Genomic Characterization of the Italian Wolf (Canis Lupus )

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Characterization of the Italian Wolf (Canis Lupus ) Alma Mater Studiorum - University of Bologna DOCTOR OF PHILOSOPHY Biodiversity and Evolution Genomic characterization of the Italian wolf (Canis lupus): the genes involved in black coat colour determination and application of microarray technique for SNPs detection. Candidate: Dott. CLAUDIA GRECO PhD Coordinator: PhD Advisor: Prof. GIOVANNI CRISTOFOLINI Prof. ETTORE RANDI CYCLE XXI 2009 Alma Mater Studiorum - Università di Bologna Istituto Superiore per la Protezione e la Ricerca Ambientale DOTTORATO DI RICERCA Biodiversità ed Evoluzione Ciclo XXI Settore scientifico disciplinare di afferenza: BIO/05 ZOOLOGIA Genomic characterization of the Italian wolf (Canis lupus): the genes involved in black coat colour determination and application of microarray technique for SNPs detection. Presentata da: Dott. CLAUDIA GRECO Coordinatore Dottorato: Relatore: Prof. GIOVANNI CRISTOFOLINI Prof. ETTORE RANDI Esame finale 18.05.2009 TABLE OF CONTENTS I – ABSTRACT AND KEYWORDS ........................................................................... Pag. I II – INTRODUCTION ................................................................................................. “ II 1 – BACKGROUND .................................................................................................... “ 1 1.1 STATUS OF KNOWLEDGE ON WOLF AND DOG .................................... “ 1 1.1.1 Wolf ........................................................................................................ “ 1 1.1.2 Historical and current wolf distribution ................................................ “ 1 1.1.3 Populations status in Europe ................................................................. “ 2 1.1.4 Conservation status and legal protection ............................................... “ 8 1.1.5 Peculiarity and characteristics of the Italian wolf .................................. “ 9 1.1.6 The debated domestication .................................................................... “ 10 1.1.7 How does domestication proceed ........................................................... “ 13 1.1.8 Dog genetics .......................................................................................... “ 14 1.1.9 Canine coat colour genetics .................................................................. “ 16 1.1.10 The occurrence of black wolves .......................................................... “ 18 1.1.11 Two possible explanations for melanism ............................................. “ 19 1.2 FUNDAMENTALS OF DEOXIRIBONUCLEIC ACID (DNA) VARIABILITY ....... “ 20 1.2.1 DNA structure and function .................................................................. “ 20 1.2.2 Genetic mutations, polymorphisms and genetic markers ....................... “ 21 1.2.3 Single Nucleotide Polymorphisms ......................................................... “ 22 2 – AIMS ....................................................................................................................... “ 24 3 – MATERIALS AND METHODS ........................................................................... “ 25 3.1 Sampling ............................................................................................................ “ 25 3.2 DNA extraction .................................................................................................. “ 27 3.3 DNA amplification ............................................................................................. “ 29 3.3.1 Amplification and sequencing of Mc1r and Agouti genes ...................... “ 29 3.3.2 Analysis of the K locus ........................................................................... “ 30 3.4. Microarray analysis .......................................................................................... “ 32 3.5 Genetic variability analysis ................................................................................ “ 38 4 – RESULTS ............................................................................................................... “ 40 4.1 The melanism in Italian wolves .......................................................................... “ 40 4.1.1 Agouti and Melanocortin receptor 1 ...................................................... “ 40 4.1.2 The K locus mutation ............................................................................. “ 41 4.2 Characteristics of the black phenotype .............................................................. “ 49 4.3 Canine DNA microchip results .......................................................................... “ 53 5 – DISCUSSION ......................................................................................................... “ 60 5.1 The K locus allows to identify black wolves ....................................................... “ 60 5.2 Genetic diversity in Italian VS European wolf populations ............................... “ 63 6 – CONCLUSIONS AND PERSPECTIVES ............................................................. “ 66 AKNOWLEDGEMENTS ............................................................................................ “ 68 REFERENCES ............................................................................................................. “ 69 I - ABSTRACT This study provides a comprehensive genetic overview on the endangered Italian wolf population. In particular, it concentrates on two research lines. On one hand, we focused on melanism in Italian wolves in order to isolate a mutation related with black coat colour in canids. With several reported black individuals (an exception at European level), the Italian wolf population constituted a challenging research field posing many unanswered questions. As found in North American wolf, we reported that melanism in the Italian population is caused by a recently discovered melanocortin pathway component, the K locus, in which a beta- defensin protein acts as an alternative ligand for the Mc1r. This research project was conducted in collaboration with Prof. Gregory Barsh, Department of Genetics and Paediatrics, Stanford University. On the other hand, by means of a customized Canine microarray we performed analysis on a significant number of SNPs (Single Nucleotide Polymorphisms) useful to integrate or substitute existing microsatellite markers for individual genotyping and wolf-dog hybrids identification. Thanks to DNA microchip technology, we obtained an impressive amount of genetic data which provides a solid base for future functional genomic studies. This study was undertaken in collaboration with Prof. Robert K. Wayne, Department of Ecology and Evolutionary Biology, University of California, Los Angeles (UCLA). I spent a three-months period at UCLA as visiting student supported by a Marco Polo grant, in order to process the Italian samples. KEYWORDS : melanism, black phenotype, coat colour, K locus, SNPs, microarray, Italian wolf. I II - INTRODUCTION The increased amount of black or nearly black pigmentation ( melanism ) is a common characteristic in mammals. Melanism occurs frequently in wolf phenotype but it is not equally widespread within all the diverse populations across the world. In North America, dark wolves’ frequency is quite consistent, reaching almost 50% in some areas, such as Yellowstone National Park. On the contrary, melanism is extremely rare or absent in the majority of the European populations. Melanistic individuals have been occasionally reported in the Italian wolf population. With no proved evidence of black wolves’ existence before 1982, melanism is not considered a typical characteristic of the Italian wolf phenotype. Nevertheless over the last twenty years, black wolves have been detected in the Apennines near Arezzo and, more recently, in other areas of the Tuscan-Emilian Apennines. Moreover, dark individuals sighting and carcasses discoveries are increasing all over the Northern Apennines. One explanation to the black coat occurrence in Italy relies on the hypothesis of a mutation fixation in a local population - plausibly in the Romagna Apennines -, which may have expanded northward along the Apennines. Another hypothesis suggests that melanism in Italian wolf depends on hybridization with a black domestic dog. Nonetheless, there is no genetic evidence of dog introgression in the Italian wolf population supporting this theory and only few hybridisation events were described. It follows that the dog gene introgression - if it ever happened - did not occurred recently. In order to find the solution to such a dilemma, the detection of the DNA mutations which causes melanism is the only practical way to comprehend the origin of melanistic phenomenon. The second research line focuses on the identification thanks to the microarray technique of thousands of single nucleotides polymorphisms characterizing the Italian wolf population. II Italian wolf population is an ecotype of the European wolf from which remained separated for around 150 - 200 years. Because of its long-lasting historical isolation and peculiar morphological characteristics, the Italian wolf represents an extremely interesting case study. Furthermore, the Italian population is characterized by a reduced genetic variability and the fixation of a single mitochondrial haplotype. The genetic characterization so far utilized bases on eighteen diagnostic microsatellites loci which identify species, individuals, sex, and kinship. A previous study characterized around only fifty SNPs within the population. In our research we were
Recommended publications
  • The Sicilian Wolf: Genetic Identity of a Recently Extinct Insular Population
    bioRxiv preprint doi: https://doi.org/10.1101/453365; this version posted November 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Sicilian wolf: Genetic identity of a recently extinct insular population Angelici F.M.1*, Ciucani M.M. #2,3, Angelini S.4, Annesi F.5, Caniglia R6., Castiglia R.5, Fabbri E.6, Galaverni M.7, Palumbo D.8, Ravegnini G.4, Rossi L.8, Siracusa A.M.10, Cilli E.2 Affiliations: * Corresponding author # Co-first author: These authors equally contributed to the paper 1 FIZV, Via Marco Aurelio 2, I-00184 Roma, Italy 2 Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, Ravenna, Italy; 3 Natural History Museum of Denmark, Copenhagen, Denmark 4 Dip.to Farmacia e Biotecnologia, Università di Bologna, Bologna, Italy 5 Dip.to Biologia e Biotecnologie ‘C. Darwin’, Sapienza Università di Roma, Roma, Italy 6 Area per la Genetica della Conservazione BIO-CGE, ISPRA, Ozzano dell’Emilia, Bologna, Italy 7 WWF Italia, Via Po 25/C, 00198 Roma, Italy 8 Museo di Ecologia di Cesena, Piazza Pietro Zangheri, 6, 47521 Cesena (FC), Italy 10 Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Sez. Biologia Animale “Marcello La Greca”, Catania, Italy 1 bioRxiv preprint doi: https://doi.org/10.1101/453365; this version posted November 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Return of the Wolves Implications of the Role of Top Predators in Terrestrial Ecosystems for the Return of Eurasian Wolf Canis Lupus Lupus to Western Europe
    Anne M.G. Kwak Return of the wolves Implications of the role of top predators in terrestrial ecosystems for the return of Eurasian wolf Canis lupus lupus to Western Europe Author Anne M.G. Kwak Radboud University Nijmegen E-mail: [email protected] Education Master Biology, track Communities & Ecosystems Radboud University Nijmegen Faculty of Science Heyendaalseweg 135 6525 AJ Nijmegen Phone: 024-365 26 61 Fax: 024-355 34 50 Website: www.ru.nl/fnwi Supervisor Prof. dr. H. (Hans) de Kroon Institute for Water and Wetland Research Radboud University Nijmegen Date October 2013 SUMMARY In many terrestrial ecosystems in Western Europe today, top predators are absent (Terborgh et al., 1999). Since top predators are considered to be important for the structure of ecosystems and their biodiversity, the absence of such species might have large impacts on these systems. In this thesis I want to investigate how the absence of top predators has affected terrestrial ecosystem trophic structure and biodiversity. The focus on terrestrial ecosystems comes forth from the fact that the Eurasian wolf Canis lupus lupus is currently expanding its range throughout Western Europe (Chapron et al., 2003; Randi, 2011). Here, I investigate how species like the Eurasian wolf might affect our ecosystems when they spread further, and what the implications of these effects are for the management of our ecosystems and of the Eurasian wolf. Carnivores can be assigned the role of keystone species, where they create ecological boundaries that protect lesser competitors from exclusion (Miller et al., 2001). In this role of keystone species, carnivores are also capable of increasing plant biomass through their limiting effect on herbivore numbers, causing both plants and carnivores to flourish (Miller et al., 2001).
    [Show full text]
  • Science Journals
    RESEARCH ARTICLE EVOLUTIONARY GENETICS 2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed Whole-genome sequence analysis shows that two under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). endemic species of North American wolf are 10.1126/sciadv.1501714 admixtures of the coyote and gray wolf Bridgett M. vonHoldt,1 James A. Cahill,2 Zhenxin Fan,3 Ilan Gronau,4 Jacqueline Robinson,5 John P. Pollinger,5 Beth Shapiro,2 Jeff Wall,6 Robert K. Wayne5* Protection of populations comprising admixed genomes is a challenge under the Endangered Species Act (ESA), which is regarded as the most powerful species protection legislation ever passed in the United States but lacks specific provisions for hybrids. The eastern wolf is a newly recognized wolf-like species that is highly admixed and inhabits the Great Lakes and eastern United States, a region previously thought to be included in the geographic Downloaded from range of only the gray wolf. The U.S. Fish and Wildlife Service has argued that the presence of the eastern wolf, rather than the gray wolf, in this area is grounds for removing ESA protection (delisting) from the gray wolf across its geographic range. In contrast, the red wolf from the southeastern United States was one of the first species pro- tected under the ESA and was protected despite admixture with coyotes. We use whole-genome sequence data to demonstrate a lack of unique ancestry in eastern and red wolves that would not be expected if they represented long divergent North American lineages.
    [Show full text]
  • Gray Wolf Populations in the Conterminous U.S
    Gray Wolf Populations in the Conterminous U.S. Wolves are apex predators on top of the food chain with no natural predators of their own. They play a critical role in maintaining the balance and structure of an ecological community. North American wolf numbers plummeted in the 1800’s and early 1900’s due to decreased availability of prey, habitat loss and in- creased extermination efforts to reduce predation on livestock and game animals. Gray wolves (Canis lupus) were listed as endan- gered under the Endangered Species Act (ESA) in 1974. Although wolves today occupy only a fraction of their historic range, conser- vation efforts have helped some populations to meet recovery goals. The U.S. Fish and Wildlife Service (FWS) proposed Western Great Lakes gray wolves were delisted in removing protections for gray wolves throughout the U.S. and 2011 but will be monitored for five years to ensure Mexico in 2013 – a final decision is pending. recovery is sustained (Credit: USFWS). Western Great Lakes The FWS published a final rule at the Human-Wolf Conflict Population end of 2011 to delist wolves in Min- nesota, Wisconsin, Michigan, and Gray wolves of the Western Great Human-wolf conflicts continue Lakes region are mainly found portions of adjoining states. to occur as both populations throughout northern Minnesota and expand, particularly between Wisconsin, Michigan’s Upper Penin- sula, and Ontario.1 In the 1800s and wolves and livestock farmers. early 1900s, unregulated hunting, Social constraints must be government bounties, and diminished carefully considered when de- prey availability nearly eliminated the wolves in the Great Lakes veloping management plans for 2, 3, 4 any wolf population, including region.
    [Show full text]
  • Evaluation of the State of Nature Conservation in Spain October 2008
    Evaluation of the state of nature conservation in Spain October 2008 Report of Sumario 3 Introduction 5 Regulatory and administrative management framework 9 Protection of species 13 Protection of natural sites 19 New threats 23 Conclusions and proposals Área de Conservación de la Naturaleza Ecologistas en Acción Marqués de Leganés, 12 - 28004 Madrid Phone: +34 915312389, Fax: +34 915312611 [email protected] www.ecologistasenaccion.org Translated by Germaine Spoerri, Barbara Sweeney, José H. Wilson, Teresa Dell and Adrián Artacho, from Red de Traductoras/es en Acción Introduction pain is known and appreciated worldwide for its natural abundance. Its favourable biogeographical position, variety of climate and orography, extensive coastline and significant Sgroups of islands confer Spain with extraordinary natural conditions. The great diversity of ecosystems, natural areas and wild species native to Spain make it the country with the greatest biodiversity in Europe and a point of reference on the issue of nature conservation. Figures released by the Spanish Ministry of the Environment are revelatory in this regard. The total estimated number of taxons in Spain exceeds 100.000. It is the country with the highest number of endangered vascular plants in the European Community and 26% of its vertebrates are included in the “endangered”, “vulnerable” or “rare” categories, according to classification of the International Union for Conservation of Nature (IUCN). A clear example of the importance of biodiversity in Spain is the identification of more than 121 types of habitats, which represent more than 65% of habitat types listed in the European Directive 92/34 and more than 50% of habitats considered priority by the Council of Europe.
    [Show full text]
  • The Trust Welcomes Three New Residents…
    WolfThe UK Wolf Conservation Trust PrintIssue 43 Summer 2011 The Trust welcomes three new residents… …but says goodbye to Latea • Bulgaria project update • Jim McNeill returns to Ellesmere Island • Canis lupus soupus: the classification of wolves ■ NEWS ■ EVENTS ■ MEDIA AND ARTS ■ REVIEWS Wolf Print Editor Vicky Allison-Hughes Tel: 0118 971 3330 Email: [email protected] Assistant Editor Julia Bohanna Editorial Team Angela Barrow, Lynn Kent Tsa Palmer, Denise Taylor Editor's Published by The UK Wolf Conservation Trust Butlers Farm, Beenham, Reading, RG7 5NT Tel: 0118 971 3330 Fax: 0118 971 0522 Letter Email: [email protected] Patrons Martin ‘Wolfie’ Adams elcome to the summer edition of Wolf Print. We've had a busy David Clement-Davies spring at the Trust with many changes, some of which are Cornelia 'Neil' Hutt physical, such as additional fencing and restricted areas ready Erich Klinghammer W Desmond Morris to quarantine the expected Arctic wolf cubs. The pole barn is finally Marco Musiani finished and now just needs the displays installing. This will happen once Michelle Paver our newest arrivals – Tala, Tundra and Nuka – have moved out; read on The UK Wolf Conservation Trust Directors in the director's letter to find out more about them. Nigel Bulmer Anne Carter I've had the privilege of representing the Trust at two different events Charles Hicks Sue Hull over the last few months, Clive Readings (the Trust’s wolf keeper) and I Tsa Palmer attended the ABWAK (Association of British Wild Animal Keepers) conference in March at Port Lympne Wildlife Park (see page 6 for further Specialist Advisors Alistair Bath details).
    [Show full text]
  • How Many Wolves Are There Currently in Italy?
    Mamm Res DOI 10.1007/s13364-015-0247-8 ORIGINAL PAPER One, no one, or one hundred thousand: how many wolves are there currently in Italy? Marco Galaverni1 & Romolo Caniglia 1 & Elena Fabbri1 & Pietro Milanesi1 & Ettore Randi1,2 Received: 4 June 2015 /Accepted: 1 September 2015 # Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2015 Abstract Large carnivores in Italy and other European coun- trend of the population for each of the two management units: tries are protected by law to ensure their long-term conserva- Alps and Apennines. Results showed the occurrence of ap- tion. Estimates of abundance and demographic trends of their proximately 321 wolf packs in Italy, corresponding to 1269– populations are crucial for implementing effective conserva- 1800 wolves, possibly still underestimated. The Apennine tion and management strategies. However, it is challenging to sub-population seems to be almost the double in size (with obtain basic demographic parameters for elusive species such ca. 1212–1711 wolves in the period 2009–2013) compared to as the wolf (Canis lupus). Monitoring wolf populations by previous estimates (600–800 wolves between 2006 and 2011). standard field methods or non-invasive genetic approaches The Alpine sub-population, despite its ongoing eastwards ex- requires huge human efforts and may be exceedingly expen- pansion, appears rather stable (with 57–89 wolves). Overall, sive on a nation-wide scale. Aiming to obtain a first approxi- the current wolf population size and trends seem favorable, mate estimate of wolf distribution and abundance in Italy, we although the species is still locally threatened by widespread developed a systematic review procedure to analyze published poaching and accidents.
    [Show full text]
  • Standards for the Monitoring of the Central European Wolf Population in Germany and Poland
    Ilka Reinhardt, Gesa Kluth, Sabina Nowak and Robert W. Mysłajek Standards for the monitoring of the Central European wolf population in Germany and Poland BfN-Skripten 398 2015 Standards for the monitoring of the Central European wolf population in Germany and Poland Ilka Reinhardt Gesa Kluth Sabina Nowak Robert W. Mysłajek Cover picture: S. Koerner Graphic: M. Markowski Authors’ addresses: Ilka Reinhardt LUPUS, German Institute for Wolf Monitoring and Research Gesa Kluth Dorfstr. 20, 02979 Spreewitz, Germany Sabina Nowak Association for Nature “Wolf” Twadorzerczka 229, 34-324 Lipowa, Poland Robert Myslajek Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw Project Management: Harald Martens Federal Agency for Nature Conservation (BfN), Unit II 1.1 “Wildlife Conservation” The present paper is the final report under the contract „Development of joint monitoring standards for wolves in Germany and Poland“, financed by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear safety (BMUB). Client: German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB). Contract period: 01.03.2013 - 31.10.2013 This publication is included in the literature database “DNL-online” (www.dnl-online.de). BfN-Skripten are not available in book trade. A pdf version can be downloaded from the internet at: http://www.bfn.de/0502_skripten.html. Publisher: Bundesamt für Naturschutz (BfN) Federal Agency for Nature Conservation Konstantinstrasse 110 53179 Bonn, Germany URL: http://www.bfn.de The publisher takes no guarantee for correctness, details and completeness of statements and views in this report as well as no guarantee for respecting private rights of third parties.
    [Show full text]
  • Is the Red Wolf a Listable Unit Under the US Endangered Species Act?
    Journal of Heredity, 2018, 585–597 doi:10.1093/jhered/esy020 Original Article Advance Access publication 8 June 2018 Perspective Is the Red Wolf a Listable Unit Under the US Endangered Species Act? Downloaded from https://academic.oup.com/jhered/article-abstract/109/5/585/5034846 by guest on 22 January 2019 Robin S. Waples, Roland Kays, Richard J. Fredrickson, Krishna Pacifici, and L. Scott Mills From the NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA (Waples); the Department of Forestry & Environmental Resources, North Carolina State University, Raleigh, NC (Kays and Pacifici); the North Carolina Museum of Natural Sciences, Raleigh, NC (Kays); Missoula, MT (Fredrickson); and Wildlife Biology Program and the Office of Research and Creative Scholarship, University of Montana, Missoula, MT (Mills). Address correspondence to L. Scott Mills at the address above, or e-mail: [email protected]. Received October 25, 2017; First decision January 11, 2018; Accepted May 8, 2018. Corresponding Editor: Fred Allendorf Abstract Defining units that can be afforded legal protection is a crucial, albeit challenging, step in conservation planning. As we illustrate with a case study of the red wolf (Canis rufus) from the southeastern United States, this step is especially complex when the evolutionary history of the focal taxon is uncertain. The US Endangered Species Act (ESA) allows listing of species, subspecies, or Distinct Population Segments (DPSs) of vertebrates. Red wolves were listed as an endangered species in 1973, and their status remains precarious. However, some recent genetic studies suggest that red wolves are part of a small wolf species (C. lycaon) specialized for heavily forested habitats of eastern North America, whereas other authors suggest that red wolves arose, perhaps within the last ~400 years, through hybridization between gray wolves (C.
    [Show full text]
  • The Carpathian Mountains: a Refuge for Wildlife and a “Paradise” for the People of Slovakia by Ted Bailey
    Refuge Notebook • Vol. 7, No. 30 • August 5, 2005 The Carpathian Mountains: A refuge for wildlife and a “paradise” for the people of Slovakia by Ted Bailey Although the fireweed was in bloom and brown half the size of state of Kentucky. It is also a relatively bears, wolves, lynx roamed the surrounding forests; new country having gained its most recent indepen- we were not hiking on the Kenai Peninsula or even in dence a mere twelve years ago after the collapse of Alaska. Despite the similarities we were thousands of the Soviet Union. And Slovakia joined the European miles away in Central Europe’s Carpathian Mountains Union in 2004 only a year ago. The huge, stark, tall and in eastern Slovakia. My wife, daughter and I had trav- gray housing complexes built in the country’s largest eled here in July to find four little villages where my cities of Bratislava and Kosice during the communist grandparents lived over a hundred years ago before era contrasted with the beautifully restored old city they emigrated at a young age to America in search centers where Gothic cathedrals and old palaces are of a better life. We eventually found the villages as attractions for visitors. we traveled by car throughout the eastern regions of One day we hiked a trail into the Slovensky Raj, Slovakia known as Spis and Zemplin. Spis is a moun- one of nine national parks and fourteen protected na- tainous region that borders the southern boundary of ture territories in Slovakia. The park was the first pro- Poland.
    [Show full text]
  • The Trophic Ecology of Wolves and Their Predatory Role in Ungulate Communities of Forest Ecosystems in Europe
    Acta Theriologica 40 (4): 335-386,1095, REVIEW PL ISSN 0001-7051 The trophic ecology of wolves and their predatory role in ungulate communities of forest ecosystems in Europe Henryk OKARMA Okarma H. 1995. The trophic ecology of wolves and their predatory role in ungulate communities of forest ecosystems in Europe. Acta Theriologica 40: 335-386. Predation by wolves Canis lupus Linnaeus, 1758 in ungulate communities in Europe, with special reference to the multi-species system of Białowieża Primeval Forest (Poland/Belarus), was assessed on the basis results of original research and literature. In historical times (post-glacial period), the geographical range of the wolf and most ungulate species in Europe decreased considerably. Community richness of ungulates and potential prey for wolves, decreased over most of the continent from 5-6 species to 2-3 species. The wolf is typically an opportunistic predator with a highly diverse diet; however, cervids are its preferred prey. Red deer Ceruus elaphus are positively selected from ungulate communities in all localities, moose Alces alces are the major prey only where middle-sized species are scarce. Roe deer Capreolus capreolus are locally preyed on intensively, especially where they have high density, co-exist mainly with moose or wild boar Sus scrofa, and red deer is scarce or absent. Wild boar are generally avoided, except in a few locations; and European bison Bison bonasus are not preyed upon by wolves. Wolf predation contributes substantially to the total natural mortality of ungulates in Europe: 42.5% for red deer, 34.5% for moose, 25.7% for roe der, and only 16% for wild boar.
    [Show full text]
  • Iberian Wolf and Tourism in the “Emptied Rural Spain”
    TERRA. Revista de Desarrollo Local e-ISSN: 2386-9968 Número 6 (2020), 179-203 DOI 10.7203/terra.6.16822 IIDL – Instituto Interuniversitario de Desarrollo Local Iberian Wolf and tourism in the “Emptied Rural Spain” Pablo Lora Bravo Estudiante de Máster en Dirección y Planificación del Turismo. Universidad de Sevilla (Sevilla, España) [email protected] Arsenio Villar Lama Prof. Contratado Dr. Dpto. De Geografía Física y Análisis Geográfico Regional. Universidad de Sevilla (Sevilla, España) [email protected] https://orcid.org/0000-0002-3840-4399 Esta obra se distribuye con la licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional ARTICLE SECTION Iberian Wolf and tourism in the “Emptied Rural Spain” Abstract: The present study analyzes the tourist activity of observation of the Iberian wolf in Spain as an alternative to other traditional tourist modalities in rural areas. The own experience within the sector has been crucial to understand its dynamics and develop this work. It studies the upward trend of nature tourism in general and the observation of the Iberian wolf in particular, the modus operandi of the activity is described and its main impacts are exposed. Wolf tourism generally provides benefits for the local population in economic, environmental and socio-cultural terms. Its compatibility with the environment and the intrinsic characteristics of the activity closely linked to a sustainable, fresh and offline tourism turns this sector into an interesting tool to mitigate the demographic, economic and social emptying of some areas of Spain. Key words: Iberian wolf, wildlife tourism, environmental education, local development, territorial intelligence, Spain. Recibido: 12 de marzo de 2020 Devuelto para revisión: 9 de abril de 2020 Aceptado: 22 de abril de 2020 Citation: Lora, P., y Villar, A.
    [Show full text]