Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in the NEWTON

Total Page:16

File Type:pdf, Size:1020Kb

Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in the NEWTON AI Magazine Volume 19 Number 1 (1998) (© AAAI) Articles Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in the NEWTON Larry S. Yaeger, Brandyn J. Webb, and Richard F. Lyon ■ While online handwriting recognition is an area of writing recognition have utilized strong, limit- long-standing and ongoing research, the recent ed language models to maximize accuracy, but emergence of portable, pen-based computers has they proved unacceptable in real-world appli- focused urgent attention on usable, practical solu- cations, generating disturbing and seemingly tions. We discuss a combination and improvement random word substitutions—known colloqui- of classical methods to produce robust recognition ally within Apple and NEWTON as “The Doones- of hand-printed English text for a recognizer ship- bury Effect” because of Gary Trudeau’s satirical ping in new models of Apple Computer’s NEWTON NEWTON MESSAGEPAD and EMATE. Combining an artificial look at first-generation recognition neural network (ANN) as a character classifier with performance. However, the original handwrit- a context-driven search over segmentation and ing-recognition technology in the NEWTON, and word-recognition hypotheses provides an effective the current, much-improved cursive-recogniz- recognition system. Long-standing issues relative er technology, both of which were licensed to training, generalization, segmentation, models from ParaGraph International, Inc., are not the of context, probabilistic formalisms, and so on, subject of this article. need to be resolved, however, to achieve excellent In Apple’s Advanced Technology Group (aka performance. We present a number of recent inno- Apple Research Labs), we pursued a different vations in the application of ANNs as character approach, using bottom-up classification tech- classifiers for word recognition, including integrat- ed multiple representations, normalized output niques based on trainable artificial neural net- error, negative training, stroke warping, frequency works (ANNs) in combination with compre- balancing, error emphasis, and quantized weights. hensive but weakly applied language models. User adaptation and extension to cursive recogni- To focus our work on a subproblem that was tion pose continuing challenges. tractable enough to lead to usable products in a reasonable time, we initially restricted the en-based hand-held computers are heavi- domain to hand printing so that strokes were ly dependent on fast and accurate hand- clearly delineated by pen lifts. By simultane- Pwriting recognition because the pen ously providing accurate character-level recog- serves as the primary means for inputting data nition, dictionaries exhibiting wide coverage to such devices. Some earlier attempts at hand- of the language, and the ability to write entire- Copyright © 1998, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1998 / $2.00 SPRING 1998 73 Articles (x,y) Points and Pen-Lifts Words Tentative Neural Network Search Segmentation Character Classifier Character with Context Segmentation Class Hypotheses Hypotheses Figure 1. A Simplified Block Diagram of Our Hand-Print Recognizer. ly outside these dictionaries, we have pro- System Overview duced a hand-print recognizer that some have called the “first usable” handwriting-recogni- Apple’s print recognizer (APR) consists of three tion system. The ANN character classifier conceptual stages—(1) tentative segmentation, required some innovative training techniques (2) classification, and (3) context-driven search—as indicated in figure 1. The primary to perform its task well. The dictionaries data on which we operate are simple sequences required large word lists, a regular expression of (x,y) coordinate pairs plus pen-up–pen- grammar (to describe special constructs such as down information, thus defining stroke prim- date, time, and telephone numbers), and a itives. The segmentation stage decides which means of combining all these dictionaries into strokes will be combined to produce segments a comprehensive language model. In addition, —the tentative groupings of strokes that will well-balanced prior probabilities had to be be treated as possible characters—and pro- determined for in-dictionary and out-of-dictio- duces a sequence of these segments together nary writing. Together with a maximum-likeli- with legal transitions between them. This hood search engine, these elements form the process builds an implicit graph that is then basis of the so-called “Print Recognizer,” which labeled in the classification stage and exam- was first shipped in NEWTON OS 2.0–based MES- ined for a maximum-likelihood interpretation SAGEPAD 120 units in December 1995 and has in the search stage. The classification stage eval- shipped in all subsequent NEWTON devices. In uates each segment using the ANN classifier the most recent units, since the MESSAGEPAD and produces a vector of output activations 2000, despite retaining its label as a print rec- that are used as letter-class probabilities. The ognizer, it has been extended to handle con- search stage then uses these class probabilities, nected characters (as well as a full Western together with models of lexical and geometric European character set). context, to find the N most likely word or sen- There is ample prior work in combining tence hypotheses. low-level classifiers with dynamic time warp- ing, hidden Markov models, Viterbi algo- Tentative Segmentation rithms, and other search strategies to provide Character segmentation—the process of decid- integrated segmentation and recognition for ing which strokes make up which characters— writing (Tappert, Suen, and Wakahara 1990) is inherently ambiguous. Ultimately, this deci- and speech (Renals et al. 1992). In addition, sion must be made, but short of writing in box- there is a rich background in the use of ANNs es, it is impossible to do so (with any accuracy) as classifiers, including their use as low-level in advance, external to the recognition character classifiers in a higher-level word- process. Hence, the initial segmentation stage recognition system (Bengio et al. 1995). How- in APR produces multiple, tentative groupings ever, these approaches leave a large number of of strokes and defers the final segmentation open-ended questions about how to achieve decisions until the search stage, thus integrat- acceptable (to a real user) levels of perfor- ing these segmentation decisions with the mance. In this article, we survey some of our overall recognition process. experiences in exploring refinements and APR uses a potentially exhaustive, sequen- improvements to these techniques. tial enumeration of stroke combinations to 74 AI MAGAZINE Articles generate a sequence of viable character-seg- mentation hypotheses. These segments are subjected to some obvious constraints (such as Segment Stroke “all strokes must be used” and “no strokes can Forward Reverse Ink Number Segment Count Delay Delay be used twice”) and some less obvious filters (to cull impossible segments for the sake of 1 130 efficiency). The resulting algorithm produces the actual segments that will be processed as 2 241 possible characters, along with the legal transi- 3 342 tions between these segments. The legal transitions are defined by forward 4 120 and reverse delays. The forward delay indicates the next possible segment in the sequence. 5 221 The reverse delay indicates the start of the cur- 6 110 rent batch of segments, all of which share the same leading stroke. Because of the enumera- 7 100 tion scheme, a segment’s reverse delay is the same as its stroke count minus one, unless pre- ceding segments (sharing the same leading stroke) were eliminated by the filters men- Figure 2. Segmentation of Strokes into Tentative Characters, or Segments. tioned previously. These two simple delay parameters (for each segment) suffice to define an implicit graph of all legal segment transi- the data that are given as input to the network. tions. For a transition from segment number i We experimented with a variety of input rep- resentations, including stroke features both to segment number j to be legal, the sum of antialiased (gray scale) and not (binary) and segment i’s forward delay plus segment j’s images both antialiased and not, and with var- reverse delay must be equal to j – i. Figure 2 ious schemes for positioning and scaling the provides an example of some ambiguous ink ink within the image input window. In every and the segments that might be generated case, antialiasing was a significant win. This from its strokes, supporting interpretations of result is consistent with others’ findings: ANNs dog, clog, cbg, or even %g. perform better when presented with smoothly varying, distributed input than they do when Character Classification presented with binary, localized input. Almost the simplest image representation possible, a The output of the segmentation stage is a non–aspect-ratio-preserving, expand-to-fill- stream of segments that are then passed to an the-window image (limited only by a maxi- ANN for classification as characters. Except for mum scale factor to keep from blowing dots up the architecture and training specifics detailed to the full window size), together with either a later, a fairly standard multilayer perceptron single unit or a thermometer code (some num- trained with error backpropagation provides ber of units turned on in sequence to represent the ANN character classifier at the heart of larger values) for the aspect ratio,
Recommended publications
  • Transfer Learning Using CNN for Handwritten Devanagari Character
    Accepted for publication in IEEE International Conference on Advances in Information Technology (ICAIT), ICAIT - 2019, Please refer IEEE Explore for final version Transfer Learning using CNN for Handwritten Devanagari Character Recognition Nagender Aneja∗ and Sandhya Aneja ∗ ∗Universiti Brunei Darussalam Brunei Darussalam fnagender.aneja, sandhya.aneja [email protected] Abstract—This paper presents an analysis of pre-trained models to recognize handwritten Devanagari alphabets using transfer learning for Deep Convolution Neural Network (DCNN). This research implements AlexNet, DenseNet, Vgg, and Inception ConvNet as a fixed feature extractor. We implemented 15 epochs for each of AlexNet, DenseNet 121, DenseNet 201, Vgg 11, Vgg 16, Vgg 19, and Inception V3. Results show that Inception V3 performs better in terms of accuracy achieving 99% accuracy with average epoch time 16.3 minutes while AlexNet performs fastest with 2.2 minutes per epoch and achieving 98% accuracy. Index Terms—Deep Learning, CNN, Transfer Learning, Pre-trained, handwritten, recognition, Devanagari I. INTRODUCTION Handwriting identification is one of the challenging research domains in computer vision. Handwriting character identification systems are useful for bank signatures, postal code recognition, and bank cheques, etc. Many researchers working in this area tend to use the same database and compare different techniques that either perform better concerning the accuracy, time, complexity, etc. However, the handwritten recognition in non-English is difficult due to complex shapes. Fig. 1: Devanagari Alphabets Many Indian Languages like Hindi, Sanskrit, Nepali, Marathi, Sindhi, and Konkani uses Devanagari script. The alphabets of Devanagari Handwritten Character Dataset (DHCD) [1] is shown in Figure 1. Recognition of Devanagari is particularly challenging due to many groups of similar characters.
    [Show full text]
  • A Novel Approach to On-Line Handwriting Recognition Based on Bidirectional Long Short-Term Memory Networks
    A Novel Approach to On-Line Handwriting Recognition Based on Bidirectional Long Short-Term Memory Networks Marcus Liwicki1 Alex Graves2 Horst Bunke1 Jurgen¨ Schmidhuber2,3 1 Inst. of Computer Science and Applied Mathematics, University of Bern, Neubruckstr.¨ 10, 3012 Bern, Switzerland 2 IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland 3 TU Munich, Boltzmannstr. 3, 85748 Garching, Munich, Germany Abstract underlying this paper we aim at developing a handwriting recognition system to be used in a smart meeting room sce- In this paper we introduce a new connectionist approach nario [17], in our case the smart meeting room developed in to on-line handwriting recognition and address in partic- the IM2 project [11]. Smart meeting rooms usually have ular the problem of recognizing handwritten whiteboard multiple acquisition devices, such as microphones, cam- notes. The approach uses a bidirectional recurrent neu- eras, electronic tablets, and a whiteboard. In order to allow ral network with long short-term memory blocks. We use for indexing and browsing [18], automatic transcription of a recently introduced objective function, known as Connec- the recorded data is needed. tionist Temporal Classification (CTC), that directly trains In this paper, we introduce a novel approach to on-line the network to label unsegmented sequence data. Our new handwriting recognition, using a single recurrent neural net- system achieves a word recognition rate of 74.0 %, com- work (RNN) to transcribe the data. The key innovation is a pared with 65.4 % using a previously developed HMM- recently introduced RNN objective function known as Con- based recognition system. nectionist Temporal Classification (CTC) [5].
    [Show full text]
  • Unconstrained Online Handwriting Recognition with Recurrent Neural Networks
    Unconstrained Online Handwriting Recognition with Recurrent Neural Networks Alex Graves Santiago Fernandez´ Marcus Liwicki TUM, Germany IDSIA, Switzerland University of Bern, Switzerland [email protected] [email protected] [email protected] Horst Bunke Jurgen¨ Schmidhuber University of Bern, Switzerland IDSIA, Switzerland and TUM, Germany [email protected] [email protected] Abstract In online handwriting recognition the trajectory of the pen is recorded during writ- ing. Although the trajectory provides a compact and complete representation of the written output, it is hard to transcribe directly, because each letter is spread over many pen locations. Most recognition systems therefore employ sophisti- cated preprocessing techniques to put the inputs into a more localised form. How- ever these techniques require considerable human effort, and are specific to par- ticular languages and alphabets. This paper describes a system capable of directly transcribing raw online handwriting data. The system consists of an advanced re- current neural network with an output layer designed for sequence labelling, com- bined with a probabilistic language model. In experiments on an unconstrained online database, we record excellent results using either raw or preprocessed data, well outperforming a state-of-the-art HMM based system in both cases. 1 Introduction Handwriting recognition is traditionally divided into offline and online recognition. Offline recogni- tion is performed on images of handwritten text. In online handwriting the location of the pen-tip on a surface is recorded at regular intervals, and the task is to map from the sequence of pen positions to the sequence of words. At first sight, it would seem straightforward to label raw online inputs directly.
    [Show full text]
  • Start, Follow, Read: End-To-End Full Page Handwriting Recognition
    Start, Follow, Read: End-to-End Full-Page Handwriting Recognition Curtis Wigington1,2, Chris Tensmeyer1,2, Brian Davis1, William Barrett1, Brian Price2, and Scott Cohen2 1 Brigham Young University 2 Adobe Research [email protected] code at: https://github.com/cwig/start_follow_read Abstract. Despite decades of research, offline handwriting recognition (HWR) of degraded historical documents remains a challenging problem, which if solved could greatly improve the searchability of online cultural heritage archives. HWR models are often limited by the accuracy of the preceding steps of text detection and segmentation. Motivated by this, we present a deep learning model that jointly learns text detection, segmentation, and recognition using mostly images without detection or segmentation annotations. Our Start, Follow, Read (SFR) model is composed of a Region Proposal Network to find the start position of text lines, a novel line follower network that incrementally follows and preprocesses lines of (perhaps curved) text into dewarped images suitable for recognition by a CNN-LSTM network. SFR exceeds the performance of the winner of the ICDAR2017 handwriting recognition competition, even when not using the provided competition region annotations. Keywords: Handwriting Recognition, Document Analysis, Historical Document Processing, Text Detection, Text Line Segmentation. 1 Introduction In offline handwriting recognition (HWR), images of handwritten documents are converted into digital text. Though recognition accuracy on modern printed documents has reached acceptable performance for some languages [28], HWR for degraded historical documents remains a challenging problem due to large variations in handwriting appearance and various noise factors. Achieving ac- curate HWR in this domain would help promote and preserve cultural heritage by improving efforts to create publicly available transcriptions of historical doc- uments.
    [Show full text]
  • Contributions to Handwriting Recognition Using Deep Neural Networks and Quantum Computing Bogdan-Ionut Cirstea
    Contributions to handwriting recognition using deep neural networks and quantum computing Bogdan-Ionut Cirstea To cite this version: Bogdan-Ionut Cirstea. Contributions to handwriting recognition using deep neural networks and quantum computing. Artificial Intelligence [cs.AI]. Télécom ParisTech, 2018. English. tel-02412658 HAL Id: tel-02412658 https://hal.archives-ouvertes.fr/tel-02412658 Submitted on 15 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2018-ENST-0059 EDITE - ED 130 Doctorat ParisTech THÈSE pour obtenir le grade de docteur délivré par TELECOM ParisTech Spécialité Signal et Images présentée et soutenue publiquement par Bogdan-Ionu¸tCÎRSTEA le 17 décembre 2018 Contributions à la reconnaissance de l’écriture manuscrite en utilisant des réseaux de neurones profonds et le calcul quantique Directrice de thèse : Laurence LIKFORMAN-SULEM T Jury Thierry PAQUET, Professeur, Université de Rouen Rapporteur H Christian VIARD-GAUDIN, Professeur, Université de Nantes Rapporteur È Nicole VINCENT, Professeur, Université Paris Descartes Examinateur Sandrine COURCINOUS, Expert, Direction Générale de l’Armement (DGA) Examinateur S Laurence LIKFORMAN-SULEM, Maître de conférence, HDR Télécom ParisTech Directrice de thèse E TELECOM ParisTech école de l’Institut Mines-Télécom - membre de ParisTech 46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr Acknowledgments I would like to start by thanking my PhD advisor, Laurence Likforman-Sulem.
    [Show full text]
  • Unsupervised Feature Learning for Writer Identification
    Unsupervised Feature Learning for Writer Identification A Master’s Thesis Submitted to the Faculty of the Escola Tecnica` d’Enginyeria de Telecomunicacio´ de Barcelona Universitat Politecnica` de Catalunya by Advisors: Stefan Fiel Student: Manuel Keglevic Eduard Pallas` Arranz Robert Sablatnig and Josep R. Casas In partial fulfillment of the requirements for the degree of MASTER IN TELECOMMUNICATIONS ENGINEERING Barcelona, July 2018 Unsupervised Feature Learning for Writer Identification Eduard Pallas` Arranz Title of the thesis: Unsupervised feature learning for writer identification Author: Eduard Pallas` Arranz 1 Abstract Our work presents a research on unsupervised feature learning methods for writer identification and retrieval. We want to study the impact of deep learning alter- natives in this field by proposing methodologies which explore different uses of autoencoder networks. Taking a patch extraction algorithm as a starting point, we aim to obtain charac- teristics from patches of handwritten documents in an unsupervised way, mean- ing no label information is used for the task. To prove if the extraction of fea- tures is valid for writer identification, the approaches we propose are evaluated and compared with state-of-the-art methods on the ICDAR2013 and ICDAR2017 datasets for writer identification. Unsupervised Feature Learning for Writer Identification Eduard Pallas` Arranz Dedication: This thesis is dedicated to the loved ones waiting at home, to Giulia, and to all those who have made Vienna an unforgettable experience. 1 Unsupervised Feature Learning for Writer Identification Eduard Pallas` Arranz Acknowledgements First of all, I would like to sincerely thank Josep Ramon Casas for all the support and dedication of all these years, and also during the development of the thesis.
    [Show full text]
  • Fast Multi-Language LSTM-Based Online Handwriting Recognition
    Noname manuscript No. (will be inserted by the editor) Fast Multi-language LSTM-based Online Handwriting Recognition Victor Carbune · Pedro Gonnet · Thomas Deselaers · Henry A. Rowley · Alexander Daryin · Marcos Calvo · Li-Lun Wang · Daniel Keysers · Sandro Feuz · Philippe Gervais Received: Nov. 2018 / Accepted: - Abstract We describe an online handwriting system that is able to support 102 languages using a deep neu- ral network architecture. This new system has com- pletely replaced our previous Segment-and-Decode-based system and reduced the error rate by 20%-40% relative for most languages. Further, we report new state-of- the-art results on IAM-OnDB for both the open and closed dataset setting. The system combines methods from sequence recognition with a new input encoding using Bézier curves. This leads to up to 10x faster recog- nition times compared to our previous system. Through a series of experiments we determine the optimal con- figuration of our models and report the results of our Fig. 1 Example inputs for online handwriting recognition in dif- setup on a number of additional public datasets. ferent languages. See text for details. 1 Introduction alphabetic language, groups letters in syllables leading In this paper we discuss online handwriting recognition: to a large “alphabet” of syllables. Hindi writing often Given a user input in the form of an ink, i.e. a list of contains a connecting ‘Shirorekha’ line and characters touch or pen strokes, output the textual interpretation can form larger structures (grapheme clusters) which of this input. A stroke is a sequence of points (x; y; t) influence the written shape of the components.
    [Show full text]
  • When Are Tree Structures Necessary for Deep Learning of Representations?
    When Are Tree Structures Necessary for Deep Learning of Representations? Jiwei Li1, Minh-Thang Luong1, Dan Jurafsky1 and Eduard Hovy2 1Computer Science Department, Stanford University, Stanford, CA 94305 2Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213 jiweil,lmthang,[email protected] [email protected] Abstract For tasks where the inputs are larger text units (e.g., phrases, sentences or documents), a compo- Recursive neural models, which use syn- sitional model is first needed to aggregate tokens tactic parse trees to recursively generate into a vector with fixed dimensionality that can be representations bottom-up, are a popular used as a feature for other NLP tasks. Models for architecture. However there have not been achieving this usually fall into two categories: re- rigorous evaluations showing for exactly current models and recursive models: which tasks this syntax-based method is Recurrent models (also referred to as sequence appropriate. In this paper, we benchmark models) deal successfully with time-series data recursive neural models against sequential (Pearlmutter, 1989; Dorffner, 1996) like speech recurrent neural models, enforcing apples- (Robinson et al., 1996; Lippmann, 1989; Graves et to-apples comparison as much as possible. al., 2013) or handwriting recognition (Graves and We investigate 4 tasks: (1) sentiment clas- Schmidhuber, 2009; Graves, 2012). They were ap- sification at the sentence level and phrase plied early on to NLP (Elman, 1990), by modeling level; (2) matching questions to answer- a sentence as tokens processed sequentially and at phrases; (3) discourse parsing; (4) seman- each step combining the current token with pre- tic relation extraction. viously built embeddings.
    [Show full text]
  • A Connectionist Recognizer for On-Line Cursive Handwriting Recognition
    A CONNECTIONIST RECOGNIZER FOR ON-LINE CURSIVE HANDWRITING RECOGNITION Stefan Manke and Ulrich Bodenhausen University of Karlsruhe, Computer Science Department, D-76 128 Karlsruhe, Germany ABSTRACT Neural Network (MS-TU”), an extension of the TU”, coin- bines the high accuracy character recognition capahilities of ;I In this paper we show how the Multi-State Tim Delay Neural TDNN with a non-linear time alignment procedure (Dynamic Network (MS-TDNN), which is already used successfully in Time Warping) [7] for finding an optimal alignment between continuous speech recognition tasks, can be applied both to on- strokes and characters in handwritten continuous words. line single character and cursive (continuous) handwriting recog- The following section describes the basic network architecture nition. The MS-TDNN integrates the high accuracy single char- and training method of the MS-TDNN, followed by a description acter recognition capabilities of a TDNN with a non-linear time of the input features used in this paper (section 3). Section 4 pre- alignment procedure (dynamic time warping algorithm) for hd- sents results both on different writer dependent/writer indepn- ing stroke and character boundaries in isolated, handwritten char- dent, single character recognition task and writer dependent, acters ‘and words. In this approach each character is modelled by cursive handwriting recognition tasks. up to 3 different states and words are represented as a sequence of these characters. We describe the basic MS-TDNN architec- 2. THE MULTI-STATE TIME DELAY NEURAL ture and the input features used in this paper, and present results NETWORK (MS-TDNN) (up to 97.7% word recognition rate) both on writer dependent/ independent, single character recognition tasks and writer depen- The Time Delay Neural Network provides a time-shrft invariant dent, cursive handwriting tasks with varying vocahulary sizes up architecture for high performance on-line single character recog- to 20000 words.
    [Show full text]
  • Candidate Fusion: Integrating Language Modelling Into a Sequence-To-Sequence Handwritten Word Recognition Architecture
    Candidate Fusion: Integrating Language Modelling into a Sequence-to-Sequence Handwritten Word Recognition Architecture Lei Kang∗†, Pau Riba∗, Mauricio Villegasy, Alicia Forn´es∗, Mar¸calRusi~nol∗ ∗Computer Vision Center, Barcelona, Spain flkang, priba, afornes, [email protected] yomni:us, Berlin, Germany flei, [email protected] Abstract Sequence-to-sequence models have recently become very popular for tackling handwritten word recognition problems. However, how to effectively inte- grate an external language model into such recognizer is still a challenging problem. The main challenge faced when training a language model is to deal with the language model corpus which is usually different to the one used for training the handwritten word recognition system. Thus, the bias between both word corpora leads to incorrectness on the transcriptions, pro- viding similar or even worse performances on the recognition task. In this work, we introduce Candidate Fusion, a novel way to integrate an external language model to a sequence-to-sequence architecture. Moreover, it pro- vides suggestions from an external language knowledge, as a new input to the sequence-to-sequence recognizer. Hence, Candidate Fusion provides two improvements. On the one hand, the sequence-to-sequence recognizer has the flexibility not only to combine the information from itself and the lan- arXiv:1912.10308v1 [cs.CV] 21 Dec 2019 guage model, but also to choose the importance of the information provided by the language model. On the other hand, the external language model has the ability to adapt itself to the training corpus and even learn the most commonly errors produced from the recognizer.
    [Show full text]
  • Digit Recognition System Using Back Propagation Neural Network
    International Journal of Computer Science and Communication Vol. 2, No. 1, January-June 2011, pp. 197-205 DIGIT RECOGNITION SYSTEM USING BACK PROPAGATION NEURAL NETWORK Devinder Singh1 and Baljit Singh Khehra2 1Department of Computer Science, Mata Gujri College, Fatehgarh Sahib, INDIA, E-mail: [email protected] 2Department of Computer Science and Engineering, B.B.S.B. Engineering College, Fatehgarh Sahib, INDIA, E-mail: [email protected] ABSTRACT Digits are used in different types of data like vehicle number plate, numeric data, written data, meter reading etc. Digit recognition plays an important role in many user authentication applications in the modern world. In the proposed work, back propagation neural network based digit recognition system has been developed. Such system has four phases: preprocessing, segmentation, feature extraction and classification. When digit image is scanned, quality of image is degraded and some noise is added into this image. So it is necessary to reduce the noise and improve the quality of the digit image for OCR system. For this purpose, image enhancement is necessary. For this, frequency domain based Gausian filter is used to improve the quality and denoise the digit image. The goal of image segmentation is to separate the clear digit print area from the non-digit area. After segmentation, binary digit image is skeleton to reduce the width of digit into just a single line. In proposed system, coordinates bounding box, area, centroid, eccentricity, equiv-diameter features are used by back propagation neural network as a classifier to recognize digits. Experiments have been performed on standard dataset of digits.
    [Show full text]
  • Audio Word2vec: Unsupervised Learning of Audio Segment Representations Using Sequence-To-Sequence Autoencoder
    INTERSPEECH 2016 September 8–12, 2016, San Francisco, USA Audio Word2Vec: Unsupervised Learning of Audio Segment Representations using Sequence-to-sequence Autoencoder Yu-An Chung, Chao-Chung Wu, Chia-Hao Shen, Hung-Yi Lee, Lin-Shan Lee College of Electrical Engineering and Computer Science, National Taiwan University {b01902040, b01902038, r04921047, hungyilee}@ntu.edu.tw, [email protected] Abstract identification [4], and several approaches have been success- fully used in STD [10, 6, 7, 8]. But these vector representa- The vector representations of fixed dimensionality for tions may not be able to precisely describe the sequential pho- words (in text) offered by Word2Vec have been shown to be netic structures of the audio segments as we wish to have in this very useful in many application scenarios, in particular due paper, and these approaches were developed primarily in more to the semantic information they carry. This paper proposes a heuristic ways, rather than learned from data. Deep learning has parallel version, the Audio Word2Vec. It offers the vector rep- also been used for this purpose [12, 13]. By learning Recurrent resentations of fixed dimensionality for variable-length audio Neural Network (RNN) with an audio segment as the input and segments. These vector representations are shown to describe the corresponding word as the target, the outputs of the hidden the sequential phonetic structures of the audio segments to a layer at the last few time steps can be taken as the representation good degree, with very attractive real world applications such as of the input segment [13]. However, this approach is supervised query-by-example Spoken Term Detection (STD).
    [Show full text]