Hardness of Approximation, NP ⊆ PCP[Polylog,Polylog]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zig-Zag Product
High Dimensional Expanders Lecture 12: Agreement Tests Lecture by: Irit Dinur Scribe: Irit Dinur In this lecture we describe agreement tests, which are a generalization of direct product tests and low degree tests, both of which play a role in PCP constructions. It turns out that the underlying structures that support agreement tests are invariably some kind of high dimensional expander, as we shall see. 1 General Setup It is a basic fact of computation that any global computation can be broken down into a sequence of local steps. The PCP theorem [AS98, ALM+98] says that moreover, this can be done in a robust fashion, so that as long as most steps are correct, the entire computation checks out. At the heart of this is a local-to-global argument that allows deducing a global property from local pieces that fit together only approximately. In an agreement test, a function is given by an ensemble of local restrictions. The agreement test checks that the restrictions agree when they overlap, and the main question is whether typical agreement of the local pieces implies that there exists a global function that agrees with most local restrictions. Let us describe the basic framework, consisting of a quadruple (V; X; fFSgS2X ; D). • Ground set: Let V be a set of n points (or vertices). • Collection of small subsets: Let X be a collection of subsets S ⊂ V , typically for each S 2 X we have jSj n. • Local functions: for each subset S 2 X, there is a space FS ⊂ ff : S ! Σg of functions on S. -
Chicago Journal of Theoretical Computer Science the MIT Press
Chicago Journal of Theoretical Computer Science The MIT Press Volume 1997, Article 1 12 March 1997 ISSN 1073–0486. MIT Press Journals, 55 Hayward St., Cambridge, MA 02142 USA; (617)253-2889; [email protected], [email protected]. Published one article at a time in LATEX source form on the Internet. Pag- ination varies from copy to copy. For more information and other articles see: http://www-mitpress.mit.edu/jrnls-catalog/chicago.html • http://www.cs.uchicago.edu/publications/cjtcs/ • ftp://mitpress.mit.edu/pub/CJTCS • ftp://cs.uchicago.edu/pub/publications/cjtcs • Feige and Kilian Limited vs. Polynomial Nondeterminism (Info) The Chicago Journal of Theoretical Computer Science is abstracted or in- R R R dexed in Research Alert, SciSearch, Current Contents /Engineering Com- R puting & Technology, and CompuMath Citation Index. c 1997 The Massachusetts Institute of Technology. Subscribers are licensed to use journal articles in a variety of ways, limited only as required to insure fair attribution to authors and the journal, and to prohibit use in a competing commercial product. See the journal’s World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals; (617)253-2864; [email protected]. The Chicago Journal of Theoretical Computer Science is a peer-reviewed scholarly journal in theoretical computer science. The journal is committed to providing a forum for significant results on theoretical aspects of all topics in computer science. Editor in chief: Janos Simon Consulting -
Signature Redacted
On Foundations of Public-Key Encryption and Secret Sharing by Akshay Dhananjai Degwekar B.Tech., Indian Institute of Technology Madras (2014) S.M., Massachusetts Institute of Technology (2016) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2019 @Massachusetts Institute of Technology 2019. All rights reserved. Signature redacted Author ............................................ Department of Electrical Engineering and Computer Science June 28, 2019 Signature redacted Certified by....................................... VWi dVaikuntanathan Associate Professor of Electrical Engineering and Computer Science Thesis Supervisor Signature redacted A ccepted by . ......... ...................... MASSACLislie 6jp lodziejski OF EHs o fTE Professor of Electrical Engineering and Computer Science Students Committee on Graduate OCT Chair, Department LIBRARIES c, On Foundations of Public-Key Encryption and Secret Sharing by Akshay Dhananjai Degwekar Submitted to the Department of Electrical Engineering and Computer Science on June 28, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Since the inception of Cryptography, Information theory and Coding theory have influenced cryptography in myriad ways including numerous information-theoretic notions of security in secret sharing, multiparty computation and statistical zero knowledge; and by providing a large toolbox used extensively in cryptography. This thesis addresses two questions in this realm: Leakage Resilience of Secret Sharing Schemes. We show that classical secret sharing schemes like Shamir secret sharing and additive secret sharing over prime order fields are leakage resilient. Leakage resilience of secret sharing schemes is closely related to locally repairable codes and our results can be viewed as impossibility results for local recovery over prime order fields. -
(L ,J SEP 3 0 2009 LIBRARIES
Nearest Neighbor Search: the Old, the New, and the Impossible by Alexandr Andoni Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2009 © Massachusetts Institute of Technology 2009. All rights reserved. Author .............. .. .. ......... .... ..... ... ......... ....... Department of Electrical Engineering and Computer Science September 4, 2009 (l ,J Certified by................ Piotr I/ yk Associate Professor Thesis Supervisor Accepted by ................................ /''~~ Terry P. Orlando Chairman, Department Committee on Graduate Students MASSACHUSETTS PaY OF TECHNOLOGY SEP 3 0 2009 ARCHIVES LIBRARIES Nearest Neighbor Search: the Old, the New, and the Impossible by Alexandr Andoni Submitted to the Department of Electrical Engineering and Computer Science on September 4, 2009, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Over the last decade, an immense amount of data has become available. From collections of photos, to genetic data, and to network traffic statistics, modern technologies and cheap storage have made it possible to accumulate huge datasets. But how can we effectively use all this data? The ever growing sizes of the datasets make it imperative to design new algorithms capable of sifting through this data with extreme efficiency. A fundamental computational primitive for dealing with massive dataset is the Nearest Neighbor (NN) problem. In the NN problem, the goal is to preprocess a set of objects, so that later, given a query object, one can find efficiently the data object most similar to the query. This problem has a broad set of applications in data processing and analysis. -
Calibrating Noise to Sensitivity in Private Data Analysis
Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork1, Frank McSherry1, Kobbi Nissim2, and Adam Smith3? 1 Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com 2 Ben-Gurion University. [email protected] 3 Weizmann Institute of Science. [email protected] Abstract. We continue a line of research initiated in [10, 11] on privacy- preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. Previous work focused on the case of noisy sums, in which f = P i g(xi), where xi denotes the ith row of the database and g maps database rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard devi- ation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation re- sults showing the increased value of interactive sanitization mechanisms over non-interactive. -
Approximation, Randomization, and Combinatorial Optimization
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques 17th International Workshop, APPROX 2014, and 18th International Workshop, RANDOM 2014 September 4–6, 2014, Barcelona, Spain Edited by Klaus Jansen José D. P. Rolim Nikhil R. Devanur Cristopher Moore LIPIcs – Vol. 28 – APPROX/RANDOM’14 www.dagstuhl.de/lipics Editors Klaus Jansen José D. P. Rolim University of Kiel University of Geneva Kiel Geneva [email protected] [email protected] Nikhil R. Devanur Cristopher Moore Microsoft Research Santa Fe Institute Redmond New Mexico [email protected] [email protected] ACM Classification 1998 C.2.1 Network Architecture and Design, C.2.2 Computer-communication, E.4 Coding and Information Theory, F. Theory of Computation, F.1.0 Computation by Abstract Devices, F.1.1 Models of Computation – relations between models, F.1.2 Modes of Computation, F.1.3 Complexity Measures and Classes, F.2.0 Analysis of Algorithms and Problem Complexity, F.2.1 Numerical Algorithms and Problems, F.2.2 Nonnumerical Algorithms and Problems G.1.2 Approximation, G.1.6 Optimization, G.2 Discrete Mathematics, G.2.1 Combinatorics, G.2.2 Graph Theory, G.3 Probability and Statistics, I.1.2 Algorithms, J.4 Computer Applications – Social and Behavioral Sciences ISBN 978-3-939897-74-3 Published online and open access by Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern, Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-74-3. Publication date September, 2014 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. -
A New Point of NP-Hardness for Unique Games
A new point of NP-hardness for Unique Games Ryan O'Donnell∗ John Wrighty September 30, 2012 Abstract 1 3 We show that distinguishing 2 -satisfiable Unique-Games instances from ( 8 + )-satisfiable instances is NP-hard (for all > 0). A consequence is that we match or improve the best known c vs. s NP-hardness result for Unique-Games for all values of c (except for c very close to 0). For these c, ours is the first hardness result showing that it helps to take the alphabet size larger than 2. Our NP-hardness reductions are quasilinear-size and thus show nearly full exponential time is required, assuming the ETH. ∗Department of Computer Science, Carnegie Mellon University. Supported by NSF grants CCF-0747250 and CCF-0915893, and by a Sloan fellowship. Some of this research performed while the author was a von Neumann Fellow at the Institute for Advanced Study, supported by NSF grants DMS-083537 and CCF-0832797. yDepartment of Computer Science, Carnegie Mellon University. 1 Introduction Thanks largely to the groundbreaking work of H˚astad[H˚as01], we have optimal NP-hardness of approximation results for several constraint satisfaction problems (CSPs), including 3Lin(Z2) and 3Sat. But for many others | including most interesting CSPs with 2-variable constraints | we lack matching algorithmic and NP-hardness results. Take the 2Lin(Z2) problem for example, in which there are Boolean variables with constraints of the form \xi = xj" and \xi 6= xj". The largest approximation ratio known to be achievable in polynomial time is roughly :878 [GW95], whereas it 11 is only known that achieving ratios above 12 ≈ :917 is NP-hard [H˚as01, TSSW00]. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Hardness of Maximum Constraint Satisfaction Permalink https://escholarship.org/uc/item/5x33g1k7 Author Chan, Siu On Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Hardness of Maximum Constraint Satisfaction by Siu On Chan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Elchanan Mossel, Chair Professor Luca Trevisan Professor Satish Rao Professor Michael Christ Spring 2013 Hardness of Maximum Constraint Satisfaction Creative Commons 3.0 BY: C 2013 by Siu On Chan 1 Abstract Hardness of Maximum Constraint Satisfaction by Siu On Chan Doctor of Philosophy in Computer Science University of California, Berkeley Professor Elchanan Mossel, Chair Maximum constraint satisfaction problem (Max-CSP) is a rich class of combinatorial op- timization problems. In this dissertation, we show optimal (up to a constant factor) NP- hardness for maximum constraint satisfaction problem with k variables per constraint (Max- k-CSP), whenever k is larger than the domain size. This follows from our main result con- cerning CSPs given by a predicate: a CSP is approximation resistant if its predicate contains a subgroup that is balanced pairwise independent. Our main result is related to previous works conditioned on the Unique-Games Conjecture and integrality gaps in sum-of-squares semidefinite programming hierarchies. Our main ingredient is a new gap-amplification technique inspired by XOR-lemmas. Using this technique, we also improve the NP-hardness of approximating Independent-Set on bounded-degree graphs, Almost-Coloring, Two-Prover-One-Round-Game, and various other problems. -
Call for Papers
Call For Papers The 6th Innovations in Theoretical Computer Science (ITCS) conference, sponsored by the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT), will be held at the Weizmann Institute of Science, Israel, January 11-13, 2015. ITCS (previously known as ICS) seeks to promote research that carries a strong conceptual message (e.g., introducing a new concept or model, opening a new line of inquiry within traditional or cross-interdisciplinary areas, or introducing new techniques or new applications of known techniques). ITCS welcomes all submissions, whether aligned with current theory of computation research directions or deviating from them. Important Dates Paper Submission Deadline: Friday, August 8, 2014, 5PM PDT Notification to Authors: Monday, October 20, 2014 Camera ready papers due: Monday, November 24, 2014 Conference dates: Sunday-Tuesday, January 11-13, 2015 Program Committee: Benny Applebaum (Tel Aviv University) Avrim Blum (Carnegie Mellon University) Costis Daskalakis (MIT) Uriel Feige (Weizmann Institute) Vitaly Feldman (IBM Research - Almaden) Parikshit Gopalan (Microsoft Research) Bernhard Haeupler (Carnegie Mellon University and Microsoft Research) Stefano Leonardi (University of Rome La Sapienza) Tal Malkin (Columbia University) Nicole Megow (Technische Universitat Berlin) Michael Mitzenmacher (Harvard University) Noam Nisan (Hebrew University and Microsoft Research) Ryan O'Donnell (Carnegie Mellon University) Rafael Pass (Cornell and Cornell NYC Tech) Dana Ron (Tel Aviv University) Guy Rothblum -
Uriel Feige, Publications, July 2017. Papers Are Sorted by Categories. for Papers That Have More Than One Version (Typically, Jo
Uriel Feige, Publications, July 2017. Papers are sorted by categories. For papers that have more than one version (typically, journal version and conference proceedings), the different versions are combined into one entry in the list. STOC is shorthand for \Annual ACM Symposium on the Theory of Computing". FOCS is shorthand for \Symposium on Foundations of Computer Science". Journal publications 1. Uriel Feige, Amos Fiat, and Adi Shamir. \Zero Knowledge Proofs of Identity". Jour- nal of Cryptology, 1988, Vol. 1, pp. 77-94. Preliminary version appeared in Proc. of the 19th STOC, 1987, pp. 210-217. 2. Uriel Feige, David Peleg, Prabhakar Raghavan and Eli Upfal. \Randomized Broadcast in Networks". Random Structures and algorithms, 1(4), 1990, pp. 447-460. Preliminary version appeared in proceedings of SIGAL International Symposium on Algorithms, Tokyo, Japan, August 1990. 3. Uriel Feige and Adi Shamir. \Multi-Oracle Interactive Protocols with Constant Space Verifiers”. Journal of Computer and System Sciences, Vol. 44, pp. 259-271, April 1992. Preliminary version appeared in Proceedings of Fourth Annual Conference on Struc- ture in Complexity Theory, June 1989. 4. Uriel Feige. "On the Complexity of Finite Random Functions". Information Process- ing Letters 44 (1992) 295-296. 5. Uriel Feige, David Peleg, Prabhakar Raghavan and Eli Upfal. \Computing With Noisy Information". SIAM Journal on Computing, 23(5), 1001{1018, 1994. Preliminary version appeared in Proceedings of 22nd STOC, 1990, pp. 128-137. 6. Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. "Derandomized Graph Products". Computational Complexity 5 (1995) 60{75. 7. Uriel Feige. \A Tight Upper Bound on the Cover Time for Random Walks on Graphs". -
Arxiv:2105.01193V1
Improved approximation algorithms for bounded-degree local Hamiltonians Anurag Anshu1, David Gosset2, Karen J. Morenz Korol3, and Mehdi Soleimanifar4 1 Department of EECS & Challenge Institute for Quantum Computation, University of California, Berkeley, USA and Simons Institute for the Theory of Computing, Berkeley, California, USA. 2 Department of Combinatorics and Optimization and Institute for Quantum Computing, University of Waterloo, Canada 3 Department of Chemistry, University of Toronto, Canada and 4 Center for Theoretical Physics, Massachusetts Institute of Technology, USA We consider the task of approximating the ground state energy of two-local quantum Hamiltonians on bounded-degree graphs. Most existing algorithms optimize the energy over the set of product states. Here we describe a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an n-qubit 2 product state |vi with mean energy e0 = hv|H|vi and variance Var = hv|(H − e0) |vi, and outputs a 2 state with an energy that is lower than e0 by an amount proportional to Var /n. In a typical case, we have Var = Ω(n) and the energy improvement is proportional to the number of edges in the graph. When applied to an initial random product state, we recover and generalize the performance guarantees of known algorithms for bounded-occurrence classical constraint satisfaction problems. We extend our results to k-local Hamiltonians and entangled initial states. Quantum computers are capable of efficiently comput- Hamiltonian ing the dynamics of quantum many-body systems [1], and it is anticipated that they can be useful for scien- H = hij (1) i,j E tific applications in physics, materials science and quan- { X}∈ tum chemistry. -
Exponentially-Hard Gap-CSP and Local PRG Via Local Hardcore Functions
Electronic Colloquium on Computational Complexity, Report No. 63 (2017) Exponentially-Hard gap-CSP and local PRG via Local Hardcore Functions Benny Applebaum∗ April 10, 2017 Abstract The gap-ETH assumption (Dinur 2016; Manurangsi and Raghavendra 2016) asserts that it is exponentially-hard to distinguish between a satisfiable 3-CNF formula and a 3-CNF for- mula which is at most 0.99-satisfiable. We show that this assumption follows from the ex- ponential hardness of finding a satisfying assignment for smooth 3-CNFs. Here smoothness means that the number of satisfying assignments is not much smaller than the number of “almost-satisfying” assignments. We further show that the latter (“smooth-ETH”) assump- tion follows from the exponential hardness of solving constraint satisfaction problems over well-studied distributions, and, more generally, from the existence of any exponentially-hard locally-computable one-way function. This confirms a conjecture of Dinur (ECCC 2016). We also prove an analogous result in the cryptographic setting. Namely, we show that the existence of exponentially-hard locally-computable pseudorandom generator with linear stretch (el-PRG) follows from the existence of an exponentially-hard locally-computable “al- most regular” one-way functions. None of the above assumptions (gap-ETH and el-PRG) was previously known to follow from the hardness of a search problem. Our results are based on a new construction of gen- eral (GL-type) hardcore functions that, for any exponentially-hard one-way function, output linearly many hardcore bits, can be locally computed, and consume only a linear amount of random bits. We also show that such hardcore functions have several other useful applications in cryptography and complexity theory.