Graph Coarsening with Neural Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Networkx Tutorial
5.03.2020 tutorial NetworkX tutorial Source: https://github.com/networkx/notebooks (https://github.com/networkx/notebooks) Minor corrections: JS, 27.02.2019 Creating a graph Create an empty graph with no nodes and no edges. In [1]: import networkx as nx In [2]: G = nx.Graph() By definition, a Graph is a collection of nodes (vertices) along with identified pairs of nodes (called edges, links, etc). In NetworkX, nodes can be any hashable object e.g. a text string, an image, an XML object, another Graph, a customized node object, etc. (Note: Python's None object should not be used as a node as it determines whether optional function arguments have been assigned in many functions.) Nodes The graph G can be grown in several ways. NetworkX includes many graph generator functions and facilities to read and write graphs in many formats. To get started though we'll look at simple manipulations. You can add one node at a time, In [3]: G.add_node(1) add a list of nodes, In [4]: G.add_nodes_from([2, 3]) or add any nbunch of nodes. An nbunch is any iterable container of nodes that is not itself a node in the graph. (e.g. a list, set, graph, file, etc..) In [5]: H = nx.path_graph(10) file:///home/szwabin/Dropbox/Praca/Zajecia/Diffusion/Lectures/1_intro/networkx_tutorial/tutorial.html 1/18 5.03.2020 tutorial In [6]: G.add_nodes_from(H) Note that G now contains the nodes of H as nodes of G. In contrast, you could use the graph H as a node in G. -
Networkx: Network Analysis with Python
NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users -
Basic Models and Questions in Statistical Network Analysis
Basic models and questions in statistical network analysis Mikl´osZ. R´acz ∗ with S´ebastienBubeck y September 12, 2016 Abstract Extracting information from large graphs has become an important statistical problem since network data is now common in various fields. In this minicourse we will investigate the most natural statistical questions for three canonical probabilistic models of networks: (i) community detection in the stochastic block model, (ii) finding the embedding of a random geometric graph, and (iii) finding the original vertex in a preferential attachment tree. Along the way we will cover many interesting topics in probability theory such as P´olya urns, large deviation theory, concentration of measure in high dimension, entropic central limit theorems, and more. Outline: • Lecture 1: A primer on exact recovery in the general stochastic block model. • Lecture 2: Estimating the dimension of a random geometric graph on a high-dimensional sphere. • Lecture 3: Introduction to entropic central limit theorems and a proof of the fundamental limits of dimension estimation in random geometric graphs. • Lectures 4 & 5: Confidence sets for the root in uniform and preferential attachment trees. Acknowledgements These notes were prepared for a minicourse presented at University of Washington during June 6{10, 2016, and at the XX Brazilian School of Probability held at the S~aoCarlos campus of Universidade de S~aoPaulo during July 4{9, 2016. We thank the organizers of the Brazilian School of Probability, Paulo Faria da Veiga, Roberto Imbuzeiro Oliveira, Leandro Pimentel, and Luiz Renato Fontes, for inviting us to present a minicourse on this topic. We also thank Sham Kakade, Anna Karlin, and Marina Meila for help with organizing at University of Washington. -
Graphprism: Compact Visualization of Network Structure
GraphPrism: Compact Visualization of Network Structure Sanjay Kairam, Diana MacLean, Manolis Savva, Jeffrey Heer Stanford University Computer Science Department {skairam, malcdi, msavva, jheer}@cs.stanford.edu GraphPrism Connectivity ABSTRACT nodeRadius 7.9 strokeWidth 1.12 charge -242 Visual methods for supporting the characterization, com- gravity 0.65 linkDistance 20 parison, and classification of large networks remain an open Transitivity updateGraph Close Controls challenge. Ideally, such techniques should surface useful 0 node(s) selected. structural features { such as effective diameter, small-world properties, and structural holes { not always apparent from Density either summary statistics or typical network visualizations. In this paper, we present GraphPrism, a technique for visu- Conductance ally summarizing arbitrarily large graphs through combina- tions of `facets', each corresponding to a single node- or edge- specific metric (e.g., transitivity). We describe a generalized Jaccard approach for constructing facets by calculating distributions of graph metrics over increasingly large local neighborhoods and representing these as a stacked multi-scale histogram. MeetMin Evaluation with paper prototypes shows that, with minimal training, static GraphPrism diagrams can aid network anal- ysis experts in performing basic analysis tasks with network Created by Sanjay Kairam. Visualization using D3. data. Finally, we contribute the design of an interactive sys- Figure 1: GraphPrism and node-link diagrams for tem using linked selection between GraphPrism overviews the largest component of a co-authorship graph. and node-link detail views. Using a case study of data from a co-authorship network, we illustrate how GraphPrism fa- compactly summarizing networks of arbitrary size. Graph- cilitates interactive exploration of network data. -
Graph Simplification and Interaction
Graph Clarity, Simplification, & Interaction http://i.imgur.com/cW19IBR.jpg https://www.reddit.com/r/CableManagement/ Today • Today’s Reading: Lombardi Graphs – Bezier Curves • Today’s Reading: Clustering/Hierarchical edge Bundling – Definition of Betweenness Centrality • Emergency Management Graph Visualization – Sean Kim’s masters project • Reading for Tuesday & Homework 3 • Graph Interaction Brainstorming Exercise "Lombardi drawings of graphs", Duncan, Eppstein, Goodrich, Kobourov, Nollenberg, Graph Drawing 2010 • Circular arcs • Perfect angular resolution (edges for equal angles at vertices) • Arcs only intersect 2 vertices (at endpoints) • (not required to be crossing free) • Vertices may be constrained to lie on circle or concentric circles • People are more patient with aesthetically pleasing graphs (will spend longer studying to learn/draw conclusions) • What about relaxing the circular arc requirement and allowing Bezier arcs? • How does it scale to larger data? • Long curved arcs can be much harder to follow • Circular layout of nodes is often very good! • Would like more pseudocode Cubic Bézier Curve • 4 control points • Curve passes through first & last control point • Curve is tangent at P0 to (P1-P0) and at P3 to (P3-P2) http://www.e-cartouche.ch/content_reg/carto http://www.webreference.com/dla uche/graphics/en/html/Curves_learningObject b/9902/bezier.html 2.html “Force-directed Lombardi-style graph drawing”, Chernobelskiy et al., Graph Drawing 2011. • Relaxation of the Lombardi Graph requirements • “straight-line segments -
Constraint Graph Drawing
Constrained Graph Drawing Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften vorgelegt von Barbara Pampel, geb. Schlieper an der Universit¨at Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Informatik und Informationswissenschaft Tag der mundlichen¨ Prufung:¨ 14. Juli 2011 1. Referent: Prof. Dr. Ulrik Brandes 2. Referent: Prof. Dr. Michael Kaufmann II Teile dieser Arbeit basieren auf Ver¨offentlichungen, die aus der Zusammenar- beit mit anderen Wissenschaftlerinnen und Wissenschaftlern entstanden sind. Zu allen diesen Inhalten wurden wesentliche Beitr¨age geleistet. Kapitel 3 (Bachmaier, Brandes, and Schlieper, 2005; Brandes and Schlieper, 2009) Kapitel 4 (Brandes and Pampel, 2009) Kapitel 6 (Brandes, Cornelsen, Pampel, and Sallaberry, 2010b) Zusammenfassung Netzwerke werden in den unterschiedlichsten Forschungsgebieten zur Repr¨asenta- tion relationaler Daten genutzt. Durch geeignete mathematische Methoden kann man diese Netzwerke als Graphen darstellen. Ein Graph ist ein Gebilde aus Kno- ten und Kanten, welche die Knoten verbinden. Hierbei k¨onnen sowohl die Kan- ten als auch die Knoten weitere Informationen beinhalten. Diese Informationen k¨onnen den einzelnen Elementen zugeordnet sein, sich aber auch aus Anordnung und Verteilung der Elemente ergeben. Mit Algorithmen (strukturierten Reihen von Arbeitsanweisungen) aus dem Gebiet des Graphenzeichnens kann man die unterschiedlichsten Informationen aus verschiedenen Forschungsbereichen visualisieren. Graphische Darstellungen k¨onnen das -
Networkx Reference Release 1.9.1
NetworkX Reference Release 1.9.1 Aric Hagberg, Dan Schult, Pieter Swart September 20, 2014 CONTENTS 1 Overview 1 1.1 Who uses NetworkX?..........................................1 1.2 Goals...................................................1 1.3 The Python programming language...................................1 1.4 Free software...............................................2 1.5 History..................................................2 2 Introduction 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Algorithms 127 4.1 Approximation.............................................. 127 4.2 Assortativity............................................... 132 4.3 Bipartite................................................. 141 4.4 Blockmodeling.............................................. 161 4.5 Boundary................................................. 162 4.6 Centrality................................................. 163 4.7 Chordal.................................................. 184 4.8 Clique.................................................. 187 4.9 Clustering................................................ 190 4.10 Communities............................................... 193 4.11 Components............................................... 194 4.12 Connectivity.............................................. -
Latent Distance Estimation for Random Geometric Graphs ∗
Latent Distance Estimation for Random Geometric Graphs ∗ Ernesto Araya Valdivia Laboratoire de Math´ematiquesd'Orsay (LMO) Universit´eParis-Sud 91405 Orsay Cedex France Yohann De Castro Ecole des Ponts ParisTech-CERMICS 6 et 8 avenue Blaise Pascal, Cit´eDescartes Champs sur Marne, 77455 Marne la Vall´ee,Cedex 2 France Abstract: Random geometric graphs are a popular choice for a latent points generative model for networks. Their definition is based on a sample of n points X1;X2; ··· ;Xn on d−1 the Euclidean sphere S which represents the latent positions of nodes of the network. The connection probabilities between the nodes are determined by an unknown function (referred to as the \link" function) evaluated at the distance between the latent points. We introduce a spectral estimator of the pairwise distance between latent points and we prove that its rate of convergence is the same as the nonparametric estimation of a d−1 function on S , up to a logarithmic factor. In addition, we provide an efficient spectral algorithm to compute this estimator without any knowledge on the nonparametric link function. As a byproduct, our method can also consistently estimate the dimension d of the latent space. MSC 2010 subject classifications: Primary 68Q32; secondary 60F99, 68T01. Keywords and phrases: Graphon model, Random Geometric Graph, Latent distances estimation, Latent position graph, Spectral methods. 1. Introduction Random geometric graph (RGG) models have received attention lately as alternative to some simpler yet unrealistic models as the ubiquitous Erd¨os-R´enyi model [11]. They are generative latent point models for graphs, where it is assumed that each node has associated a latent d point in a metric space (usually the Euclidean unit sphere or the unit cube in R ) and the connection probability between two nodes depends on the position of their associated latent points. -
Chapter 18 Spectral Graph Drawing
Chapter 18 Spectral Graph Drawing 18.1 Graph Drawing and Energy Minimization Let G =(V,E)besomeundirectedgraph.Itisoftende- sirable to draw a graph, usually in the plane but possibly in 3D, and it turns out that the graph Laplacian can be used to design surprisingly good methods. n Say V = m.Theideaistoassignapoint⇢(vi)inR to the vertex| | v V ,foreveryv V ,andtodrawaline i 2 i 2 segment between the points ⇢(vi)and⇢(vj). Thus, a graph drawing is a function ⇢: V Rn. ! 821 822 CHAPTER 18. SPECTRAL GRAPH DRAWING We define the matrix of a graph drawing ⇢ (in Rn) as a m n matrix R whose ith row consists of the row vector ⇥ n ⇢(vi)correspondingtothepointrepresentingvi in R . Typically, we want n<m;infactn should be much smaller than m. Arepresentationisbalanced i↵the sum of the entries of every column is zero, that is, 1>R =0. If a representation is not balanced, it can be made bal- anced by a suitable translation. We may also assume that the columns of R are linearly independent, since any basis of the column space also determines the drawing. Thus, from now on, we may assume that n m. 18.1. GRAPH DRAWING AND ENERGY MINIMIZATION 823 Remark: Agraphdrawing⇢: V Rn is not required to be injective, which may result in! degenerate drawings where distinct vertices are drawn as the same point. For this reason, we prefer not to use the terminology graph embedding,whichisoftenusedintheliterature. This is because in di↵erential geometry, an embedding always refers to an injective map. The term graph immersion would be more appropriate. -
Graph Drawing by Stochastic Gradient Descent
1 Graph Drawing by Stochastic Gradient Descent Jonathan X. Zheng, Samraat Pawar, Dan F. M. Goodman Abstract—A popular method of force-directed graph drawing is multidimensional scaling using graph-theoretic distances as input. We present an algorithm to minimize its energy function, known as stress, by using stochastic gradient descent (SGD) to move a single pair of vertices at a time. Our results show that SGD can reach lower stress levels faster and more consistently than majorization, without needing help from a good initialization. We then show how the unique properties of SGD make it easier to produce constrained layouts than previous approaches. We also show how SGD can be directly applied within the sparse stress approximation of Ortmann et al. [1], making the algorithm scalable up to large graphs. Index Terms—Graph drawing, multidimensional scaling, constraints, relaxation, stochastic gradient descent F 1 INTRODUCTION RAPHS are a common data structure, used to describe to the shortest path distance between vertices i and j, with w = d−2 G everything from social networks to food webs, from ij ij to offset the extra weight given to longer paths metabolic pathways to internet traffic. Any set of pairwise due to squaring the difference [3]. relationships between entities can be described by a graph, This definition was popularized for graph layout by and the ever increasing amount of data being collected Kamada and Kawai [4] who minimized the function using means that visualizing graphs for exploratory analysis has a localized 2D Newton-Raphson method, while within the become an important task. MDS community Kruskal [5] originally used gradient de- Node-link diagrams are an intuitive representation of scent [6]. -
The Domination Number of On-Line Social Networks and Random Geometric Graphs?
The domination number of on-line social networks and random geometric graphs? Anthony Bonato1, Marc Lozier1, Dieter Mitsche2, Xavier P´erez-Gim´enez1, and Pawe lPra lat1 1 Ryerson University, Toronto, Canada, [email protected], [email protected], [email protected], [email protected] 2 Universit´ede Nice Sophia-Antipolis, Nice, France [email protected] Abstract. We consider the domination number for on-line social networks, both in a stochastic net- work model, and for real-world, networked data. Asymptotic sublinear bounds are rigorously derived for the domination number of graphs generated by the memoryless geometric protean random graph model. We establish sublinear bounds for the domination number of graphs in the Facebook 100 data set, and these bounds are well-correlated with those predicted by the stochastic model. In addition, we derive the asymptotic value of the domination number in classical random geometric graphs. 1. Introduction On-line social networks (or OSNs) such as Facebook have emerged as a hot topic within the network science community. Several studies suggest OSNs satisfy many properties in common with other complex networks, such as: power-law degree distributions [2, 13], high local cluster- ing [36], constant [36] or even shrinking diameter with network size [23], densification [23], and localized information flow bottlenecks [12, 24]. Several models were designed to simulate these properties [19, 20], and one model that rigorously asymptotically captures all these properties is the geometric protean model (GEO-P) [5{7] (see [16, 25, 30, 31] for models where various ranking schemes were first used, and which inspired the GEO-P model). -
Networkx: Network Analysis with Python
NetworkX: Network Analysis with Python Dionysis Manousakas (special thanks to Petko Georgiev, Tassos Noulas and Salvatore Scellato) Social and Technological Network Data Analytics Computer Laboratory, University of Cambridge February 2017 Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. Ready for your own analysis! 2 1. Introduction to NetworkX 3 Introduction: networks are everywhere… Social Mobile phone networks Vehicular flows networks Web pages/citations Internet routing How can we analyse these networks? Python + NetworkX 4 Introduction: why Python? Python is an interpreted, general-purpose high-level programming language whose design philosophy emphasises code readability + - Clear syntax, indentation Can be slow Multiple programming paradigms Beware when you are Dynamic typing, late binding analysing very large Multiple data types and structures networks Strong on-line community Rich documentation Numerous libraries Expressive features Fast prototyping 5 Introduction: Python’s Holy Trinity Python’s primary NumPy is an extension to Matplotlib is the library for include primary plotting mathematical and multidimensional arrays library in Python. statistical computing. and matrices. Contains toolboxes Supports 2-D and 3-D for: Both SciPy and NumPy plotting. All plots are • Numeric rely on the C library highly customisable optimization LAPACK for very fast and ready for implementation. professional • Signal processing publication. • Statistics, and more…