Geometric Complexity Theory and Orbit Closures of Homogeneous Forms

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Complexity Theory and Orbit Closures of Homogeneous Forms Geometric Complexity Theory and Orbit Closures of Homogeneous Forms vorgelegt von Diplom-Mathematiker Jesko Hüttenhain aus Siegen Von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss Vorsitzender: Prof. Dr. Jörg Liesen Gutachter : Prof. Dr. Peter Bürgisser Gutachter : Prof. Dr. Giorgio Ottaviani Tag der wissenschaftlichen Aussprache: 3. Juli 2017 Berlin 2017 Niemals aufgeben, niemals kapitulieren. — Peter Quincy Taggart Deutsche Einleitung Das P-NP-Problem gehört zu den fundamentalsten und faszinierensten Problemen der heutigen Mathematik. Es hat umfangreiche Bedeutung für praktische Anwendungen und ist gleichermaßen eine grundsätzliche Frage über die Natur der Mathematik an sich. Wäre unerwartet P = NP, so könnte etwa ein Computer effzient bestimmen, ob eine mathematische Aussage wahr oder falsch ist. Seit die Frage 1971 von Cook [Coo71] gestellt wurde, scheinen wir einer Antwort jedoch nicht nennenswert näher gekommen zu sein. Der größte Fortschritt ist das ernüchternde Resultat von Razborov und Rudich [RR97], dass es keine „natürlichen“ Beweise für P 6= NP geben kann, siehe deren Arbeit für eine Defnition und Details. Peter Bürgisser hat gezeigt [Bü00], dass unter der verallgemeinerten Riemann- Hypothese die nicht-uniforme Version von P 6= NP eine Vermutung von Valiant im- pliziert, welche weithin als ein algebraisches Analogon betrachtet wird. Diese Vermu- tung ist ein ebenso offenes Problem wie das ursprüngliche, doch es gibt die Hoffnung, dass die zusätzliche algebraische Struktur mehr Ansatzpunkte liefert. Wir geben einen kurzen Überblick über die zugrundeliegende Theorie in Kapitel1: Die besagte Ver- mutung von Valiant (Vermutung 1.4.5) ist die zentrale Motivation für die hier vorge- stellten Forschungsergebnisse. In Kapitel2 verschärfen wir ein Resultat von Valiant indem wir zeigen, dass sich jedes ganzzahlige Polynom stets als Determinante einer Matrix schreiben lässt, de- ren Einträge nur Variablen, Nullen und Einsen sind. The Größe der kleinsten solchen Matrix ist ein sinnvolles Komplexitätsmaß, welches sich rein kombinatorisch untersu- chen lässt. Als Anwendung beweisen wir untere Schranken in kleinen Fällen durch Computerberechnung. Von hier an widmen wir uns einem Ansatz zum Beweis von Valiant’s Vermutung, welcher 2001 von Mulmuley und Sohoni vorgestellt wurde und den Titel „Geometric Complexity Theory“ trägt, oder auch kurz GCT. Valiants Ergebnisse werden hier in Aussagen der Algebraischen Geometrie und Darstellungstheorie übersetzt, um da- durch die Probleme vorheriger Ansätze zu vermeiden [For09]. Eine Zusammenfas- sung dieses interessanten Übersetzungsprozesses ist in Kapitel3 zu fnden. iii Um Komplexitätsklassen voneinander zu trennen, muss bewiesen werden, dass kein effzienter Algorithmus für ein mutmaßlich schweres Problem existiert. GCT lie- fert ein Kriterium, wonach die Existenz gewisser ganzzahliger Vektoren schon diese Trennung impliziert. Solche Vektoren nennen wir auch Obstruktionen. Die Hoffnung von Mulmuley und Sohoni war, dass man sich für den Beweis von Valiants Vermu- tung auf eine bestimmte Art von Obstruktionen beschränken kann, doch wir konn- ten bereits 2015 bemerken, dass es starke Anzeichen dagegen gibt. Wir stellen diese Ergebnisse in Kapitel4 vor. Erst kürzlich haben Bürgisser, Ikenmeyer und Panova schlussendlich gezeigt, dass diese sogenannten occurrence obstructions nicht ausrei- chen, um Valiants Vermutung zu beweisen. Im zweiten Teil der Arbeit beschäftigen wir uns näher und in größerer Allgemein- heit mit einem der zentralen Konzepte von GCT: Wir betrachten die Wirkung der GLn auf dem Raum der homogenen, n-variaten Polynome vom Grad d durch Verkettung von rechts und beobachten, dass alle Elemente einer Bahn im Wesentlichen die gleiche Berechnungskomplexität haben. Man ordnet einem Polynom P das kleinste d zu, so dass P im Bahnabschluss des d × d – Determinantenpolynoms liegt. Diese Kennzahl ist dann äquivalent zu Valiants ursprünglichem Komplexitätsmaß für Polynome, so- fern auch Approximationen zugelassen werden. Die Geometrie des Bahnabschlusses der Determinante ist wenig verstanden, sogar für kleine Werte von d. Wir können al- lerdings die im Rand auftretenden Komponenten für d = 3 vollständig klassifzieren. Die benötigten algebraischen und geometrischen Werkzeuge werden im einfüh- renden Kapitel5 vorgestellt. Bahnabschlüsse von homogenen Formen sind stets al- gebraische Varietäten mit der oben genannten GLn-Wirkung und werden klassisch in der geometrischen Invariantentheorie studiert. Neben der Determinante beschäfti- gen wir uns in den darauffolgenden Kapiteln auch mit den Bahnabschlüssen anderer homogener Formen. In Kapitel6 behandeln wir das allgemeine Monom x1 ··· xd, dessen Relevanz für GCT daher stammt, dass es auch als Einschränkung des Determinantenpolynoms auf Diagonalmatrizen verstanden werden kann. Das Studium seines Bahnabschlusses ist beispielsweise das zentrale Hilfsmittel in Kapitel4. Wir bemerken in diesem Kapitel, dass das Monom die seltene Eigenschaft hat, dass jedes Polynom in seinem Bahnab- schluss lediglich das Ergebnis einer Variablensubstitution ist. Eine Klassifkation aller Polynome mit dieser Eigenschaft bleibt offen, obwohl wir einige Fragen im Hinblick darauf beantworten können. Wir stellen für die beiden abschließenden Kapitel noch weitere Techniken in Kapi- tel7 vor. Maßgeblich ist eine obere Schranke für die Anzahl irreduzibler Komponen- ten des Randes eines Bahnabschlusses. Die erste Anwendung dieser Aussage liefert eine Beschreibung des Randes für det3 in Kapitel8. Wir bestimmen hier auch den Stabilisator der Determinante einer allgemeinen, spurlosen Matrix und können so iv schlussfolgern, dass der Bahnabschluss dieses Polynoms stets eine Komponente im Rand des Bahnabschlusses der Determinante ist. Das letzte Kapitel enthält bisher unveröffentlichte Ergebnisse über das allgemeine Binom x1 ··· xd + y1 ··· yd. Wie auch das Monom ist das Binom im Bahnabschluss von detd enthalten. Ein solides Verständnis dieser Familie homogener Formen sollte daher Voraussetzung dafür sein, den Bahnabschluss des Determinantenpolynoms im Allgemeinen zu studieren. Die hier aufkommenden geometrischen Fragen sind bereits deutlich komplexer als im Fall des Monoms: Wir können zwei Komponenten des Randes im Detail beschreiben, müssen jedoch eine subtile Frage offen lassen. Sofern diese sich positiv beantworten lässt, erhalten wir jedoch so bereits eine vollständige Beschreibung des Randes. v Contents Acknowledgements1 Introduction3 I Geometric Complexity Theory7 1 Algebraic Complexity Theory9 1.1 Arithmetic Circuits...............................9 1.2 The Classes VP and P............................. 12 1.3 Reduction and Completeness......................... 13 1.4 The Classes VNP and NP........................... 14 1.5 Determinant Versus Permanent........................ 16 2 Binary Determinantal Complexity 21 2.1 The Cost of Computing Integers....................... 22 2.2 Lower Bounds.................................. 26 2.3 Uniqueness of Grenet’s construction in the 7 × 7 case........... 29 2.4 Algebraic Complexity Classes......................... 30 2.5 Graph Constructions for Polynomials.................... 31 3 Geometric Complexity Theory 35 3.1 Orbit and Orbit Closure as Complexity Measure.............. 35 3.2 Border Complexity............................... 37 3.3 The Flip via Obstructions........................... 39 3.4 Orbit and Orbit Closure............................ 41 4 Occurrence Obstructions 45 4.1 Weight Semigroups............................... 45 4.2 Saturations of Weight Semigroups of Varieties............... 47 4.3 Proof of Main Results............................. 49 vii II Orbit Closures of Homogeneous Forms 55 5 Preliminaries 57 5.1 Conciseness................................... 58 5.2 Grading of Coordinate Rings and Projectivization............. 60 5.3 Rational Orbit Map............................... 61 6 Closed Forms 65 6.1 A Suffcient Criterion.............................. 65 6.2 Normalizations of Orbit Closures....................... 67 6.3 Proof of Main Theorem............................ 71 7 Techniques for Boundary Classifcation 77 7.1 Approximating Degenerations........................ 77 7.2 The Lie Algebra Action............................. 80 7.3 Resolving the Rational Orbit Map...................... 82 8 The 3 by 3 Determinant Polynomial 89 8.1 Construction of Two Components of the Boundary............ 90 8.2 There Are Only Two Components...................... 91 8.3 The Traceless Determinant........................... 96 8.4 The Boundary of the 4 × 4 Determinant................... 102 9 The Binomial 107 9.1 Stabilizer and Maximal Linear Subspaces.................. 108 9.2 The First Boundary Component....................... 110 9.3 The Second Boundary Component...................... 116 9.4 The Indeterminacy Locus........................... 118 III Appendix 123 A Algebraic Groups and Representation Theory 125 A.1 Algebraic Semigroups and Groups...................... 125 A.2 Representation Theory of Reductive Groups................ 130 A.3 Polynomial Representations.......................... 139 Bibliography 141 List of Symbols 149 Index 153 viii Acknowledgements I had the immense privilege to work in the most comfortable scientifc environment imaginable, having both the freedom to pursue my interests and the support of my advisor, Peter Bürgisser. I want to
Recommended publications
  • Fractal Growth on the Surface of a Planet and in Orbit Around It
    Wilfrid Laurier University Scholars Commons @ Laurier Physics and Computer Science Faculty Publications Physics and Computer Science 10-2014 Fractal Growth on the Surface of a Planet and in Orbit around It Ioannis Haranas Wilfrid Laurier University, [email protected] Ioannis Gkigkitzis East Carolina University, [email protected] Athanasios Alexiou Ionian University Follow this and additional works at: https://scholars.wlu.ca/phys_faculty Part of the Mathematics Commons, and the Physics Commons Recommended Citation Haranas, I., Gkigkitzis, I., Alexiou, A. Fractal Growth on the Surface of a Planet and in Orbit around it. Microgravity Sci. Technol. (2014) 26:313–325. DOI: 10.1007/s12217-014-9397-6 This Article is brought to you for free and open access by the Physics and Computer Science at Scholars Commons @ Laurier. It has been accepted for inclusion in Physics and Computer Science Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. 1 Fractal Growth on the Surface of a Planet and in Orbit around it 1Ioannis Haranas, 2Ioannis Gkigkitzis, 3Athanasios Alexiou 1Dept. of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada 2Departments of Mathematics and Biomedical Physics, East Carolina University, 124 Austin Building, East Fifth Street, Greenville, NC 27858-4353, USA 3Department of Informatics, Ionian University, Plateia Tsirigoti 7, Corfu, 49100, Greece Abstract: Fractals are defined as geometric shapes that exhibit symmetry of scale. This simply implies that fractal is a shape that it would still look the same even if somebody could zoom in on one of its parts an infinite number of times.
    [Show full text]
  • Linear Algebra: Example Sheet 2 of 4
    Michaelmas Term 2014 SJW Linear Algebra: Example Sheet 2 of 4 1. (Another proof of the row rank column rank equality.) Let A be an m × n matrix of (column) rank r. Show that r is the least integer for which A factorises as A = BC with B 2 Matm;r(F) and C 2 Matr;n(F). Using the fact that (BC)T = CT BT , deduce that the (column) rank of AT equals r. 2. Write down the three types of elementary matrices and find their inverses. Show that an n × n matrix A is invertible if and only if it can be written as a product of elementary matrices. Use this method to find the inverse of 0 1 −1 0 1 @ 0 0 1 A : 0 3 −1 3. Let A and B be n × n matrices over a field F . Show that the 2n × 2n matrix IB IB C = can be transformed into D = −A 0 0 AB by elementary row operations (which you should specify). By considering the determinants of C and D, obtain another proof that det AB = det A det B. 4. (i) Let V be a non-trivial real vector space of finite dimension. Show that there are no endomorphisms α; β of V with αβ − βα = idV . (ii) Let V be the space of infinitely differentiable functions R ! R. Find endomorphisms α; β of V which do satisfy αβ − βα = idV . 5. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices: 0 1 1 0 1 0 1 1 −1 1 0 1 1 −1 1 @ 0 3 −2 A ; @ 0 3 −2 A ; @ −1 3 −1 A : 0 1 0 0 1 0 −1 1 1 The second and third matrices commute; find a basis with respect to which they are both diagonal.
    [Show full text]
  • The Top Eight Misconceptions About NP- Hardness
    The top eight misconceptions about NP- hardness Zoltán Ádám Mann Budapest University of Technology and Economics Department of Computer Science and Information Theory Budapest, Hungary Abstract: The notions of NP-completeness and NP-hardness are used frequently in the computer science literature, but unfortunately, often in a wrong way. The aim of this paper is to show the most wide-spread misconceptions, why they are wrong, and why we should care. Keywords: F.1.3 Complexity Measures and Classes; F.2 Analysis of Algorithms and Problem Complexity; G.2.1.a Combinatorial algorithms; I.1.2.c Analysis of algorithms Published in IEEE Computer, volume 50, issue 5, pages 72-79, May 2017 1. Introduction Recently, I have been working on a survey about algorithmic approaches to virtual machine allocation in cloud data centers [11]. While doing so, I was shocked (again) to see how often the notions of NP-completeness or NP-hardness are used in a faulty, inadequate, or imprecise way in the literature. Here is an example from an – otherwise excellent – paper that appeared recently in IEEE Transactions on Computers, one of the most prestigious journals of the field: “Since the problem is NP-hard, no polynomial time optimal algorithm exists.” This claim, if it were shown to be true, would finally settle the famous P versus NP problem, which is one of the seven Millenium Prize Problems [10]; thus correctly solving it would earn the authors 1 million dollars. But of course, the authors do not attack this problem; the above claim is just an error in the paper.
    [Show full text]
  • An Image Cryptography Using Henon Map and Arnold Cat Map
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 An Image Cryptography using Henon Map and Arnold Cat Map. Pranjali Sankhe1, Shruti Pimple2, Surabhi Singh3, Anita Lahane4 1,2,3 UG Student VIII SEM, B.E., Computer Engg., RGIT, Mumbai, India 4Assistant Professor, Department of Computer Engg., RGIT, Mumbai, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this digital world i.e. the transmission of non- 2. METHODOLOGY physical data that has been encoded digitally for the purpose of storage Security is a continuous process via which data can 2.1 HENON MAP be secured from several active and passive attacks. Encryption technique protects the confidentiality of a message or 1. The Henon map is a discrete time dynamic system information which is in the form of multimedia (text, image, introduces by michel henon. and video).In this paper, a new symmetric image encryption 2. The map depends on two parameters, a and b, which algorithm is proposed based on Henon’s chaotic system with for the classical Henon map have values of a = 1.4 and byte sequences applied with a novel approach of pixel shuffling b = 0.3. For the classical values the Henon map is of an image which results in an effective and efficient chaotic. For other values of a and b the map may be encryption of images. The Arnold Cat Map is a discrete system chaotic, intermittent, or converge to a periodic orbit. that stretches and folds its trajectories in phase space. Cryptography is the process of encryption and decryption of 3.
    [Show full text]
  • WHAT IS a CHAOTIC ATTRACTOR? 1. Introduction J. Yorke Coined the Word 'Chaos' As Applied to Deterministic Systems. R. Devane
    WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties that characterize chaos. We also discuss how this term can be combined with the definition of an attractor. 1. Introduction J. Yorke coined the word `chaos' as applied to deterministic systems. R. Devaney gave the first mathematical definition for a map to be chaotic on the whole space where a map is defined. Since that time, there have been several different definitions of chaos which emphasize different aspects of the map. Some of these are more computable and others are more mathematical. See [9] a comparison of many of these definitions. There is probably no one best or correct definition of chaos. In this paper, we discuss what we feel is one of better mathematical definition. (It may not be as computable as some of the other definitions, e.g., the one by Alligood, Sauer, and Yorke.) Our definition is very similar to the one given by Martelli in [8] and [9]. We also combine the concepts of chaos and attractors and discuss chaotic attractors. 2. Basic definitions We start by giving the basic definitions needed to define a chaotic attractor. We give the definitions for a diffeomorphism (or map), but those for a system of differential equations are similar. The orbit of a point x∗ by F is the set O(x∗; F) = f Fi(x∗) : i 2 Z g. An invariant set for a diffeomorphism F is an set A in the domain such that F(A) = A.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • LSPACE VS NP IS AS HARD AS P VS NP 1. Introduction in Complexity
    LSPACE VS NP IS AS HARD AS P VS NP FRANK VEGA Abstract. The P versus NP problem is a major unsolved problem in com- puter science. This consists in knowing the answer of the following question: Is P equal to NP? Another major complexity classes are LSPACE, PSPACE, ESPACE, E and EXP. Whether LSPACE = P is a fundamental question that it is as important as it is unresolved. We show if P = NP, then LSPACE = NP. Consequently, if LSPACE is not equal to NP, then P is not equal to NP. According to Lance Fortnow, it seems that LSPACE versus NP is easier to be proven. However, with this proof we show this problem is as hard as P versus NP. Moreover, we prove the complexity class P is not equal to PSPACE as a direct consequence of this result. Furthermore, we demonstrate if PSPACE is not equal to EXP, then P is not equal to NP. In addition, if E = ESPACE, then P is not equal to NP. 1. Introduction In complexity theory, a function problem is a computational problem where a single output is expected for every input, but the output is more complex than that of a decision problem [6]. A functional problem F is defined as a binary relation (x; y) 2 R over strings of an arbitrary alphabet Σ: R ⊂ Σ∗ × Σ∗: A Turing machine M solves F if for every input x such that there exists a y satisfying (x; y) 2 R, M produces one such y, that is M(x) = y [6].
    [Show full text]
  • QP Versus NP
    QP versus NP Frank Vega Joysonic, Belgrade, Serbia [email protected] Abstract. Given an instance of XOR 2SAT and a positive integer 2K , the problem exponential exclusive-or 2-satisfiability consists in deciding whether this Boolean formula has a truth assignment with at leat K satisfiable clauses. We prove exponential exclusive-or 2-satisfiability is in QP and NP-complete. In this way, we show QP ⊆ NP . Keywords: Complexity Classes · Completeness · Logarithmic Space · Nondeterministic · XOR 2SAT. 1 Introduction The P versus NP problem is a major unsolved problem in computer science [4]. This is considered by many to be the most important open problem in the field [4]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [4]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency [1]. However, the precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal paper [4]. In 1936, Turing developed his theoretical computational model [14]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [14]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [14]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [14].
    [Show full text]
  • MA427 Ergodic Theory
    MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different.
    [Show full text]
  • Linear Algebra Review James Chuang
    Linear algebra review James Chuang December 15, 2016 Contents 2.1 vector-vector products ............................................... 1 2.2 matrix-vector products ............................................... 2 2.3 matrix-matrix products ............................................... 4 3.2 the transpose .................................................... 5 3.3 symmetric matrices ................................................. 5 3.4 the trace ....................................................... 6 3.5 norms ........................................................ 6 3.6 linear independence and rank ............................................ 7 3.7 the inverse ...................................................... 7 3.8 orthogonal matrices ................................................. 8 3.9 range and nullspace of a matrix ........................................... 8 3.10 the determinant ................................................... 9 3.11 quadratic forms and positive semidefinite matrices ................................ 10 3.12 eigenvalues and eigenvectors ........................................... 11 3.13 eigenvalues and eigenvectors of symmetric matrices ............................... 12 4.1 the gradient ..................................................... 13 4.2 the Hessian ..................................................... 14 4.3 gradients and hessians of linear and quadratic functions ............................. 15 4.5 gradients of the determinant ............................................ 16 4.6 eigenvalues
    [Show full text]
  • Attractors and Orbit-Flip Homoclinic Orbits for Star Flows
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 141, Number 8, August 2013, Pages 2783–2791 S 0002-9939(2013)11535-2 Article electronically published on April 12, 2013 ATTRACTORS AND ORBIT-FLIP HOMOCLINIC ORBITS FOR STAR FLOWS C. A. MORALES (Communicated by Bryna Kra) Abstract. We study star flows on closed 3-manifolds and prove that they either have a finite number of attractors or can be C1 approximated by vector fields with orbit-flip homoclinic orbits. 1. Introduction The notion of attractor deserves a fundamental place in the modern theory of dynamical systems. This assertion, supported by the nowadays classical theory of turbulence [27], is enlightened by the recent Palis conjecture [24] about the abun- dance of dynamical systems with finitely many attractors absorbing most positive trajectories. If confirmed, such a conjecture means the understanding of a great part of dynamical systems in the sense of their long-term behaviour. Here we attack a problem which goes straight to the Palis conjecture: The fini- tude of the number of attractors for a given dynamical system. Such a problem has been solved positively under certain circunstances. For instance, we have the work by Lopes [16], who, based upon early works by Ma˜n´e [18] and extending pre- vious ones by Liao [15] and Pliss [25], studied the structure of the C1 structural stable diffeomorphisms and proved the finitude of attractors for such diffeomor- phisms. His work was largely extended by Ma˜n´e himself in the celebrated solution of the C1 stability conjecture [17]. On the other hand, the Japanesse researchers S.
    [Show full text]
  • A New Algorithm to Obtain the Adjugate Matrix Using CUBLAS on GPU González, H.E., Carmona, L., J.J
    ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 4, October 2017 A New Algorithm to Obtain the Adjugate Matrix using CUBLAS on GPU González, H.E., Carmona, L., J.J. Information Technology Department, ININ-ITTLA Information Technology Department, ININ proved to be the best option for most practical applications. Abstract— In this paper a parallel code for obtain the Adjugate The new transformation proposed here can be obtained from Matrix with real coefficients are used. We postulate a new linear it. Next, we briefly review this topic. transformation in matrix product form and we apply this linear transformation to an augmented matrix (A|I) by means of both a minimum and a complete pivoting strategies, then we obtain the II. LU-MATRICIAL DECOMPOSITION WITH GT. Adjugate matrix. Furthermore, if we apply this new linear NOTATION AND DEFINITIONS transformation and the above pivot strategy to a augmented The problem of solving a linear system of equations matrix (A|b), we obtain a Cramer’s solution of the linear system of Ax b is central to the field of matrix computation. There are equations. That new algorithm present an O n3 computational several ways to perform the elimination process necessary for complexity when n . We use subroutines of CUBLAS 2nd A, b R its matrix triangulation. We will focus on the Doolittle-Gauss rd and 3 levels in double precision and we obtain correct numeric elimination method: the algorithm of choice when A is square, results. dense, and un-structured. nxn Index Terms—Adjoint matrix, Adjugate matrix, Cramer’s Let us assume that AR is nonsingular and that we rule, CUBLAS, GPU.
    [Show full text]