Department of Neurosurgery (09/25/21)

Total Page:16

File Type:pdf, Size:1020Kb

Department of Neurosurgery (09/25/21) Bulletin 2021-22 Department of Neurosurgery (09/25/21) Aneurysms and Cerebrovascular Department of Disorders and Diseases Neurosurgery The multidisciplinary medical team focuses on the treatment of aneurysms, arteriovenous fistulas, arteriovenous malformations, carotid stenosis, cavernous malformations, moyamoya and Instruction in neurological surgery begins with an introduction to stroke. It includes cerebrovascular surgeons, who perform the anatomy and physiology of the nervous system presented microsurgical procedures, and interventional radiologists, who in the first-year course in neural sciences directed by the offer minimally invasive endovascular treatment options. We Department of Neuroscience (http://neurosci.wustl.edu/), also have a team of critical care neurologists, who coordinate with the participation of the neurosurgery faculty. During postprocedure care in a dedicated neurointensive care unit, as the second year, the Department of Neurosurgery (http:// well as neurologists, who coordinate neurorehabilitation care at www.neurosurgery.wustl.edu) presents the course in diseases The Rehabilitation Institute of St. Louis. of the nervous system in conjunction with the departments of Neurology, Pathology & Immunology, Molecular Microbiology, Spine Injuries and Disorders Medicine and Pediatrics. The course emphasizes how knowledge derived from basic or clinical investigations leads to Washington University spinal neurosurgeons are recognized as improvements in clinical care. During the third year, students national leaders in the treatment of disorders of the spine, spinal may elect to participate in a two- or four-week neurosurgery cord and peripheral nervous system. We use a multidisciplinary clerkship that introduces them to the clinical care of patients with approach to treating spinal diseases and disorders. The diseases of the nervous system. Neurosurgical faculty members personalized care of each patient is emphasized. Where work with the neurologists to provide lectures, demonstrations appropriate, spine patients receive comprehensive, collaborative and teaching exercises involving patients with neurological care from both neurosurgeons and specialists in thoracic diagnoses as part of the clinical medicine course. Students surgery; vascular surgery; ear, nose and throat surgery; medical may elect to fulfill their neurology requirement by rotating on the oncology; radiation oncology; anesthesia; pain management; neurosurgery service. Students may also choose neurosurgery and physiatry. as part of the surgical specialty rotations. Neurosurgical Peripheral Nerves diagnosis, critical care, operative treatment and ethical issues in patient management are emphasized. During the fourth year, Washington University neurosurgeons work with a students may choose from several advanced electives, including multidisciplinary group of surgeons, neurologists and therapists clinical externships in neurosurgery and experiences in basic or to customize patient treatments to maximize functional clinical/translational research. outcomes. Washington University neurosurgeons have extensive expertise in advanced microsurgical reconstructive techniques Neurosurgical Specialties and are on the forefront of new and innovative ways to improve patient outcomes. As members of one of the most comprehensive neurosurgical programs in both the region and the nation, Washington Pediatric Neurosurgery University neurosurgeons offer exceptional care in a variety of The entire spectrum of neurosurgical disorders in children is specialties. treated by pediatric neurosurgeons and physicians in related Tumors disciplines. Our pediatric neurosurgeons are also part of multidisciplinary teams that provide care in several specialized The Department of Neurosurgery at Washington University pediatric centers, including the brachial plexus center, the center School of Medicine offers a comprehensive, multidisciplinary for cerebral palsy spasticity, the neurofibromatosis clinic, the approach for the treatment of all types of neurological tumors, pediatric epilepsy center, the pediatric gamma knife program, the including brain tumors, inoperable tumors, pituitary tumors, pediatric neuro-oncology program, and the spina bifida clinic. skull-base tumors and spine tumors. Depending on the type of tumor, our multidisciplinary team comprises ophthalmologists, Epilepsy otolaryngologists, radiation oncologists, neuroradiologists, Our neurosurgeons are nationally recognized for their care of neuroanesthesiologists, medical oncologists and other patients with epilepsy as well as research in this field. They specialists. are part of a multidisciplinary team that works together to develop the optimal plan to help patients control or minimize their seizures. The Department of Neurosurgery offers care for 1 Bulletin 2021-22 Department of Neurosurgery (09/25/21) both adults and children with medically intractable seizures; it BS University of Colorado Boulder 2000 provides a full range of surgical options for intractable epilepsy, MD Washington Univ in St. Louis 2005 including implantable seizure-control devices, resection of Joshua L Dowling, MD seizure foci, and vagal nerve stimulation. Professor of Neurological Surgery (primary appointment) Movement Disorders MD Tulane University 1989 BA Yale University 1985 The multidisciplinary team specializes in the treatment of movement disorders such as ataxia, catatonia, dystonia, Gavin P. Dunn, PHD, MD essential tremor, Huntington's disease, myoclonus, Parkinson's Associate Professor of Neurological Surgery (primary disease, and Tourette's syndrome. For some patients with appointment) Parkinson's disease or essential tremor, medications are often Associate Professor of Neurology inadequate to control disabling symptoms. These patients may Associate Professor of Pathology and Immunology benefit from stereotactic neurosurgical procedures to improve PHD Washington Univ in St. Louis 2006 their function. MD Washington Univ in St. Louis 2006 BA Princeton University 1998 Website: http://www.neurosurgery.wustl.edu H Faculty Gabriel E. Haller, PHD Ralph G. Dacey, MD (http://www.neurosurgery.wustl.edu/ Assistant Professor of Neurological Surgery (primary patient-care/find-a-physician/clinical-faculty/ralph-g-dacey- appointment) jr-md-229/) Assistant Professor of Genetics Department Head Assistant Professor of Neurology PHD Washington Univ in St. Louis 2013 Visit our website for more information about our faculty (http:// BS University of Chicago 2008 www.neurosurgery.wustl.edu/patient-care/find-a-physician/ clinical-faculty-243/) and their appointments. K Albert H Kim, MA, PHD, MD B Professor of Neurological Surgery (primary appointment) Professor of Developmental Biology Peter Brunner, PHD, MS Professor of Neurology Associate Professor of Neurological Surgery (primary MA Washington Univ in St. Louis 1999 appointment) PHD New York U. School of Medicine 2002 Associate Professor of Neurology MD New York U. School of Medicine 2003 PHD University of Graz 2013 BA Harvard University 1994 BS University of Graz 2004 MS University of Graz 2005 L C Eric Claude Leuthardt, MD Shi Hui Huang Professor of Neurological Surgery (primary Michael R Chicoine, MD appointment) Professor of Neurological Surgery (primary appointment) Professor of Mechanical Engineering and Applied Science. August A. Busch, Jr. Distinguished Professor Professor of Neuroscience BS University of Illinois 1985 BS Saint Louis University 1995 MD University of California 1990 MD University of Pennsylvania 1999 D David D Limbrick Jr, PHD, MD Ralph G Dacey Jr, MD Professor of Neurological Surgery (primary appointment) Henry G and Edith R Schwartz Professor of Neurological Professor of Pediatrics Surgery (primary appointment) T.S. Park, MD, Chair in Pediatric Neurosurgery MD University of Virginia 1974 PHD Virginia Comm University 2001 BA Harvard University 1970 MD Virginia Comm University 2001 BS College of William and Mary 1995 Ian G Dorward, MD Associate Professor of Neurological Surgery (primary M appointment) Matthew R. MacEwan, PHD Associate Professor of Orthopaedic Surgery 2 Bulletin 2021-22 Department of Neurosurgery (09/25/21) Assistant Professor of Neurological Surgery (primary R appointment) PHD Washington Univ in St. Louis 2015 Wilson Z Ray, MD BS Case Western Reserve Univ 2004 Professor of Neurological Surgery (primary appointment) Professor of Biomedical Engineering James Patterson McAllister, PHD Professor of Orthopaedic Surgery Professor of Neurological Surgery (primary appointment) MD University of Iowa 2004 BA Earlham College 1970 PHD Purdue University 1976 S Sean David McEvoy, MD, MHS Paul Santiago, MD Assistant Professor of Neurological Surgery (primary Professor of Neurological Surgery (primary appointment) appointment) Professor of Orthopaedic Surgery Assistant Professor of Pediatrics MD Yale University 1995 MD Yale University 2010 BS Stanford University 1990 BS University of Iowa 2005 Matthew D Smyth, MD MHS Yale University 2010 Appoline Blair Endowed Chair Professor of Neurological Surgery Camilo Alejandro Molina, MD (primary appointment) Assistant Professor of Neurological Surgery (primary Professor of Pediatrics appointment) BA Cornell University 1992 Assistant Professor of Orthopaedic Surgery MD University of CA San Francisco 1996 MD Johns Hopkins University 2013 Jennifer Mae Strahle, MD BA Miami University 2008 Associate Professor of Neurological Surgery (primary O appointment) Associate Professor of Orthopaedic Surgery Joshua William Osbun, MD Associate
Recommended publications
  • Common Medical Comorbidities Associated with Cerebral Palsy
    Common Medical Comorbidities Associated with Cerebral Palsy a,b, a,b DavidW. Pruitt, MD *,TobiasTsai,MD KEYWORDS Cerebral palsy Seizures Gastroesophageal reflux Sleep Pain The 2004 International Workshop of Definition and Classification of Cerebral Palsy definition includes the following: ‘‘The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, perception, cognition, communication, and behaviors, by epilepsy, and by secondary musculoskeletal problems.’’1 The Surveillance for Cerebral Palsy in Europe (SCPE) collaboration has reported that 31% of children with cerebral palsy (CP) have severe intellectual disability, 11% have severe visual disability, and 21% have epilepsy.2 Thus, although CP is primarily a disorder of movement, many children with this diagnosis have other impairments that may affect their function, quality of life, and life expectancy. Children with a diag- nosis of CP often have multiple medical issues that are best addressed by an interdis- ciplinary medical team, including a ‘‘medical home’’ with primary care physicians and additional assistance from multiple medical subspecialists. A comprehensive health plan implemented in the context of a well-defined ‘‘medical home’’ is a critical compo- nent to ensuring that the health needs of children with CP are adequately addressed.3,4 Management of the multisystem-associated comorbidities requires a careful review of systems. Cerebral palsy is defined as a nonprogressive neurologic condition; however, as the child grows and matures physically
    [Show full text]
  • Electrophysiologic Monitoring in Neurointensive Care
    Ovid: Electrophysiologic monitoring in neurointensive care. Main Search Page Ask A LibrarianDisplay Knowledge BaseHelpLogoff Full Text Save Article TextEmail Article TextPrint Preview Electrophysiologic monitoring in neurointensive care Procaccio, Francesco MD*†; Polo, Alberto MD*; Lanteri, Paola MD†; Sala, ISSN: Author(s): Francesco MD† 1070- 5295 Issue: Volume 7(2), April 2001, pp 74-80 Accession: Publication Type: [Neuroscience] 00075198- Publisher: © 2001 Lippincott Williams & Wilkins, Inc. 200104000- University and City Hospital Neuroanesthesia and Intensive Care, Department 00004 of Neurological Sciences and Vision, Divisions of *Neurology and Full †Neurosurgery, Verona, Italy. Institution(s): Text Correspondence to Francesco Procaccio, MD, Neuroanesthesia and Intensive (PDF) Care, University and City Hospital, Pz Stefani, 1, 37124 Verona, Italy; e-mail: 69 K [email protected] Email Jumpstart Table of Contents: Find ≪ Neurologic complications in intensive care. Citing ≫ Pediatric neurologic emergencies. Articles ≪ Abstract Table Links of Cumulative evidence of potential benefits of Contents Abstract electroencephalography (EEG) and evoked potentials in About Complete Reference the management of patients with acute cerebral this ExternalResolverBasic damage has been confirmed. Continuous EEG Journal Outline monitoring is the best method for detecting ≫ nonconvulsive seizures and is strongly recommended for the treatment of status epilepticus. Continuously displayed, ● Abstract validated quantitative EEG may facilitate early detection
    [Show full text]
  • Critical Care Neurology and Neuro Critical Care
    CRITICAL CARE NEUROLOGY AND NEURO CRITICAL CARE 1 of 86 ROADMAP CRITICAL CARE NEUROLOGY • Analgesia, sedation and neuromuscular blockade o Basic principles, goals, general guidelines and assessment o Table of established drugs o Sedation for endotracheal intubation in critical care o Specialist analgesia in critical care • Sleep • Neurological dysfunction in critical care o Acute brain dysfunction o Delirium o Autonomic dysfunction o Critical illness neuromyopathy o Encephalopathy o Disease specific / syndromal encephalopathies ( ° Hypertensive encephalopathies ° Toxic and metabolic encephalopathies o Common infectious and inflammatory diseases of the nervous system ° Meningitis ° Encephalitis - gereralised and limbic • Transverse myelitis ° Acute inflammatory demyelinating polyneuropathy (AIDP) ° Myaesthenic crises ° Therapeutic plasma exchange and IVIg o Epilespy and seizures ° EEG ° Pathophysiology ° Epidemiology and epileptogenesis ° Epilepsy in ICU • Post injury epilepsy • Status epilepticus ° Anti-epileptic drugs (AEDs) • The controversy of prophylactic AEDs • Proconvulsant drugs o Persistent disorders of consciousness o Brain stem death: diagnosis, pathophysiology and management of the potential organ donor. CORE TOPICS IN NEURO CRITICAL CARE • Secondary brain injury o Pathophysiology – oedema, vascular autoregulation, sodium, glucose, temperature (metabolic supply / demand imbalance), oxygen, carbon dioxide o Prevention and neuroprotection – discussed for each topic above plus pharmacological therapies (epo, progesterone, magnesium
    [Show full text]
  • Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke
    International Journal of Molecular Sciences Review Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke Yun Hwa Choi 1, Collin Laaker 2, Martin Hsu 2, Peter Cismaru 3, Matyas Sandor 4 and Zsuzsanna Fabry 2,4,* 1 School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 2 Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] (C.L.); [email protected] (M.H.) 3 Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 4 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] * Correspondence: [email protected] Abstract: Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communi- cation. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, Citation: Choi, Y.H.; Laaker, C.; Hsu, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation M.; Cismaru, P.; Sandor, M.; Fabry, Z.
    [Show full text]
  • The Range of Neurological Complications in Chikungunya Fever
    Neurocrit Care DOI 10.1007/s12028-017-0413-8 REVIEW ARTICLE The Range of Neurological Complications in Chikungunya Fever 1 2 3 4 5,6 T. Cerny • M. Schwarz • U. Schwarz • J. Lemant • P. Ge´rardin • E. Keller1 Ó Springer Science+Business Media New York 2017 Abstract assigning categories A–C, category A representing the Background Chikungunya fever is a globally spreading highest level of quality. Only A and B cases were con- mosquito-borne disease that shows an unexpected neu- sidered for further analysis. After general analysis, cases rovirulence. Even though the neurological complications were clustered according to geospatial criteria for subgroup have been a major cause of intensive care unit admission analysis. and death, to date, there is no systematic analysis of their Results Thirty-six of 1196 studies were included, yielding spectrum available. 130 cases. Nine were ranked as category A (diagnosis of Objective To review evidence of neurological manifesta- Neuro-Chikungunya probable), 55 as B (plausible), and 51 tions in Chikungunya fever and map their epidemiology, as C (disputable). In 15 cases, alternative diagnoses were clinical spectrum, pathomechanisms, diagnostics, therapies more likely. Patient age distribution was bimodal with a and outcomes. mean of 49 years and a second peak in infants. Fifty per- Methods Case report and systematic review of the litera- cent of the cases occurred in patients <45 years with no ture followed established guidelines. All cases found were reported comorbidity. Frequent diagnoses were encephali- assessed using a 5-step clinical diagnostic algorithm tis, optic neuropathy, neuroretinitis, and Guillain–Barre´ syndrome. Neurologic conditions showing characteristics of a direct viral pathomechanism showed a peak in infants Electronic supplementary material The online version of this and a second one in elder patients, and complications and article (doi:10.1007/s12028-017-0413-8) contains supplementary neurologic sequelae were more freque material, which is available to authorized users.
    [Show full text]
  • CP Research News 2021
    Monday 8 March 2021 Cerebral Palsy Alliance is delighted to bring you this free weekly bulletin of the latest published research into cerebral palsy. Our organisation is committed to supporting cerebral palsy research worldwide - through information, education, collaboration and funding. Find out more at cerebralpalsy.org.au/our-research Professor Nadia Badawi AM Macquarie Group Foundation Chair of Cerebral Palsy Subscribe to CP Research News Interventions and Management 1. Upper Extremity Strengthening for an Individual With Dyskinetic Cerebral Palsy: A Case Report Laura Graber, Claudia Senesac Pediatr Phys Ther. 2021 Feb 23. doi: 10.1097/PEP.0000000000000785. Online ahead of print. Purpose: The purpose of this case is to describe an exercise program designed for an individual with athetoid cerebral palsy who had difficulties with fine motor control and shoulder girdle stability. Summary of key points: ET is a 19-year-old man with dyskinetic-type cerebral palsy with rapidly fluctuating muscle tone and movements that preclude trunk and extremity control necessary for the effective performance of functional activities. The participant underwent a 6-week intense physical therapy program aimed at strength and stability at the shoulder girdle and fine motor movements of the hand. Conclusions: ET had improvements on the Performance of Upper Limb Scale, myometry, and from family report after 6 weeks. Recommendations: A progressive exercise program aimed at improving proximal stability and fine motor function might be an appropriate intervention
    [Show full text]
  • The Cerebellum in Children with Spastic Cerebral Palsy: Volumetrics MRI Study
    Prog Health Sci 2011, Vol 1 , No2 Cerebellum cerebral palsy volumetrics study The cerebellum in children with spastic cerebral palsy: Volumetrics MRI study Gościk E.1*, Kułak W.2, Gościk J.3, Gościk J.4, Okurowska-Zawada B.2, Tarasow E.5 1 Department of Children’s Radiology, Medical University of Bialystok, Poland 2 Department of Pediatric Rehabilitation, Medical University of Bialystok, Poland 3 Faculty of Computer Science, Bialystok University of Technology, Poland 4 Faculty of Mechanical Engineering, Bialystok University of Technology, Poland 5 Department of Radiology, Medical University of Bialystok, Poland ABSTRACT __________________________________________________________________________________________ Purpose: To determine the volume of the difference between the total cerebellar volume and cerebellum in children with spastic cerebral palsy gender in patients with CP was found. No (CP) in relation to risk factors and motor significant relationship between cerebellar volume development. and birth weight, Apgar score, gestational age, and Material and methods: The present study included Gross Motor Function Classification System 30 children with spastic CP, aged 2-17 years. The (GMFCS) level were noted. Positive correlations volume of the cerebellum was examined on sagittal between birth weight, Apgar score, gestational age, magnetic resonance images (MRI) of the CP and GMFCS level, between Apgar score and patients and on 33 healthy subjects. To estimate the gestational age, or between gestational age and total cerebellum volume of each subject we used GMFCS level were found. Analyze 10 Biomedical Imaging Software. Conclusion: Our results show that children with Results: Children with spastic CP (129726,2 ± spastic CP had smaller volumes of the cerebellum 26040,72 mm3) had a significantly smaller mean of as compared to controls.
    [Show full text]
  • Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury
    Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Irimia, Andrei, Micah C. Chambers, Carinna M. Torgerson, Maria Filippou, David A. Hovda, Jeffry R. Alger, Guido Gerig, et al. 2012. Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury. Frontiers in Neurology 3:10. Published Version doi://10.3389/fneur.2012.00010 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8462352 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA METHODS ARTICLE published: 06 February 2012 doi: 10.3389/fneur.2012.00010 Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury Andrei Irimia1, Micah C. Chambers 1, Carinna M.Torgerson1, Maria Filippou 2, David A. Hovda2, Jeffry R. Alger 3, Guido Gerig 4, Arthur W.Toga1, Paul M. Vespa2, Ron Kikinis 5 and John D. Van Horn1* 1 Laboratory of Neuro Imaging, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA 2 Brain Injury Research Center, Departments of Neurology and Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA 3 Department of Radiology, David
    [Show full text]
  • Cerebral Palsy: Critical Elements of Care
    Cerebral Palsy CRITICAL ELEMENTS OF CARE Produced by The Center for Children with Special Needs Children's Hospital and Regional Medical Center, Seattle, WA Fourth Edition, Revised 2/2006 The Critical Elements of Care (CEC) consider care issues across the life span of the child. The intent of the document is to educate and support those caring for a child with Cerebral Palsy. The CEC is intended to assist the Primary Care Provider in the recognition of symptoms, diagnosis and care management related to a specific diagnosis. The document provides a framework for a consistent approach to manage- ment of these children. These guidelines were developed through a consensus process. The design team was multidisciplinary with state-wide representation involving primary and tertiary care providers, family members, and a represen- tative from a health plan. Original Consensus Team: Leslie Babbitt, RD, MS Jean Popalisky, RN, MN Barbara Boldrin, RN Diana Sandoval, MS, OTR/L Charles Cowan, MD Pat Trulson, PHN Betsey Denonville, RN Stephanie Underwood, Parent Kathy Mullin, RN William Walker, MD Chris Olson, MD Technical Assistance: John (Jeff) McLaughlin, MD Content reviewed and updated 2/06: William Walker, MD DISCLAIMER: Individual variations in the condition of the patient, status of patient and family, and the response to treatment, as well as other circumstances, mean that the optimal treatment outcome for some patients may be obtained from practices other than those recommended in this document. This consensus based document is not intended to replace sound clinical judgement or individualized consulta- tion with the responsible provider regarding patient care needs. © 1997, 2002, 2006 Children’s Hospital and Regional Medical Center, Seattle, Washington.
    [Show full text]
  • Neurosurgeons and Neurocritical Care
    American Association of Neurological Surgeons and Congress of Neurological Surgeons POSITION STATEMENT on Neurosurgeons and Neurocritical Care Summary Statement Accreditation Council for Graduate Medical Education (ACGME)-approved neurosurgical residency training includes critical care management of patients with neurological disorders. Neurosurgeons are fully trained in neurointensive care by reason of training program requirements, and upon completion of training are competent to independently manage and direct treatment of patients with neurological disorders requiring critical care. Additional training in critical care is optional, but not necessary for neurosurgeons to manage neurocritical care patients following residency training. Certification in neurological surgery is through the American Board of Neurological Surgery (ABNS), and includes certification for critical care of patients with neurological conditions. No other certification is required for ABNS diplomats for privileges in neurological surgery or neurocritical care management. Additional certification by organizations unrecognized by the American Board of Medical Specialties (ABMS) is unnecessary for ensuring neurosurgeon training, competency, or credentialing in intensive or critical care. Patient Access to Neurosurgeon Care in Critical Care Settings The American Association of Neurological Surgeons (AANS) (http://www.aans.org) and the Congress of Neurological Surgeons (CNS) (http://www.cns.org) are professional scientific and educational associations with over 7,400 members worldwide. All active members of the AANS are board certified by the American Board of Neurological Surgery (ABNS), the Royal College of Physicians and Surgeons of Canada, or the Mexican Council of Neurological Surgery, AC. The AANS and the CNS are dedicated to advancing the specialty of neurological surgery in order to provide the highest quality of neurosurgical care to the public.
    [Show full text]
  • Cerebral Palsy
    Cerebral Palsy What is Cerebral Palsy? Doctors use the term cerebral palsy to refer to any one of a number of neurological disorders that appear in infancy or early childhood and permanently affect body movement and muscle coordination but are not progressive, in other words, they do not get worse over time. • Cerebral refers to the motor area of the brain’s outer layer (called the cerebral cortex), the part of the brain that directs muscle movement. • Palsy refers to the loss or impairment of motor function. Even though cerebral palsy affects muscle movement, it is not caused by problems in the muscles or nerves. It is caused by abnormalities inside the brain that disrupt the brain’s ability to control movement and posture. In some cases of cerebral palsy, the cerebral motor cortex has not developed normally during fetal growth. In others, the damage is a result of injury to the brain either before, during, or after birth. In either case, the damage is not repairable and the disabilities that result are permanent. Patients with cerebral palsy exhibit a wide variety of symptoms, including: • Lack of muscle coordination when performing voluntary movements (ataxia); • Stiff or tight muscles and exaggerated reflexes (spasticity); • Walking with one foot or leg dragging; • Walking on the toes, a crouched gait, or a “scissored” gait; • Variations in muscle tone, either too stiff or too floppy; • Excessive drooling or difficulties swallowing or speaking; • Shaking (tremor) or random involuntary movements; and • Difficulty with precise motions, such as writing or buttoning a shirt. The symptoms of cerebral palsy differ in type and severity from one person to the next, and may even change in an individual over time.
    [Show full text]
  • ACGME Program Requirements for Graduate Medical Education In
    ACGME Program Requirements for Graduate Medical Education in Neuroendovascular Intervention (Proposed name change for Endovascular Surgical Neuroradiology) Summary and Impact of Major Requirement Revisions Requirement #: N/A – Subspecialty Name Requirement Revision (significant change only): Endovascular Surgical Neuroradiology Neuroendovascular Intervention 1. Describe the Review Committee’s rationale for this revision: The Review Committee, in collaboration with the Review Committees for Neurology and Neurological Surgery, determined that while this area of study goes by many different names in practice, the current name of endovascular surgical neuroradiology is not inclusive as it does not encompass the intervention portion of the subspecialty. 2. How will the proposed requirement or revision improve resident/fellow education, patient safety, and/or patient care quality? N/A 3. How will the proposed requirement or revision impact continuity of patient care? N/A 4. Will the proposed requirement or revision necessitate additional institutional resources (e.g., facilities, organization of other services, addition of faculty members, financial support; volume and variety of patients), if so, how? N/A 5. How will the proposed revision impact other accredited programs? N/A Requirement #: Int.C. Requirement Revision (significant change only): The program shall offer one year of graduate medical education in endovascular surgical neuroradiology. (Core)* The educational program in neuroendovascular intervention must be at least 24 months in length. (Core) 1. Describe the Review Committee’s rationale for this revision: This major revision reflects efforts to align the requirements with the Committee on Advanced Subspecialty Training (CAST) requirements for neuroendovascular surgery. The CAST requirements emphasize a need for greater proficiency in the outpatient evaluation and care of pre- and post-procedure endovascular patients.
    [Show full text]