How to Select Turbomachinery for Your Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PUMP STATION MECHANIC I/II DEFINITION to Perform Semi-Skilled and Skilled Work in the Installation Maintenance and Repair Of
PUMP STATION MECHANIC I/II DEFINITION To perform semi-skilled and skilled work in the installation maintenance and repair of pumps, motors, chain drives, valves and related equipment; and to do related work as required. DISTINGUISHING CHARACTERISTICS Pump Mechanic I: This is the entry level class in the Pump Mechanic series. Positions in this class normally perform beginning level mechanical repair and maintenance work on a wide variety of wastewater and storm water lift station and equipment. Under this class, individuals employed at the entry level (Pump Mechanic I) may, based on the acquisition of higher skill levels through training and experience, become eligible for promotion to the Pump Mechanic II position. This promotion would be based on satisfactory demonstration of skills through examination or certification from an accepted organization, training institution, or school and demonstrated ability to perform high level maintenance and repairs on City pump stations. Particular skill areas of interest are installation and maintenance of telemetry systems, computerized pump control systems and pump preventative maintenance programs. Pump Mechanic II: This is the journey level class in the Pump Mechanic series. Positions assigned to this class are flexibly staffed and are expected to perform the most skilled repair and maintenance work and have a thorough knowledge of the operational characteristics, maintenance and repair methods and techniques and most typical system difficulties for the full range of equipment and operational systems in a lift station. All positions assigned to this class require the ability to work independently, exercising judgment and initiative. Pump Station Mechanics II may also be expected to assist in the oversite of less experienced personnel. -
Combustion Turbines
Section 3. Technology Characterization – Combustion Turbines U.S. Environmental Protection Agency Combined Heat and Power Partnership March 2015 Disclaimer The information contained in this document is for information purposes only and is gathered from published industry sources. Information about costs, maintenance, operations, or any other performance criteria is by no means representative of EPA, ORNL, or ICF policies, definitions, or determinations for regulatory or compliance purposes. The September 2017 revision incorporated a new section on packaged CHP systems (Section 7). This Guide was prepared by Ken Darrow, Rick Tidball, James Wang and Anne Hampson at ICF International, with funding from the U.S. Environmental Protection Agency and the U.S. Department of Energy. Catalog of CHP Technologies ii Disclaimer Section 3. Technology Characterization – Combustion Turbines 3.1 Introduction Gas turbines have been in use for stationary electric power generation since the late 1930s. Turbines went on to revolutionize airplane propulsion in the 1940s, and since the 1990s through today, they have been a popular choice for new power generation plants in the United States. Gas turbines are available in sizes ranging from 500 kilowatts (kW) to more than 300 megawatts (MW) for both power-only generation and combined heat and power (CHP) systems. The most efficient commercial technology for utility-scale power plants is the gas turbine-steam turbine combined-cycle plant that has efficiencies of more than 60 percent (measured at lower heating value [LHV]35). Simple- cycle gas turbines used in power plants are available with efficiencies of over 40 percent (LHV). Gas turbines have long been used by utilities for peaking capacity. -
High Pressure Pumps
HIGH PRESSURE PUMPS 120 INDUSTRIAL DR. SLIDELL, LOUISIANA 70460 USA P: 985.649.3000 | F: 985.649.4300 THOMASPUMP.COM HIGH PRESSURE PUMPS T-GTO / T-GTO XD / T-GEAR T-GTO / T-GTO XD / T-GEAR are high pressure pumps designed for critical applications, making them the most reliable high-pressure pumps in the marketplace. FIELDS OF APPLICATION T-GTO / T-GTO XD / T-GEAR • Sanitation Cleaning • Paper Mill Showering • Truck Cleaning Facilities • Brine Injection • Environmental Waste Disposal • Boiler Feed • Mill De-scaling • Oil and Gas DESIGN T-GTO series is a heavy duty oil lubricated Pitot tube T-GTO XD series has been developed for low flow, high pump designed for critical applications making it the most pressure applications. The Pitot tube design produces a reliable high-pressure pump in the marketplace. stable, pulsation free flow. The ability to operate with low minimum flow makes the pump suitable for a wide variety With a full range of capacities from 30-400 GPM (6-100 of applications, within its performance envelope. m3hr) and pressures reaching 1600-psi (110 bar) the T-GTO offers a variety of pump choices. A robust power frame, features that include only two basic working parts: T-GEAR series is a single-stage, parallel shaft speed 1) a rotating case and 2) a stationary pick-up tube, and a increaser. Heat dissipation is from a dynamically balanced mechanical seal that only seals against suction pressure, fan blowing across the finned gearbox casing. The design ensure pump reliability in the most demanding applications. is for horizontal installation only. -
Cyclic Hydraulic Actuation for Soft Robotic Devices
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Daejeon Convention Center October 9-14, 2016, Daejeon, Korea Cyclic Hydraulic Actuation for Soft Robotic Devices Robert K Katzschmann, Austin de Maille, David L Dorhout, Daniela Rus Abstract— Undulating structures are one of the most diverse Soft Body and successful forms of locomotion in nature, both on ground Pressurized Liquid and in water. This paper presents a comparative study for actuation by undulation in water. We focus on actuating a 1DOF systems with several mechanisms. A hydraulic pump attached to a soft body allows for water movement between two inner Deflection cavities, ultimately leading to a flexing actuation in a side-to- side manner. The effectiveness of six different, self-contained designs based on centrifugal pump, flexible impeller pump, Cyclic Actuator external gear pump and rotating valves are compared. These hydraulic actuation systems combined with soft test bodies were De-Pressurized Liquid then measured at a lower and higher oscillation frequency. The deflection characteristics of the soft body, the acoustic noise of the pump and the overall efficiency of the system Fig. 1: Cyclic hydraulic actuation of a soft body through an are recorded. A brushless, centrifugal pump combined with a actuator producing undulating motions. novel rotating valve performed at both test frequencies as the most efficient pump, producing sufficiently large cyclic body deflections along with the least acoustic noise among all pumps tested. An external gear pump design produced the largest body and compact actuation with long endurance for soft fluidic deflection, but consumes an order of magnitude more power actuators [1]. -
Customizing a Self-Healing Soft Pump for Robot
ARTICLE https://doi.org/10.1038/s41467-021-22391-x OPEN Customizing a self-healing soft pump for robot ✉ Wei Tang 1, Chao Zhang 1 , Yiding Zhong1, Pingan Zhu1,YuHu1, Zhongdong Jiao 1, Xiaofeng Wei1, ✉ Gang Lu1, Jinrong Wang 1, Yuwen Liang1, Yangqiao Lin 1, Wei Wang1, Huayong Yang1 & Jun Zou 1 Recent advances in soft materials enable robots to possess safer human-machine interaction ways and adaptive motions, yet there remain substantial challenges to develop universal driving power sources that can achieve performance trade-offs between actuation, speed, portability, and reliability in untethered applications. Here, we introduce a class of fully soft 1234567890():,; electronic pumps that utilize electrical energy to pump liquid through electrons and ions migration mechanism. Soft pumps combine good portability with excellent actuation per- formances. We develop special functional liquids that merge unique properties of electrically actuation and self-healing function, providing a direction for self-healing fluid power systems. Appearances and pumpabilities of soft pumps could be customized to meet personalized needs of diverse robots. Combined with a homemade miniature high-voltage power con- verter, two different soft pumps are implanted into robotic fish and vehicle to achieve their untethered motions, illustrating broad potential of soft pumps as universal power sources in untethered soft robotics. ✉ 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:2247 | https://doi.org/10.1038/s41467-021-22391-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22391-x nspired by biological systems, scientists and engineers are a robotic vehicle to achieve untethered and versatile motions Iincreasingly interested in developing soft robots1–4 capable of when the customized soft pumps are implanted into them. -
Engineering the Future – Since 1758
MAN Energy Solutions MAN Energy Solutions Product range und product centres 3 Steinbrinkstr. 1 2 46145 Oberhausen, Germany Turbomachinery P + 49 208 692-01 F + 49 208 692-021 [email protected] www.man-es.com Factories Engineering turbomachinery Turbo- the future – Bangalore, India MAN Turbomachinery India Private Limited since 175 8 Plot No. 113 | Jigani link Road KIADB Industrial Area | Jigani | 560105 Bangalore, India Phone +91 80 6655 2200 | Fax +91 80 6655 2222 machinery We are MAN Energy Solutions SE, the force of Berlin, Germany innovation behind the world’s leading large-bore MAN Energy Solutions SE engines and turbomachinery for marine and Egellsstr. 21 13507 Berlin, Germany stationary applications. Our home is in Augsburg, Phone +49 30 440402-0 | Fax +49 30 440402-2000 Germany. But we are also close to you, in over 100 countries, with more than 15,000 employees Changzhou, China who dedicate each workday to our customer’s MAN Diesel & Turbo China Production Co. Ltd. Fengming Road 9, Wujin High-Tech Industrial Zone satisfaction. 213164 Changzhou, P. R. China Phone +86 519 8622-7001 | Fax +86 519 8622-7002 Our products are an integral part of Between 1893 and 1897, Rudolf custom, fully integrated train solutions most energy and transportation solu- Diesel and a group of M.A.N. engineers that are unsurpassed in performance, Deggendorf, Germany tions that surround you every day. We developed the first diesel engine in efficiency and reliability. MAN Energy Solutions SE produce world-class marine propulsion Augsburg, and in 1904 we produced Werftstr. 17 systems, turbomachinery for the our first steam turbine in Oberhausen. -
Wind Energy Glossary: Technical Terms and Concepts Erik Edward Nordman Grand Valley State University, [email protected]
Grand Valley State University ScholarWorks@GVSU Technical Reports Biology Department 6-1-2010 Wind Energy Glossary: Technical Terms and Concepts Erik Edward Nordman Grand Valley State University, [email protected] Follow this and additional works at: http://scholarworks.gvsu.edu/bioreports Part of the Environmental Indicators and Impact Assessment Commons, and the Oil, Gas, and Energy Commons Recommended Citation Nordman, Erik Edward, "Wind Energy Glossary: Technical Terms and Concepts" (2010). Technical Reports. Paper 5. http://scholarworks.gvsu.edu/bioreports/5 This Article is brought to you for free and open access by the Biology Department at ScholarWorks@GVSU. It has been accepted for inclusion in Technical Reports by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. The terms in this glossary are organized into three sections: (1) Electricity Transmission Network; (2) Wind Turbine Components; and (3) Wind Energy Challenges, Issues and Solutions. Electricity Transmission Network Alternating Current An electrical current that reverses direction at regular intervals or cycles. In the United States, the (AC) standard is 120 reversals or 60 cycles per second. Electrical grids in most of the world use AC power because the voltage can be controlled with relative ease, allowing electricity to be transmitted long distances at high voltage and then reduced for use in homes. Direct Current A type of electrical current that flows only in one direction through a circuit, usually at relatively (DC) low voltage and high current. To be used for typical 120 or 220 volt household appliances, DC must be converted to AC, its opposite. Most batteries, solar cells and turbines initially produce direct current which is transformed to AC for transmission and use in homes and businesses. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people. -
Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world. -
AP-42, Vol. I, 3.1: Stationary Gas Turbines
3.1 Stationary Gas Turbines 3.1.1 General1 Gas turbines, also called “combustion turbines”, are used in a broad scope of applications including electric power generation, cogeneration, natural gas transmission, and various process applications. Gas turbines are available with power outputs ranging in size from 300 horsepower (hp) to over 268,000 hp, with an average size of 40,200 hp.2 The primary fuels used in gas turbines are natural gas and distillate (No. 2) fuel oil.3 3.1.2 Process Description1,2 A gas turbine is an internal combustion engine that operates with rotary rather than reciprocating motion. Gas turbines are essentially composed of three major components: compressor, combustor, and power turbine. In the compressor section, ambient air is drawn in and compressed up to 30 times ambient pressure and directed to the combustor section where fuel is introduced, ignited, and burned. Combustors can either be annular, can-annular, or silo. An annular combustor is a doughnut-shaped, single, continuous chamber that encircles the turbine in a plane perpendicular to the air flow. Can-annular combustors are similar to the annular; however, they incorporate several can-shaped combustion chambers rather than a single continuous chamber. Annular and can-annular combustors are based on aircraft turbine technology and are typically used for smaller scale applications. A silo (frame-type) combustor has one or more combustion chambers mounted external to the gas turbine body. Silo combustors are typically larger than annular or can-annular combustors and are used for larger scale applications. The combustion process in a gas turbine can be classified as diffusion flame combustion, or lean- premix staged combustion. -
Modelling of a Turbojet Gas Turbine Engine
The University of Manchester Research Modelling of a turbojet gas turbine engine Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Klein, D., & Abeykoon, C. (2015). Modelling of a turbojet gas turbine engine. In host publication (pp. 198-204) Published in: host publication Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:02. Oct. 2021 Modelling of a Turbojet Gas Turbine Engine Dominik Klein Chamil Abeykoon Division of Applied Science, Computing and Engineering, Division of Applied Science, Computing and Engineering, Glyndwr University, Mold Road, LL11 2AW, Wrexham, Glyndwr University, Mold Road, LL11 2AW, Wrexham, United Kingdom United Kingdom E-mail: [email protected] E-mail: [email protected]; [email protected] Abstract—Gas turbines are one of the most important A. -
Horizontal Axis Water Turbine: Generation and Optimization of Green Energy
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 9-14 © Research India Publications. http://www.ripublication.com Horizontal Axis Water Turbine: Generation and Optimization of Green Energy Disha R. Verma1 and Prof. Santosh D. Katkade2 1Undergraduate Student, 2Assistant Professor, Department of Mechanical Engineering, Sandip Institute of Technology & Research Centre, Nashik, Maharashtra, (India) 1Corresponding author energy requirements. Governments across the world have been Abstract creating awareness about harnessing green energy. The The paper describes the fabrication of a Transverse Horizontal HAWT is a wiser way to harness green energy from the water. Axis Water Turbine (THAWT). THAWT is a variant of The coastal areas like Maldives have also been successfully Darrieus Turbine. Horizontal Axis Water Turbine is a turbine started using more of the energy using such turbines. The HAWT has been proved a boon for such a country which which harnesses electrical energy at the expense of water overwhelmingly depends upon fossil fuels for their kinetic energy. As the name suggests it has a horizontal axis of electrification. This technology has efficiently helped them to rotation. Due to this they can be installed directly inside the curb with various social and economic crisis [2]. The water body, beneath the flow. These turbines do not require complicated remote households and communities of Brazil any head and are also known as zero head or very low head have been electrified with these small hydro-kinetic projects, water turbines. This Project aims at the fabrication of such a where one unit can provide up to 2kW of electric power [11].