4 nia (Shekhar et al., 2008), as well as improvements in cognitive couple to Gi/o proteins, thereby inhibiting adenylyl cyclase function associated with Alzheimer’s disease (Bodick et al., activity (Bonner et al., 1987; Caulfield 1993; Caulfield and 1997). Although reported as an M1/M4 mAChR-preferring Birdsall, 1998). The M1 subtype is highly expressed in the agonist, xanomeline caused peripherally mediated adverse effectssuchasnausea,vomiting, salivation, and gastroin- dx.doi.org/10.1124/mol.116.104737. testinal distress, which led to a high dropout rate in these ABBREVIATIONS: ACh, acetylcholine; Bmax, saturable binding capacity; BQCA, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, benzyl quinolone carboxylic acid; CHO, Chinese hamster ovary; CNS, central nervous system; compound 9, 8-((1S,2S)-2-hydroxycyclohexyl)- 5-((6-methylpyridin-3-yl)methyl)-8,9-dihydro-7H-pyrrolo[3,4-h]quinolin-7-one; compound 10, (2-((1S,2S)-2-hydroxycyclohexyl)-5-((6-methylpyridin- 3-yl)methyl)-1,2-dihydro-3H-benzo[e]isoindol-3-one; compound 12, 5-((6-chloropyridin-3-yl)methyl)-8-((1S,2S)-2-hydroxycyclohexyl)-8,9-dihydro- 7H-pyrrolo[3,4-hour]quinolin-7-one; compound 13,8-((1S,2S)-2-hydroxycyclohexyl)-5-((6-(tributylstannyl)pyridin-3-yl)methyl)-8,9-dihydro-7H- pyrrolo[3,4-hour]quinolin-7-one; DMF, dimethylformamide; FBS, fetal bovine serum; FLIPR, fluorometric imaging plate reader; Fu,b, fraction 3 unbound in brain; GPCR, G protein-coupled receptors; hM1, human M1; HPLC, high-performance liquid chromatography; [ H]PT-1284, 8-((1S,2S)- 2-hydroxycyclohexyl)-5-((6-(methyl-t3)pyridin-3-yl)methyl)-8,9-dihydro-7H-pyrrolo[3,4-h]quinolin-7-one; mAChR, muscarinic acetylcholine recep- tor; MPO, multiparameter optimization; NMS, N-methylscopolamine; 1H NMR, proton nuclear magnetic resonance; PAM, positive allosteric modulator; PET, positron emission tomography; PQCA, 1-{[4-cyano-4-(2-pyridinyl)-1-piperidinyl]methyl}-4-oxo-4H-quinolizine-3-carboxylic acid; PT-1284 (1), 8-((1S,2S)-2-hydroxycyclohexyl)-5-((6-methylpyridin-3-yl)methyl)-8,9-dihydro-7H-pyrrolo[3,4-h]quinolin-7-one; 13C NMR, carbon-13 nuclear magnetic resonance. 177 178 Smith et al. clinical trials. Alleviating these adverse effects and preserving Pfizer animal care facilities that supported this work are fully biologic efficacy by developing subtype-selective orthosteric accredited by the Association for Assessment and Accreditation of agonists has proven to be challenging (Messer, 2002) owing to Laboratory Animal Care (AAALAC) International. complete homology of the muscarinic receptors at the orthos- teric acetylcholine (ACh) site (Kruse et al., 2013). PT-1284 (1) Synthesis A new approach for achieving subtype selectivity is the All solvents and reagents were obtained from commercial sources development of allosteric modulators that bind at sites distinct and were used as received. All reactions were monitored by thin layer from the orthosteric binding site (Kruse et al., 2013). Unlike the chromatography (TLC plates F254; Merck) or ultra high-performance orthosteric binding site, allosteric binding sites display hetero- liquid chromatography–mass spectrometry analysis (Waters Acquity, geneity across mAChR subtypes, providing opportunities for ESCi Multi-Mode Ionization Source). Proton nuclear magnetic reso- achieving desired subtype selectivity (Ma et al., 2009; Kruse nance (1H NMR) and carbon-13 nuclear magnetic resonance (13C et al., 2013). Therefore, by targeting allosteric binding sites, NMR) spectra were obtained using deuterated solvent on a Varian selective positive allosteric modulators (PAMs) could be iden- 400 MHz instrument (LabX, Midland, ON, Canada). All 1HNMR tified to enhance both the affinity and intrinsic activity of the shifts are reported in d units (ppm) relative to the signals for chloroform (7.27 ppm) and methanol (3.31 ppm). All 13C shifts are endogenous agonist, ACh, at the M1 mAChR without activation reported in d units (ppm) relative to the signals for chloroform (77.0 of other mAChR subtypes. This profile could potentially lead to 1 ppm) and methanol (49.1 ppm) with H-decoupled observation. All Downloaded from therapeutics with improved safety and toleration profiles, coupling constants (J values) are reported in hertz. NMR abbrevia- compared with nonselective mAChR activators. In 2009, tions are as follows: br, broadened; s, singlet; d, doublet; t, triplet; q, BQCA, a highly selective M1 PAM, was disclosed by Merck quartet; p, pentuplet; m, multiplet; dd, doublet of doublets; ddd, (Kenilworth, NJ; Ma et al., 2009). As a follow-on to BQCA, the doublet of doublet of doublets. second generation M1 PAM PQCA (Kuduk et al., 2011) was Compound 12. 6-Chloropyridin-3-yl)methyl)zinc(II) chloride shown to improve cognition in animal models designed to (12 ml, 6.0 mmol, 0.5 M in tetrahydrofuran) was added to a solution measure recognition memory, spatial working memory, and of compound 11 (1.8 g, 5.0 mmol), which was prepared according to molpharm.aspetjournals.org executive function (Uslaner et al., 2013; Lange et al., 2015; Puri previously reported procedures (Kuduk et al., 2012), with palladium et al., 2015; Vardigan et al., 2015). tris-tert-butylphosphine (128 mg, 0.25 mmol). The resulting mixture Availability of a potent and selective radioligand that binds was stirred at 60°C under a nitrogen atmosphere for 18 hours. The mixture was cooled to room temperature and concentrated under to the M allosteric site will facilitate the understanding of M 1 1 reduced pressure. The crude material was purified by flash chroma- PAM pharmacology and the characterization of M1 selective tography through silica using 5% methanol in dichloromethane to PAMs (Trankle et al., 1996). Herein, we describe our efforts in afford a brown solid, which was washed with methanol (10 ml) to 1 the identification and in vitro pharmacology profiling of an afford compound 12 as a white solid.
Recommended publications
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • Wo 2007/128674 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 15 November 2007 (15.11.2007) PCT WO 2007/128674 A2 (51) International Patent Classification: Houtenlaan 36, NL-1381 CP Weesp (NL). KRUSE, Cor- A61K 31/00 (2006.01) A61K 31/551 (2006.01) nelis G. [NL/NL]; c/o SOLVAY PHARMACEUTICALS A61K 31/439 (2006.01) A61P 25/18 (2006.01) B.V., IPSI Department, CJ. Van Houtenlaan 36, NL-1381 A61K 31/4439 (2006.01) CP Weesp (NL). (21) International Application Number: (74) Agent: VERHAGE, Marinus; Octrooibureau Zoan B.V., PCT/EP2007/053934 NL-1380 AC Weesp (NL). (22) International Filing Date: 23 April 2007 (23.04.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (25) Filing Language: English CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, (26) Publication Language: English IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, (30) Priority Data: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, 061 13476.3 4 May 2006 (04.05.2006) EP RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, 60/797,355 4 May 2006 (04.05.2006) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): SOLVAY (84) Designated States (unless otherwise indicated, for every PHARMACEUTICALS B.V.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Journal of Pharmacy and Pharmacology 1969 Volume.21 No.8
    The Pharmaceutical Society of Great Britain P a l m e r lop nome for physiology and pharmacology apparatus Known and used in physiology and pharmacology laboratories all over the world, C. F. Palmer equipment has a long-standing reputation for quality, reliability and precision. New products are continually under development, and as a member of the Baird &Tatlock Group, C. F. Palmer have extensive research and development facilities at their disposal. Palmer equipment is now available on improved deliveries. For a revised delivery schedule, or to order your new catalogue, write to the address below. Palmer kymographs such as this are in service in labora- Continuous injector. This unit, which can be used with all sizes of record-type tories all over the world, providing smoked paper records syringes, automatically controls injection rates. A range of motor speeds is of muscle and tissue movement, or through a manometer, available giving emptying rates of 10 mins, to 480 rrins. per inch, of blood pressure. A 6-gear motor gives paper speeds from Square-Wave Stim ulator. Pro vines a square-wave output of independently •1mm to 10mm per second. A.C. time-clock and s gnal variable pulse r?te (1/20-100 p.p.s.), ou1*«. width (10 microsec. to 103 millisec.) markers, and the Starling ventilation pump are fitted. end :nt«nsKy. Fuise rate is controKaM* ether in steps or continuously. C. F. Palmer (London) Lt«5. <2/1$ C-neKsie Hu., Tne Hyde, Colindale, London, IM.W.9 Telephone: 01 -205 5432 Member cf '.he Baird & Tatlock Division of Tarmac Derby Limited C P .1 /C Journal of Pharmacy and Pharmacology Published by T h e P harmaceutical S o c ie t y o f G r e a t B r i t a i n 17 Bloomsbury Square, London, W.C.l.
    [Show full text]
  • G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
    npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • Treatment of Schizophrenia Course Director: Philip Janicak, M.D
    S6735- Treatment of Schizophrenia Course Director: Philip Janicak, M.D. #APAAM2016 Saturday, May 14, 2016 Marriott Marquis - Marquis Ballroom D psychiatry.org/ annualmeetingS4637 ANNUAL MEETING May 14-18, 2016 • Atlanta Reference • Janicak PG, Marder SR, Tandon R, Goldman M (Eds.). Schizophrenia: Recent Advances in Diagnosis and Treatment. New York, NY: Springer; 2014. Schizophrenia: Recent Diagnostic Advances, Neurobiology, and the Neuropharmacology of Antipsychotic Drug Therapy Rajiv Tandon, MD Professor of Psychiatry University of Florida College of Medicine Gainesville, Florida Annual Meeting of the American Psychiatric Association New York, New York May 3–7, 2014 Disclosure Information MEMBER, WPA PHARMACOPSYCHIATRY SECTION MEMBER, DSM-5 WORKGROUP ON PSYCHOTIC DISORDERS A CLINICIAN AND CLINICAL RESEARCHER Pharmacological Treatment of Any Disease • Know the Disease that you are treating • Nature; Treatment targets; Treatment goals; • Know the Treatments at your disposal • What they do; How they compare; Costs; • Principles of Treatment • Measurement-based; Targeted; Individualized Program Outline • Nature and Definition of psychosis? • Clinical description • What is wrong in psychotic illness • Dimensions of Psychopathology • Neurobiological Abnormalities • Mechanisms underlying antipsychotic effects? • What contributes to Efficacy • Basis of Side-effect differences 5 Challenges in DSM-IV Construct of Psychotic Disorders ♦ Indistinct Boundaries ♦ With Other Disorders (eg., with OCD) ♦ Within Group of Psychotic Disorders (eg. between
    [Show full text]
  • Alzheimer's Disease Clinical Trials
    Clinical Trial Perspective 5 Clinical Trial Perspective Alzheimer’s disease clinical trials: past failures and future opportunities Clin. Invest. (Lond.) Over a decade has elapsed since the US FDA has approved a medication for Alzheimer’s Roy Yaari*,1,2 & Ann Hake1,2 disease (AD) despite clinical trials of numerous agents over a wide array of mechanisms 1Eli Lilly & Company, Lilly Corporate including neurotransmitter modulation and disease modifying therapy targeting Center, Indianapolis, IN 46285, USA 2Indiana University School of Medicine, amyloid and tau. The failures of clinical trials in AD may be due to inadequate Department of Neurology, Indianapolis, understanding of mechanisms of action and/or poor target engagement; however, IN 46202, USA other factors could include inadequate study design, stage of AD along the continuum *Author for correspondence: studied, inclusion of participants without Alzheimer’s pathology into clinical trials Tel.: +1 317 651 6163 and limited power of endpoint measures. Future studies will need to carefully assess [email protected] these possible shortcomings in design of upcoming trials, especially as the field moves toward studies of disease modifying agents (as opposed to symptomatic treatment) of AD and to patients that are very early in the disease spectrum. Keywords: Alzheimer’s disease • Alzheimer’s disease biomarkers • amyloid • clinical trials • preclinical Alzheimer’s disease • tau US FDA approved medications continue to provide significant, but modest More than three decades ago, the choliner- symptomatic benefit[5–7] . gic hypothesis proposed that degeneration The compound memantine introduced a of cholinergic neurons in the basal fore- second mechanism for symptomatic treat- brain and the associated loss of cholinergic ment of AD into clinical practice.
    [Show full text]
  • Current Advances in Allosteric Modulation of Muscarinic Receptors
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 January 2020 Peer-reviewed version available at Biomolecules 2020, 10, 325; doi:10.3390/biom10020325 Review Current Advances in Allosteric Modulation of Muscarinic Receptors Jan Jakubik 1* and Esam E. El-Fakahany 2* 1 Department of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic; [email protected] 2 Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA; [email protected] * Correspondence: [email protected]; [email protected] Abstract: Allosteric modulators are ligands that bind to a site on the receptor that is spatially separated from the orthosteric binding site for the endogenous neurotransmitter. Allosteric modulators modulate the binding affinity, potency and efficacy of orthosteric ligands. Muscarinic acetylcholine receptors are prototypical allosterically-modulated G-protein-coupled receptors. They are a potential therapeutic target for the treatment of psychiatric, neurologic and internal diseases like schizophrenia, Alzheimer’s disease, Huntington disease, type 2 diabetes or chronic pulmonary obstruction. Here we review progress made during the last decade in our understanding of their mechanisms of binding, allosteric modulation and in vivo actions of in order to understand the translational impact of studying this important class of pharmacological agents. We overview newly developed allosteric modulators of muscarinic receptors as well as new spin-off ideas like bitopic ligands combining allosteric and orthosteric moieties and photo-switchable ligands based on bitopic agents. Keywords: acetylcholine; muscarinic receptors; allosteric modulation 1. Introduction Slow metabotropic responses to acetylcholine are mediated by muscarinic receptors. Five distinct subtypes of muscarinic acetylcholine receptors (M1-M5) have been identified in the human genome[1].
    [Show full text]
  • Pharmacological and Ionic Characterizations of the Muscarinic Receptors Modulating [3H]Acetylcholine Release from Rat Cortical Synaptosomes’
    0270.6474/85/0505-1202$02.00/O The Journal of Neuroscience CopyrIght 0 Society for Neuroscrence Vol. 5, No. 5, pp. 1202-1207 Printed in U.S.A. May 1985 Pharmacological and Ionic Characterizations of the Muscarinic Receptors Modulating [3H]Acetylcholine Release from Rat Cortical Synaptosomes’ EDWIN M. MEYER* AND DEBORAH H. OTERO Department of Pharmacology and Therapeutics, University of Florida School of Medicine, Gainesville, Florida 32610 Abstract brain (Gonzales and Crews, 1984). M,-receptors, however, appear pre- and postsynaptically in brain, are regulated by an intrinsic The muscarinic receptors that modulate acetylcholine membrane protein that binds to GTP (g-protein), and may not be release from rat cortical synaptosomes were characterized coupled to changes in phosphatidylinositol turnover. with respect to sensitivity to drugs that act selectively at M, The present studies were designed to determine whether M,- or or Ma receptor subtypes, as well as to changes in ionic Mp-receptors mediate the presynaptic modulation of ACh release. strength and membrane potential. The modulatory receptors These studies involve dose-response curves for the release of appear to be of the M2 type, since they are activated by synaptosomal [3H]ACh in the presence of selected muscarinic ago- carbachol, acetylcholine, methacholine, oxotremorine, and nists and antagonists, as well as treatments that selectively alter MI- bethanechol, but not by pilocarpine, and are blocked by or M,-receptor activity. Our results indicate that the presynaptic atropine, scopolamine, and gallamine (at high concentra- modulation of [3H]ACh release is mediated by MP- but not MI- tions), but not by pirenzepine or dicyclomine.
    [Show full text]