Structure and Function in Rhodopsin: the Fate of Opsin Formed Upon The

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Function in Rhodopsin: the Fate of Opsin Formed Upon The Proc. Natl. Acad. Sci. USA Vol. 92, pp. 249-253, January 1995 Biochemistry Structure and function in rhodopsin: The fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro (opsin unfolding/folding/denaturation/11-is-retinal/chromophore/regeneration) TAKESHI SAKAMOTO* AND H. GOBIND KHORANA Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 Contributed by H. Gobind Khorana, September 8, 1994 ABSTRACT We report that the light-activated bovine parallels the rate of decay of the Meta II intermediate. Thus, the metarhodopsin II, upon decay, first forms opsin in the cor- opsin formed upon decay of this intermediate regains the con- rectly folded form. The latter binds ll1-is-retinal and regen- formation ofthe native ground-state opsin. However, while being erates the native rhodopsin chromophore. However, when the kept in the dark in DM, the opsin converts to one or more opsin formed upon metarhodopsin II decay is kept in 0.1% non-11-cis-retinal-binding forms in a time-dependent manner. dodecyl maltoside, it converts in a time-dependent manner to Upon subsequent addition of 11-cis-retinal, a slow regeneration a form(s) that does not bind ll-cis-retinal. On subsequent of the native rhodopsin chromophore is observed. Usually, three addition of ll-cis-retinal, slow reversal of the non-retinal- rate components are observed for this process: the first, a rapid binding forms to the correctly folded retinal-binding form has one (t1l2 = 15-60 sec) ascribed to the surviving correctly folded been demonstrated. We have studied the influence, on the opsin, the second with a tly2 of some minutes, and the third with above interconversions, of pH, phospholipids (rod outer seg- a t1l2 of 6-10 hr. We document these findings and present ment and soybean), dithiothreitol, and a mixture of reduced additional observations on the influence of different conditions and oxidized glutathione. Chromophore regeneration in the on the reversal to the correctly folded opsin. The system appears presence of 11-cis-retinal was highest at pH 6.0-6.3. The promising for further studies of unfolding and refolding of the addition of dithiothreitol just before bleaching gave back only photoreceptor. a small amount (7%) of rhodopsin on the subsequent addition of ll-cis-retinal, whereas the slow phase(s) of chromophore MATERIALS AND METHODS formation was completely abolished. The presence of a mix- ture of reduced and oxidized glutathione did not significantly Materials. Bovine retinae were purchased from J. A. Law- affect the results. Addition of phospholipids, either from son Co. (Lincoln, NE); DM was from Anatrace (Maumee, soybean or rod outer segment, prior to bleaching stabilized the OH). 11-cis-Retinal was a gift of P. Sorter (Hoffmann-La initially formed opsin, resulting in much higher chromophore Roche) and R. Crouch (Medical University of South Carolina regeneration. However, addition of the phospholipids after and the National Eye Institute). conversion of the opsin to non-retinal-binding form(s) ar- Preparation of Delipidated Rod Outer Segment (ROS) rested the subsequent reversal of the opsin to the retinal- Rhodopsin. ROS membranes were prepared under dim red binding form. light (>650 nm) from frozen bovine retinae according to Wilden and Kuhn (7). Urea-washed ROS membranes were Unfolding and refolding of the seven-helix integral membrane prepared by the method of Shichi and Somers (8). The protein bacteriorhodopsin was studied in the early 1980s (1). membranes were suspended in 10% (wt/vol) sucrose contain- Efficient refolding from a completely denatured state was ing 5 mM Tris-HCl (pH 7.5), quickly frozen in liquid N2, and demonstrated for this protein (2-4). To date, subsequent stored at -70°C. ROS rhodopsin was prepared from the investigations to refold the dim-light photoreceptor bovine urea-washed ROS membranes by solubilization in 1% DM (9) rhodopsin, which contains the specialized three domains, from and was further purified (delipidated) by affinity chromatog- unfolded states have, however, been uniformly unsuccessful. raphy on Con A-Sepharose (Pharmacia) (9, 10). The Sepha- These attempts constituted a wide variety of conditions in- rose (250 ,ul) was washed six times by using, each time, 12 ml cluding the ideas developed for refolding of bacteriorhodopsin of 100 mM sodium phosphate buffer (pH 6.3) containing 150 (A. Kronis and H.G.K., unpublished work). We now report mM NaCl, 1 mM EDTA, and 0.1% DM, which is hereafter on the development of a partially reversible denaturation- denoted buffer A. The rhodopsin that bound to the Sepharose renaturation for this sensory protein. Rhodopsin upon was eluted with 0.3 M a-methylmannoside in buffer A (the system column was washed three times with 300 ,ul of the eluant each light activation undergoes 11-cis -- all-trans isomerization of the retinal chromophore; the metarhodopsin II (Meta II) time for a 250-,ul column of Sepharose). Rhodopsin was stored intermediate formed, after execution of its signal transduction in the dark at 4°C. The preparations showed UV/visible function, discards the bound molecule of all-trans-retinal, and absorbance ratios (A28o/A5oo) of 1.7-1.8. the resulting opsin is believed to recycle by re-forming the Soybean and ROS Phospholipids. Soybean phospholipids functional chromophore by capturing a new molecule of (asolectin) were purified by the method of Kagawa and Racker the nature and (11). ROS phospholipids were prepared according to Wiegand 11-cis-retinal (5). We have now investigated and Anderson (12) except that prior to lipid extraction ROS behavior of the opsin formed from light-activated Meta II in of in vitro systems, particularly in the detergent n-dodecyl P3-D- membranes were bleached for 20 min at 4°C in the presence maltoside (DM).t We find that in the presence of l1-cis-retinal, 20 mM hydroxylamine with a 300-W projector lamp using a added immediately after illumination of rhodopsin, the native rhodopsin chromophore regenerates and the rate of its formation Abbreviations: Meta II, metarhodopsin II; DM, dodecyl maltoside; DTT, dithiothreitol; ROS, rod outer segment. *On leave from Advanced Research Laboratory, Hitachi, Hatoyama, The publication costs of this article were defrayed in part by page charge Saitama 350-03, Japan. payment. This article must therefore be hereby marked "advertisement" in tThis is paper 10 in the series "Structure and Function in Rhodopsin." accordance with 18 U.S.C. §1734 solely to indicate this fact. Paper 9 is ref. 6. 249 Downloaded by guest on October 1, 2021 250 Biochemistry: Sakamoto and Khorana Proc NatZ Acad Sci USA 92 (1995) long-pass filter with a cutoff at 495 nm (Melles Griot, Irvine, Time-Dependent Conversion of the Opsin Initially Formed CA). Phosphorous was determined by the method of Fiske and upon Meta II Decay to Non-Retinal-Binding Species. Rho- SubbaRow as modified by Dittmer and Wells (13). dopsin was bleached at pH 6.3 by the standard protocol. The UV/Visible Spectroscopy. All UV/visible spectra were bleached sample was divided into aliquots, and the latter were measured with a Perkin-Elmer X6 or A7 UV/visible spectro- kept in the dark for varying lengths of time (1-24 hr). To each photometer, equipped with water-jacketed cuvette holders sample, 11-cis-retinal (1.5 mole equivalents) was added. Chro- connected to a circulating water bath (model RTE 5DD; mophore (A500) formation at room temperature was followed Neslab Instruments, Portsmouth, NH). Matched quartz cu- in the dark for up to 1 week. The results are shown in Fig. 2. vettes (1-cm light path, 0.2-cm-wide black side walls and base) The first striking observation was that the ability to regenerate were purchased from Hellma (Forest Hills, NY) or Uvonic the A500 chromophore rapidly upon addition of 11-cis-retinal Instruments (Plainview, NY). The average concentration of decreases with a longer incubation in the dark after bleaching. rhodopsin samples in buffer A was 0.8 ,uM rhodopsin (addi- Further, the extent of total regeneration also decreased with tions were as indicated in the legends to the figures). They were longer incubation before retinal addition. Thus, after 1 hr in illuminated in the quartz cuvettes with a 150-W fiber optic light the dark (Fig. 2, curve 1) without 11-cis-retinal, the extent of (Fiber Lite A-200; Dolan-Jenner, Woburn, MA) equipped chromophore regeneration was 78%, whereas after a 24-hr with a >495-nm long-pass filter. incubation (Fig. 2, curve 4), the chromophore regeneration Rate of Decay of Meta II. A rhodopsin sample prepared as was only 35%. Nonlinear curve fitting (SIGMAPLOT; Jandel, above was illuminated for 15 sec, long enough to completely Corte Madera, CA) showed three exponents in chromophore convert the initial 500-nm-absorbing species to the Meta TI regeneration: the first with a ti/2 of 15-60 sec, the second with form. Aliquots of the irradiated sample were acidified at a ti/2 of 20-30 min, and the third (the slowest) with a til2 of 6-10 different time intervals to pH 1.9 with 2 M H2SO4, and the hr. These exponents made different contributions to the total absorbance at 440 nm due to the remaining protonated Schiff chromophore regeneration. The contribution of the first (fast) base was recorded (14). phase, ascribed to the chromophore regeneration from the Hydroxylamine Treatment of500-nm-Absorbing Rhodopsin surviving correctly folded opsin, decreased (curves 1-4, Fig. 2) Regenerated with 11-cis-Retinal After Decay of Meta II. while the contribution from the third (slow) phase became Hydroxylamine hydrochloride (2 M, pH 7.0) was added in the more prominent.
Recommended publications
  • Peropsin, a Novel Visual Pigment-Like Protein Located in the Apical Microvilli of the Retinal Pigment Epithelium
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9893–9898, September 1997 Neurobiology Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium HUI SUN*, DEBRA J. GILBERT†,NEAL G. COPELAND†,NANCY A. JENKINS†, AND JEREMY NATHANS*‡§¶i *Department of Molecular Biology and Genetics, §Department of Neuroscience, ¶Department of Ophthalmology, ‡Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and †Mammalian Genetics Laboratory, Advanced BioScience Laboratories Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, MD 21702 Contributed by Jeremy Nathans, June 19, 1997 ABSTRACT A visual pigment-like protein, referred to as bovine RPE binds to all-trans but not 11-cis retinal and absorbs peropsin, has been identified by large-scale sequencing of both visible and ultraviolet light (8, 9). The sequences of cDNAs derived from human ocular tissues. The corresponding retinochrome and RGR opsin form a distinct and highly mRNA was found only in the eye, where it is localized to the divergent branch within the visual pigment family (6, 10). retinal pigment epithelium (RPE). Peropsin immunoreactiv- Whether retinochrome and RGR act as signal-transducing ity, visualized by light and electron microscopy, localizes the light receptors, participate in the visual cycle as retinal isomer- protein to the apical face of the RPE, and most prominently ases, or function in both capacities, is not known. to the microvilli that surround the photoreceptor outer seg- In the vertebrate eye, the RPE lies adjacent to the photo- ments. These observations suggest that peropsin may play a receptor cells and performs a number of functions critical for role in RPE physiology either by detecting light directly or by the viability and activity of the retina (11).
    [Show full text]
  • Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights Into Mechanisms of Activation and Therapeutics
    Pharmacology & Therapeutics 120 (2008) 129–148 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate editor: S. Enna Constitutive activation of G protein-coupled receptors and diseases: Insights into mechanisms of activation and therapeutics Ya-Xiong Tao ⁎ Department of Anatomy, Physiology and Pharmacology, 212 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA article info abstract The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In Keywords: 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported G protein-coupled receptor Disease in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported Constitutively active mutation in several additional receptors. More recently, loss of constitutive activity was postulated to also cause Inverse agonist diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the Mechanism of activation pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined Transgenic model with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse Abbreviations: agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. ADRP, autosomal dominant retinitis pigmentosa Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic AgRP, Agouti-related protein AR, adrenergic receptor diseases caused by constitutively activating mutations in GPCRs. CAM, constitutively active mutant © 2008 Elsevier Inc.
    [Show full text]
  • G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes
    Int. J. Mol. Sci. 2014, 15, 1112-1142; doi:10.3390/ijms15011112 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes Benoît T. Roux 1 and Graeme S. Cottrell 2,* 1 Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK; E-Mail: [email protected] 2 Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-118-378-7027; Fax: +44-118-378-4703. Received: 4 December 2013; in revised form: 20 December 2013 / Accepted: 8 January 2014 / Published: 16 January 2014 Abstract: G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types.
    [Show full text]
  • Dimers of Serotonin Receptors: Impact on Ligand Affinity and Signaling
    Dimers of serotonin receptors: impact on ligand affinity and signaling Luc Maroteaux, Catherine Béchade, Anne Roumier To cite this version: Luc Maroteaux, Catherine Béchade, Anne Roumier. Dimers of serotonin receptors: impact on ligand affinity and signaling. Biochimie, Elsevier, 2019, 161, pp.23-33. 10.1016/j.biochi.2019.01.009. hal- 01996206 HAL Id: hal-01996206 https://hal.archives-ouvertes.fr/hal-01996206 Submitted on 28 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Maroteaux et al., 1 Dimers of serotonin receptors: impact on ligand affinity and signaling. Luc Maroteaux1,2,3, Catherine Béchade1,2,3, and Anne Roumier1,2,3 Affiliations: 1: INSERM UMR-S839, S1270, Paris, 75005, France; 2Sorbonne Université, Paris, 75005, France; 3Institut du Fer à Moulin, Paris, 75005, France. Running title: Dimers of serotonin receptors Correspondence should be addressed to: Luc Maroteaux INSERM UMR-S839, S1270, 17 rue du Fer a Moulin Paris, 75005, France; E-mail : [email protected] Abstract Membrane receptors often form complexes with other membrane proteins that directly interact with different effectors of the signal transduction machinery. G-protein-coupled receptors (GPCRs) were for long time considered as single pharmacological entities.
    [Show full text]
  • Rods Contribute to the Light-Induced Phase Shift of The
    Rods contribute to the light-induced phase shift of the retinal clock in mammals Hugo Calligaro, Christine Coutanson, Raymond Najjar, Nadia Mazzaro, Howard Cooper, Nasser Haddjeri, Marie-Paule Felder-Schmittbuhl, Ouria Dkhissi-Benyahya To cite this version: Hugo Calligaro, Christine Coutanson, Raymond Najjar, Nadia Mazzaro, Howard Cooper, et al.. Rods contribute to the light-induced phase shift of the retinal clock in mammals. PLoS Biology, Public Library of Science, 2019, 17 (3), pp.e2006211. 10.1371/journal.pbio.2006211. inserm-02137592 HAL Id: inserm-02137592 https://www.hal.inserm.fr/inserm-02137592 Submitted on 23 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Rods contribute to the light-induced phase shift of the retinal clock in mammals Hugo Calligaro1, Christine Coutanson1, Raymond P. Najjar2,3, Nadia Mazzaro4, Howard M. Cooper1, Nasser Haddjeri1, Marie-Paule Felder-Schmittbuhl4, Ouria Dkhissi- Benyahya1* 1 Univ Lyon, Universite Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France,
    [Show full text]
  • Melanopsin: an Opsin in Melanophores, Brain, and Eye
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 340–345, January 1998 Neurobiology Melanopsin: An opsin in melanophores, brain, and eye IGNACIO PROVENCIO*, GUISEN JIANG*, WILLEM J. DE GRIP†,WILLIAM PA¨R HAYES‡, AND MARK D. ROLLAG*§ *Department of Anatomy and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; †Institute of Cellular Signaling, University of Nijmegen, 6500 HB Nijmegen, The Netherlands; and ‡Department of Biology, The Catholic University of America, Washington, DC 20064 Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved November 5, 1997 (received for review September 16, 1997) ABSTRACT We have identified an opsin, melanopsin, in supernatants subjected to SDSyPAGE analysis and subse- photosensitive dermal melanophores of Xenopus laevis. Its quent electroblotting onto a poly(vinylidene difluoride) mem- deduced amino acid sequence shares greatest homology with brane. The blot was probed with a 1:2,000 dilution of antisera cephalopod opsins. The predicted secondary structure of (CERN 886) raised against bovine rhodopsin and detected by melanopsin indicates the presence of a long cytoplasmic tail enhanced chemiluminescence. with multiple putative phosphorylation sites, suggesting that cDNA Library Screen. A X. laevis dermal melanophore this opsin’s function may be finely regulated. Melanopsin oligo(dT) cDNA library was screened with a mixture of mRNA is expressed in hypothalamic sites thought to contain 32P-labeled probes. Probes were synthesized by random prim- deep brain photoreceptors and in the iris, a structure known ing of TA-cloned (Invitrogen) fragments of X. laevis rhodopsin to be directly photosensitive in amphibians. Melanopsin mes- (7) (759 bp) and violet opsin (8) (279 bp) cDNAs.
    [Show full text]
  • Homology Model of the Human 5–HT1A Receptor Using the Crystal Structure of Bovine Rhodopsin Urmila J
    CODEN IEJMAT Internet Electronic Journal of Molecular Design 2006, 5, 403–415 ISSN 1538–6414 BioChem Press http://www.biochempress.com Internet Electronic Journal of Molecular Design July 2006, Volume 5, Number 7, Pages 403–415 Editor: Ovidiu Ivanciuc Special issue dedicated to Professor Lemont B. Kier on the occasion of the 75th birthday Homology Model of the Human 5–HT1A Receptor Using the Crystal Structure of Bovine Rhodopsin Urmila J. Joshi, Falgun H. Shah, and Sonali H. Tikhele Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Cuffe Parade, Colaba, Mumbai–400005 Received: December 28, 2005; Revised: June 2, 2006; Accepted: July 8, 2006; Published: July 31, 2006 Citation of the article: U. J. Joshi, F. H. Shah, and S. H. Tikhele, Homology Model of the Human 5–HT1A Receptor Using the Crystal Structure of Bovine Rhodopsin, Internet Electron. J. Mol. Des. 2006, 5, 403– 415, http://www.biochempress.com. Copyright © 2006 BioChem Press U. J. Joshi, F. H. Shah, and S. H. Tikhele Internet Electronic Journal of Molecular Design 2006, 5, 403–415 Internet Electronic Journal BioChem Press of Molecular Design http://www.biochempress.com Homology Model of the Human 5–HT1A Receptor Using the Crystal Structure of Bovine Rhodopsin # Urmila J. Joshi,* Falgun H. Shah, and Sonali H. Tikhele Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Cuffe Parade, Colaba, Mumbai–400005 Received: December 28, 2005; Revised: June 2, 2006; Accepted: July 8, 2006; Published: July 31, 2006 Internet Electron. J. Mol. Des. 2006, 5 (7), 403–415 Abstract Motivation. The 5–HT1A receptor, a member of class A GPCRs, is associated with psychiatric disorders like depression and anxiety, thus representing an important target for developing new drugs.
    [Show full text]
  • Evolutionary History of Teleost Intron-Containing and Intron-Less
    www.nature.com/scientificreports OPEN Evolutionary history of teleost intron-containing and intron-less rhodopsin genes Received: 15 February 2019 Chihiro Fujiyabu1, Keita Sato 2, Ni Made Laksmi Utari2,3, Hideyo Ohuchi2, Accepted: 9 July 2019 Yoshinori Shichida1,4,5 & Takahiro Yamashita1,5 Published: xx xx xxxx Recent progress in whole genome sequencing has revealed that animals have various kinds of opsin genes for photoreception. Among them, most opsin genes have introns in their coding regions. However, it has been known for a long time that teleost retinas express intron-less rhodopsin genes, which are presumed to have been formed by retroduplication from an ancestral intron-containing rhodopsin gene. In addition, teleosts have an intron-containing rhodopsin gene (exo-rhodopsin) exclusively for pineal photoreception. In this study, to unravel the evolutionary origin of the two teleost rhodopsin genes, we analyzed the rhodopsin genes of non-teleost fshes in the Actinopterygii. The phylogenetic analysis of full-length sequences of bichir, sturgeon and gar rhodopsins revealed that retroduplication of the rhodopsin gene occurred after branching of the bichir lineage. In addition, analysis of the tissue distribution and the molecular properties of bichir, sturgeon and gar rhodopsins showed that the abundant and exclusive expression of intron-containing rhodopsin in the pineal gland and the short lifetime of its meta II intermediate, which leads to optimization for pineal photoreception, were achieved after branching of the gar lineage. Based on these results, we propose a stepwise evolutionary model of teleost intron-containing and intron-less rhodopsin genes. Opsins are photoreceptive molecules that universally underlie the molecular basis of visual and non-visual pho- toreception in animals1–3.
    [Show full text]
  • Opn5 Is a UV-Sensitive Bistable Pigment That Couples with Gi Subtype of G Protein
    Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein Takahiro Yamashitaa,1, Hideyo Ohuchib,1, Sayuri Tomonarib, Keiko Ikedac, Kazumi Sakaia, and Yoshinori Shichidaa,2 aDepartment of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; bDepartment of Life Systems, Institute of Technology and Science, University of Tokushima, 770-8506, Japan; and cDivision of Cell Biology, Jichi Medical University, Tochigi, 329-0498, Japan Edited by Rosalie K. Crouch, Medical University of South Carolina, Charleston, SC, and accepted by the Editorial Board November 1, 2010 (received for review August 23, 2010) Opn5 (neuropsin) belongs to an independent group separated achieved by the advance of the techniques to produce and purify from the other six groups in the phylogenetic tree of opsins, for the recombinant proteins in mammalian cultured cells. which little information of absorption characteristics and molecular The Opn5 (neuropsin) group was first identified in mouse and properties of the members is available. Here we show that the human genomes and found to be expressed in neural tissues (7), chicken Opn5 (cOpn5m) is a UV-sensitive bistable pigment that but its function had remained uncharacterized. An interesting couples with Gi subtype of G protein. The recombinant expression character of Opn5 is that Opn5 is phylogenetically closely related of cOpn5m in HEK 293s cells followed by the addition of 11-cis- and with retinal photoisomerases, RGR, and peropsin. In fact, Opn5 all-trans-retinal produced UV light-absorbing and visible light- shares intron positions with peropsins and, in some phylogenetic absorbing forms, respectively. These forms were interconvertible trees, the pigment is considered to be diverged from peropsin and by UV and visible light irradiations, respectively, indicating that retinochrome/RGR after diversification from other opsin groups cOpn5m is a bistable pigment.
    [Show full text]
  • Structure of Rhodopsin GEBHARD F.X
    Structure of rhodopsin GEBHARD F.X. SCHERTLER Abstract most GPCRs, rhodopsin is present in very high concentrations in the rod outer segment of the Two-dimensional crystals of rhodopsin were photoreceptor cell. The l1-cis retinal is studied to determine the arrangement of the covalently bound via a protonated Schiff base to transmembrane alpha helices. A combination lysine 196 and this helps to keep the dark noise of electron cryo-microscopy, image processing in the visual system down since it acts like a and electron crystallography was used to covalently bound antagonist keeping the extract amplitudes and phases from images, photoreceptor in a non-signalling conformation. and a three-dimensional map to a resolution of In addition, rhodopsin has a rigid extracellular 7.5 A was calculated. Density peaks for all domain that also might help to reduce dark seven transmembrane helices were observed noise. Rhodopsin is one of the most stable and and the helix axes for all seven helices could detergent-tolerant GPCRs known and it can be be estimated. Near the intracellular side, isolated from retinas in large quantities, by which interacts with the G protein transducin, lectin affinity chromatography, making it an we observed three layers of helices arranged ideal candidate for structural investigations. differently from bacteriorhodopsin. The arrangement opens up towards the extracellular side forming a cavity that serves Electron crystallography of two-dimensional as the binding pocket for the retinal. This crystals of rhodopsin cavity is dosed towards the intracellular side by the long and highly tilted helix 3, and must Comparison of electron crystallography with be dosed towards the extracellular side by the X-ray crystallography loop linking helices 4 and 5 that is linked by a In principle NMR, X-ray crystallography or disulphide bridge to the extracellular end of electron microscopy could be used to determine helix 3.
    [Show full text]
  • Thesis Evaluating Luteinizing Hormone Receptor
    THESIS EVALUATING LUTEINIZING HORMONE RECEPTOR FUNCTION USING THE CYCLIC AMP REPORTER PROBE ICUE1 Submitted by Hoda Ramadhan Shnaishah Graduate Degree Program in Cell and Molecular Biology In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2011 Master’s Committee: Advisor: Deborah Roess B. George Barisas Charles W. Miller ABSTRACT EVALUATING LUTEINIZING HORMONE RECEPTOR FUNCTION USING THE CYCLIC AMP REPORTER PROBE ICUE1 Luteinizing hormone receptors (LHR) are G protein-coupled membrane protein receptors. Mechanisms involved in initiation of signal transduction by luteinizing hormone (LH) receptors are important and they have been under active investigation because they play a vital role in regulating key events in mammalian reproduction. Evaluating cAMP levels in response to hormone treatment is usually used to demonstrate LH receptor activation and has historically relied on biochemical methods. ELISA, colorimetric assays and other techniques have been used to evaluate cAMP levels. ICUE1 is an Epac-based cAMP reporter which undergoes conformational changes upon binding cAMP. Unlike traditional biochemical assays, ICUE1 combined with FRET techniques is capable of real-time monitoring of cAMP levels in individual cells. In this project, Epac reporters have been used to evaluate LH receptor activity in cells expressing ICUE1 only and in cells expressing ICUE1 and constitutively-active LH receptors. For the investigation of constitutively active LH receptors, CHO cells were co- transfected with DNA of ICUE1 and yoked LH receptor and they were expressed on the cell membrane. Our results show that ICUE1 probe is a useful tool for evaluating cAMP levels in real-time using single cell imaging methods.
    [Show full text]
  • The Vertebrate Ancestral Repertoire of Visual Opsins, Transducin Alpha Subunits and Oxytocin/Vasopressin Receptors Was Establish
    Lagman et al. BMC Evolutionary Biology 2013, 13:238 http://www.biomedcentral.com/1471-2148/13/238 RESEARCH ARTICLE Open Access The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/ vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications David Lagman1†, Daniel Ocampo Daza1†, Jenny Widmark1,XesúsMAbalo1, Görel Sundström1,2 and Dan Larhammar1* Abstract Background: Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results: Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene.
    [Show full text]