Evidence for the ISG15-Specific Deubiquitinase USP18 As an Antineoplastic Target

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for the ISG15-Specific Deubiquitinase USP18 As an Antineoplastic Target Published OnlineFirst January 17, 2018; DOI: 10.1158/0008-5472.CAN-17-1752 Cancer Review Research Evidence for the ISG15-Specific Deubiquitinase USP18 as an Antineoplastic Target Lisa Maria Mustachio1, Yun Lu2, Masanori Kawakami1, Jason Roszik3,4, Sarah J. Freemantle5, Xi Liu1, and Ethan Dmitrovsky1,6 Abstract Ubiquitination and ubiquitin-like posttranslational modifica- and in contrast to its gain decreases cancer growth by destabi- tions (PTM) regulate activity and stability of oncoproteins and lizing growth-regulatory proteins. Loss of USP18 reduced can- tumor suppressors. This implicates PTMs as antineoplastic targets. cer cell growth by triggering apoptosis. Genetic loss of USP18 One way to alter PTMs is to inhibit activity of deubiquitinases repressed cancer formation in engineered murine lung cancer (DUB) that remove ubiquitin or ubiquitin-like proteins from models. The translational relevance of USP18 was confirmed by substrate proteins. Roles of DUBs in carcinogenesis have been finding its expression was deregulated in malignant versus intensively studied, yet few inhibitors exist. Prior work provides a normal tissues. Notably, the recent elucidation of the USP18 basis for the ubiquitin-specific protease 18 (USP18) as an anti- crystal structure offers a framework for developing an inhibitor neoplastic target. USP18 is the major DUB that removes IFN- to this DUB. This review summarizes strong evidence for USP18 stimulated gene 15 (ISG15) from conjugated proteins. Prior work as a previously unrecognized pharmacologic target in oncology. discovered that engineered loss of USP18 increases ISGylation Cancer Res; 78(3); 1–6. Ó2018 AACR. Background stimulated gene 15 (ISG15), the first ubiquitin-like protein dis- covered, is activated by a three-step enzymatic cascade that Growth-regulatory proteins that drive carcinogenesis are engages a specific E1-activating enzyme (UBE1L), E2-conjugating altered by posttranslational modifications (PTM; ref. 1). An enzyme (typically UBCH8), and E3 ligase (commonly HERC5A) improved understanding of how PTMs affect oncogenic, to complex ISG15 to protein substrates, as shown in Fig. 1A (6). tumor-suppressive, and other critical tumorigenic pathways will Although it is known that polyubiquitination triggers protein uncover ways to counteract the consequences of those same degradation through the proteasome, monoubiquitination alters pathways (2). PTMs that affect ubiquitination and related pro- other cellular functions (7). In contrast, the functional conse- cesses are under active study because they are deregulated in quences of ISGylation are less well understood. Mono-ISGylation diverse cancers. One important outcome of regulated expression elicits specialized functions including regulating activity of of ubiquitin-specific protease 18 (USP18) is to change the stability growth-regulatory proteins (6, 8, 9). of key proteins that maintain or mediate the carcinogenesis Ubiquitination and ISGylation modifications are removed by process (3, 4). deubiquitinases (DUB), as reviewed in ref. 10. Ubiquitin-specific Ubiquitination is a tightly controlled process. It is regulated by proteases (USP) are a class of DUBs that remove ubiquitin, ISG15, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating or other ubiquitin-related species from complexed proteins enzyme (E2), and ubiquitin ligase (E3) that collectively allow (10, 11). About 100 DUBs are now known to exist, and their ubiquitin to conjugate to target proteins (5). Similarly, IFN- precise biological roles are being elucidated (11). Individual DUBs likely confer specific actions (10, 11). Likewise, if a partic- 1Department of Thoracic/Head and Neck Medical Oncology, The University of ular DUB is pharmacologically affected, this should lead to Texas MD Anderson Cancer Center, Houston, Texas. 2Department of Pharma- desired outcomes on physiology or pharmacologic responses. cology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Here, we describe the known activities of USP18, emphasizing Hampshire. 3Department of Melanoma Medical Oncology, The University of its role as a candidate antineoplastic target. Recent work estab- 4 Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic lished that reduction of USP18 expression conferred a prominent Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. antitumorigenic response. Repression of USP18 protein reduced 5Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Illinois. 6Department of Cancer Biology, The University of stability of critical growth-regulatory species and inhibited cancer Texas MD Anderson Cancer Center, Houston, Texas. cell growth and tumor formation by augmenting apoptotic and chemotherapeutic agent responses (12–15). Taken together, these Note: Supplementary data for this article are available at Cancer Research fi Online (http://cancerres.aacrjournals.org/). and other ndings described here implicate USP18 as a previously unrecognized antineoplastic target. Corresponding Author: Ethan Dmitrovsky, Departments of Thoracic/Head and Neck Medical Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030. Phone: USP18 Functions 713-745-0200; Fax: 713-792-7864; E-mail: [email protected] The DUB USP18 (originally known as UBP43) was first cloned doi: 10.1158/0008-5472.CAN-17-1752 from leukemia fusion protein expressing AML1-ETO mice and Ó2018 American Association for Cancer Research. then independently identified by different groups using porcine www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst January 17, 2018; DOI: 10.1158/0008-5472.CAN-17-1752 Mustachio et al. A B ISG15 USP18 protein expression in malignant tissues USP18 UBE1L Elevated Reduced Lung ISG15Substrate HERC5A ISG15 UBE1L Breast Cervix Kidney Protein destabilization Esophagus Prostate Stomach Decreased activity ISG15 UBCH8 Colon Changes in localization Thyroid UBCH8 HERC5A Pancreas ISG15 UBCH8 C Kidney chromophobe Kidney lymphoma B-cell tissue Normal adrenal and parag. Pheochromocytoma leukemia myeloid Acute carcinoma Adrenocortical adenocarcinoma Rectum melanoma Uveal adenocarcinoma Colon Normal kidney papillary carcinoma Kidney Normal liver cancer Liver glioma grade Lower Mesothelioma carcinoma clear cell Kidney Normal bile duct Cholangiocarcinoma Normal prostate adenocarcinoma Prostate Normal soft tissue Sarcoma Normal pancreas cancer Pancreatic Normal stomach cancer Stomach Glioblastoma Normal bladder Bladder cancer Normal esophagus Esophageal carcinoma Normal uterus carcinosarcoma Uterine endometrial carcinoma Uterine tumor germ cell Testicular Normal skin Skin cutaneous melanoma Normal thyroid carcinoma Thyroid Normal lung carcinoma Lung squamous cell Normal thymus Thymoma Lung adenocarcinoma Normal head and neck Head and neck cancer Normal breast cancer Breast Normal cervix cancer Cervical cancer Ovarian 100 10 1 0.1 USP18 mRNA levels (TPM) USP18 mRNA levels 0.01 0.001 © 2018 American Association for Cancer Research Figure 1. USP18 is an antineoplastic target. A, USP18 activity once inhibited will increase ISGylation and decrease stability of critical growth-regulatory proteins that are destabilized by ISGylation. B, USP18 protein levels are elevated in most examined cancers (adapted from ref. 13) when compared with histopathologically normal tissues (other than for prostate cancer where variable USP18 expression was detected). Reduced USP18 protein expression profiles were observed in kidney and stomach cancers as compared with corresponding histopathologically normal tissues. C, USP18 mRNA levels are significantly elevated in diverse cancers, as indicated by analysis of The Cancer Genome Atlas (ÃÃ, P < 0.01; ÃÃÃ, P < 0.001, two-tailed t tests). and human models (16–18). ISG15 expression is markedly from evidence for its important role in hematopoiesis by mod- enhanced by treatment with type I IFN, all-trans-retinoic acid ulating ubiquitin-dependent pathways and ubiquitination (see (RA), lipopolysaccharide, or double-stranded RNA, indicating the Supplementary Fig. S1A), which regulate species that control diverse pharmacologic pathways that could be affected by USP18 myeloid cell differentiation (16–18). inhibition (18–20). ISG15 expression is also elevated in tumor Prior work revealed that USP18 predominately acts to remove cells exposed to epigenetic-modifying agents. This triggers cyto- ISG15 from substrate proteins (18). Initial studies that engineered solic sensing of double-stranded RNA, including endogenous and characterized USP18-deficient mice found that knockout of retroviruses, which can alter type I IFN response (21, 22). Protein USP18 preferentially increased levels of intracellular ISG15 con- sequence and biochemical analyses established that USP18 is a jugates (18, 23). Subsequent in vitro studies found that USP18 USP family member (16–18). USP18, like other USPs, has DUB hydrolyzed ISG15 carboxyl-terminal extension proteins as com- activity (16–18). An early role for USP18 in cancer biology came pared with other ubiquitin-like proteins (18). This highlighted OF2 Cancer Res; 78(3) February 1, 2018 Cancer Research Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst January 17, 2018; DOI: 10.1158/0008-5472.CAN-17-1752 USP18 as an Antineoplastic Target
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Uncovering Ubiquitin and Ubiquitin-Like Signaling Networks Alfred C
    REVIEW pubs.acs.org/CR Uncovering Ubiquitin and Ubiquitin-like Signaling Networks Alfred C. O. Vertegaal* Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands CONTENTS 8. Crosstalk between Post-Translational Modifications 7934 1. Introduction 7923 8.1. Crosstalk between Phosphorylation and 1.1. Ubiquitin and Ubiquitin-like Proteins 7924 Ubiquitylation 7934 1.2. Quantitative Proteomics 7924 8.2. Phosphorylation-Dependent SUMOylation 7935 8.3. Competition between Different Lysine 1.3. Setting the Scenery: Mass Spectrometry Modifications 7935 Based Investigation of Phosphorylation 8.4. Crosstalk between SUMOylation and the and Acetylation 7925 UbiquitinÀProteasome System 7935 2. Ubiquitin and Ubiquitin-like Protein Purification 9. Conclusions and Future Perspectives 7935 Approaches 7925 Author Information 7935 2.1. Epitope-Tagged Ubiquitin and Ubiquitin-like Biography 7935 Proteins 7925 Acknowledgment 7936 2.2. Traps Based on Ubiquitin- and Ubiquitin-like References 7936 Binding Domains 7926 2.3. Antibody-Based Purification of Ubiquitin and Ubiquitin-like Proteins 7926 1. INTRODUCTION 2.4. Challenges and Pitfalls 7926 Proteomes are significantly more complex than genomes 2.5. Summary 7926 and transcriptomes due to protein processing and extensive 3. Ubiquitin Proteomics 7927 post-translational modification (PTM) of proteins. Hundreds ff fi 3.1. Proteomic Studies Employing Tagged of di erent modi cations exist. Release 66 of the RESID database1 (http://www.ebi.ac.uk/RESID/) contains 559 dif- Ubiquitin 7927 ferent modifications, including small chemical modifications 3.2. Ubiquitin Binding Domains 7927 such as phosphorylation, acetylation, and methylation and mod- 3.3. Anti-Ubiquitin Antibodies 7927 ification by small proteins, including ubiquitin and ubiquitin- 3.4.
    [Show full text]
  • Α Are Regulated by Heat Shock Protein 90
    The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90- α Tomoh Matsumiya, Tadaatsu Imaizumi, Hidemi Yoshida, Kei Satoh, Matthew K. Topham and Diana M. Stafforini This information is current as of October 2, 2021. J Immunol 2009; 182:2717-2725; ; doi: 10.4049/jimmunol.0802933 http://www.jimmunol.org/content/182/5/2717 Downloaded from References This article cites 44 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/182/5/2717.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90-␣1 Tomoh Matsumiya,*‡ Tadaatsu Imaizumi,‡ Hidemi Yoshida,‡ Kei Satoh,‡ Matthew K. Topham,*† and Diana M. Stafforini2*† Retinoic acid-inducible gene I (RIG-I) is an intracellular pattern recognition receptor that plays important roles during innate immune responses to viral dsRNAs.
    [Show full text]
  • Protein Stability: a Crystallographer's Perspective
    IYCr crystallization series Protein stability: a crystallographer’s perspective Marc C. Deller,a* Leopold Kongb and Bernhard Ruppc,d ISSN 2053-230X aStanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA, bLaboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA, cDepartment of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA, and dDepartment of Genetic Epidemiology, Medical University of Innsbruck, Received 27 November 2015 Schopfstrasse 41, A-6020 Innsbruck, Austria. *Correspondence e-mail: [email protected] Accepted 21 December 2015 ¨ Edited by H. M. Einspahr, Lawrenceville, USA Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration Keywords: protein stability; protein for academic researchers studying proteins. An understanding of protein crystallization; protein disorder; crystallizability. stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein
    [Show full text]
  • Differential Expression of Multiple Disease-Related Protein Groups
    brain sciences Article Differential Expression of Multiple Disease-Related Protein Groups Induced by Valproic Acid in Human SH-SY5Y Neuroblastoma Cells 1,2, 1, 1 1 Tsung-Ming Hu y, Hsiang-Sheng Chung y, Lieh-Yung Ping , Shih-Hsin Hsu , Hsin-Yao Tsai 1, Shaw-Ji Chen 3,4 and Min-Chih Cheng 1,* 1 Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; [email protected] (T.-M.H.); [email protected] (H.-S.C.); [email protected] (L.-Y.P.); fi[email protected] (S.-H.H.); [email protected] (H.-Y.T.) 2 Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan 3 Department of Psychiatry, Mackay Medical College, New Taipei City 25245, Taiwan; [email protected] 4 Department of Psychiatry, Taitung Mackay Memorial Hospital, Taitung County 95064, Taiwan * Correspondence: [email protected]; Tel.: +886-3888-3141 (ext. 475) These authors contributed equally to this work. y Received: 10 July 2020; Accepted: 8 August 2020; Published: 12 August 2020 Abstract: Valproic acid (VPA) is a multifunctional medication used for the treatment of epilepsy, mania associated with bipolar disorder, and migraine. The pharmacological effects of VPA involve a variety of neurotransmitter and cell signaling systems, but the molecular mechanisms underlying its clinical efficacy is to date largely unknown. In this study, we used the isobaric tags for relative and absolute quantitation shotgun proteomic analysis to screen differentially expressed proteins in VPA-treated SH-SY5Y cells. We identified changes in the expression levels of multiple proteins involved in Alzheimer’s disease, Parkinson’s disease, chromatin remodeling, controlling gene expression via the vitamin D receptor, ribosome biogenesis, ubiquitin-mediated proteolysis, and the mitochondrial oxidative phosphorylation and electron transport chain.
    [Show full text]
  • The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-To-ER Retrograde Transport
    Supplementary Materials The proteasomal deubiquitinating enzyme PSMD14 regulates macroautophagy by controlling Golgi-to-ER retrograde transport Bustamante HA., et al. Figure S1. siRNA sequences directed against human PSMD14 used for Validation Stage. Figure S2. Primer pairs sequences used for RT-qPCR. Figure S3. The PSMD14 DUB inhibitor CZM increases the Golgi apparatus area. Immunofluorescence microscopy analysis of the Golgi area in parental H4 cells treated for 4 h either with the vehicle (DMSO; Control) or CZM. The Golgi marker GM130 was used to determine the region of interest in each condition. Statistical significance was determined by Student's t-test. Bars represent the mean ± SEM (n =43 cells). ***P <0.001. Figure S4. CZM causes the accumulation of KDELR1-GFP at the Golgi apparatus. HeLa cells expressing KDELR1-GFP were either left untreated or treated with CZM for 30, 60 or 90 min. Cells were fixed and representative confocal images were acquired. Figure S5. Effect of CZM on proteasome activity. Parental H4 cells were treated either with the vehicle (DMSO; Control), CZM or MG132, for 90 min. Protein extracts were used to measure in vitro the Chymotrypsin-like peptidase activity of the proteasome. The enzymatic activity was quantified according to the cleavage of the fluorogenic substrate Suc-LLVY-AMC to AMC, and normalized to that of control cells. The statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n=3). **P <0.01; n.s., not significant. Figure S6. Effect of CZM and MG132 on basal macroautophagy. (A) Immunofluorescence microscopy analysis of the subcellular localization of LC3 in parental H4 cells treated with either with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h.
    [Show full text]
  • RAB-GAP Immunity Signaling by the Tbc1d23 Spatiotemporal Inhibition
    Downloaded from http://www.jimmunol.org/ by guest on September 27, 2021 is online at: average * The Journal of Immunology , 17 of which you can access for free at: 2012; 188:2905-2913; Prepublished online 6 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1102595 http://www.jimmunol.org/content/188/6/2905 Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras, Ivana V. Yang, Brad Lackford, David W. H. Riches, Rytis Prekeris, Jonathan H. Freedman, David A. Schwartz and Scott Alper J Immunol cites 58 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/06/jimmunol.110259 5.DC1 This article http://www.jimmunol.org/content/188/6/2905.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 27, 2021. The Journal of Immunology Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras,*,† Ivana V. Yang,†,‡ Brad Lackford,x David W.
    [Show full text]
  • Anahita Dastur's Dissertation
    Copyright by Anahita R Dastur 2007 The Dissertation Committee for Anahita R Dastur Certifies that this is the approved version of the following dissertation: Characterization of Herc5: the major ligase for ISG15, an antiviral ubiquitin-like protein Committee: Jon Huibregtse, Supervisor Robert Krug Makkuni Jayaram Tanya Paull John Sisson Characterization of Herc5: the major ligase for ISG15, an antiviral ubiquitin-like protein by Anahita R Dastur, B.Sc., M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2007 Acknowledgements I am grateful to my adviser, Dr. Jon Huibregtse, who is not only an excellent scientist but also a wonderful person. In the five years in his lab, I enjoyed complete scientific freedom, but he was always around for guidance and advice. I would also like to extend my gratitude to the members of my committee, Drs. Robert Krug, Makkuni Jayaram, Tanya Paull and John Sisson, for their interest in my work and useful suggestions. I was lucky to have really nice lab members – Nancy, Sylvie, Younghoon, Hyung Cheol, Larissa, Tracy and William. They made each day in the lab a day to look forward to. My friends – Anirvan, Raju, Priya, Younghoon, Nivedita and Niloufer - have been good sounding boards as well as a great support system. I would like to thank Dr. Umesh Varshney, whose passion for science inspired me to pursue a career in this field. My parents have always been proud of my achievements and what I am today is because of their hard work and unconditional love, so I cannot thank them enough.
    [Show full text]
  • Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132
    Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132 Hee-Jung Kim1, Hye Joon Joo2, Yung Hee Kim1, Soyeon Ahn4, Jun Chang1, Kyu-Baek Hwang3, Dong-Hee Lee2, Kong-Joo Lee1* 1 The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul, Korea, 2 Department of Life Science, Division of Life & Pharmaceutical Sciences, Department of Bioinspired Science, Ewha Womans University, Seoul, Korea, 3 School of Computer Science and Engineering, Soongsil University, Seoul, Korea, 4 Department of Research and Education, Seoul National University Bundang Hospital, Seongnam, Korea Abstract The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly- ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line.
    [Show full text]
  • Comparative Analysis of the Ubiquitin-Proteasome System in Homo Sapiens and Saccharomyces Cerevisiae
    Comparative Analysis of the Ubiquitin-proteasome system in Homo sapiens and Saccharomyces cerevisiae Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Hartmut Scheel aus Rheinbach Köln, 2005 Berichterstatter: Prof. Dr. R. Jürgen Dohmen Prof. Dr. Thomas Langer Dr. Kay Hofmann Tag der mündlichen Prüfung: 18.07.2005 Zusammenfassung I Zusammenfassung Das Ubiquitin-Proteasom System (UPS) stellt den wichtigsten Abbauweg für intrazelluläre Proteine in eukaryotischen Zellen dar. Das abzubauende Protein wird zunächst über eine Enzym-Kaskade mit einer kovalent gebundenen Ubiquitinkette markiert. Anschließend wird das konjugierte Substrat vom Proteasom erkannt und proteolytisch gespalten. Ubiquitin besitzt eine Reihe von Homologen, die ebenfalls posttranslational an Proteine gekoppelt werden können, wie z.B. SUMO und NEDD8. Die hierbei verwendeten Aktivierungs- und Konjugations-Kaskaden sind vollständig analog zu der des Ubiquitin- Systems. Es ist charakteristisch für das UPS, daß sich die Vielzahl der daran beteiligten Proteine aus nur wenigen Proteinfamilien rekrutiert, die durch gemeinsame, funktionale Homologiedomänen gekennzeichnet sind. Einige dieser funktionalen Domänen sind auch in den Modifikations-Systemen der Ubiquitin-Homologen zu finden, jedoch verfügen diese Systeme zusätzlich über spezifische Domänentypen. Homologiedomänen lassen sich als mathematische Modelle in Form von Domänen- deskriptoren (Profile) beschreiben. Diese Deskriptoren können wiederum dazu verwendet werden, mit Hilfe geeigneter Verfahren eine gegebene Proteinsequenz auf das Vorliegen von entsprechenden Homologiedomänen zu untersuchen. Da die im UPS involvierten Homologie- domänen fast ausschließlich auf dieses System und seine Analoga beschränkt sind, können domänen-spezifische Profile zur Katalogisierung der UPS-relevanten Proteine einer Spezies verwendet werden. Auf dieser Basis können dann die entsprechenden UPS-Repertoires verschiedener Spezies miteinander verglichen werden.
    [Show full text]
  • RIG-I Regulates Myeloid Differentiation by Promoting TRIM25-Mediated Isgylation
    RIG-I regulates myeloid differentiation by promoting TRIM25-mediated ISGylation Song-Fang Wua,b,1, Li Xiaa,1, Xiao-Dong Shia, Yu-Jun Daia, Wei-Na Zhanga, Jun-Mei Zhaoa, Wu Zhanga, Xiang-Qin Wenga, Jing Lua, Huang-Ying Leb, Sheng-ce Taob, Jiang Zhua, Zhu Chena,b,2, Yue-Ying Wanga,2, and Saijuan Chena,b,2 aState Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and bKey Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China Contributed by Zhu Chen, April 21, 2020 (sent for review October 24, 2019; reviewed by Christine Chomienne and Chi Wai Eric So) Retinoic acid-inducible gene I (RIG-I) is up-regulated during granu- a process similar to ubiquitination (7). ISGylation is substantially locytic differentiation of acute promyelocytic leukemia (APL) cells involved in immune regulation, DNA repair, tumorigenesis, and induced by all-trans retinoic acid (ATRA). It has been reported that hematopoiesis (7–9). It has been reported that ISGylation also RIG-I recognizes virus-specific 5′-ppp-double-stranded RNA (dsRNA) plays an important and conservative role for normal tissue dif- and activates the type I interferons signaling pathways in innate ferentiation, especially in placental and fetal development, with immunity. However, the functions of RIG-I in hematopoiesis re- ISG15 and other ISGylation-associated genes being specifically main unclear, especially regarding its possible interaction with and highly expressed in the placenta of a wide range of species endogenous RNAs and the associated pathways that could con- from mouse to human (10–15).
    [Show full text]
  • Chemosensitivity Is Controlled by P63 Modification with Ubiquitin-Like Protein ISG15
    Chemosensitivity is controlled by p63 modification with ubiquitin-like protein ISG15 Young Joo Jeon, … , Yong Keun Jung, Chin Ha Chung J Clin Invest. 2012;122(7):2622-2636. https://doi.org/10.1172/JCI61762. Research Article Oncology Identification of the cellular mechanisms that mediate cancer cell chemosensitivity is important for developing new cancer treatment strategies. Several chemotherapeutic drugs increase levels of the posttranslational modifier ISG15, which suggests that ISGylation could suppress oncogenesis. However, how ISGylation of specific target proteins controls tumorigenesis is unknown. Here, we identified proteins that are ISGylated in response to chemotherapy. Treatment of a human mammary epithelial cell line with doxorubicin resulted in ISGylation of the p53 family protein p63. An alternative splice variant of p63, ΔNp63α, suppressed the transactivity of other p53 family members, and its expression was abnormally elevated in various human epithelial tumors, suggestive of an oncogenic role for this variant. We showed that ISGylation played an essential role in the downregulation of ΔNp63α. Anticancer drugs, including doxorubicin, induced ΔNp63α ISGylation and caspase-2 activation, leading to cleavage of ISGylated ΔNp63α in the nucleus and subsequent release of its inhibitory domain to the cytoplasm. ISGylation ablated the ability of ΔNp63α to promote anchorage- independent cell growth and tumor formation in vivo as well to suppress the transactivities of proapoptotic p53 family members. These findings establish ISG15
    [Show full text]