Comparative Transcriptomics of Primary Cells in Vertebrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mouse Germ Line Mutations Due to Retrotransposon Insertions Liane Gagnier1, Victoria P
Gagnier et al. Mobile DNA (2019) 10:15 https://doi.org/10.1186/s13100-019-0157-4 REVIEW Open Access Mouse germ line mutations due to retrotransposon insertions Liane Gagnier1, Victoria P. Belancio2 and Dixie L. Mager1* Abstract Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans. Keywords: Endogenous retroviruses, Long terminal repeats, Long interspersed elements, Short interspersed elements, Germ line mutation, Inbred mice, Insertional mutagenesis, Transcriptional interference Background promoter and polyadenylation motifs and often a splice The mouse and human genomes harbor similar types of donor site [10, 11]. Sequences of full-length ERVs can TEs that have been discussed in many reviews, to which encode gag, pol and sometimes env, although groups of we refer the reader for more in depth and general infor- LTR retrotransposons with little or no retroviral hom- mation [1–9]. In general, both human and mouse con- ology also exist [6–9]. While not the subject of this re- tain ancient families of DNA transposons, none view, ERV LTRs can often act as cellular enhancers or currently active, which comprise 1–3% of these genomes promoters, creating chimeric transcripts with genes, and as well as many families or groups of retrotransposons, have been implicated in other regulatory functions [11– which have caused all the TE insertional mutations in 13]. -
Screening of a Clinically and Biochemically Diagnosed SOD Patient Using Exome Sequencing: a Case Report with a Mutations/Variations Analysis Approach
The Egyptian Journal of Medical Human Genetics (2016) 17, 131–136 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Screening of a clinically and biochemically diagnosed SOD patient using exome sequencing: A case report with a mutations/variations analysis approach Mohamad-Reza Aghanoori a,b,1, Ghazaleh Mohammadzadeh Shahriary c,2, Mahdi Safarpour d,3, Ahmad Ebrahimi d,* a Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran b Research and Development Division, RoyaBioGene Co., Tehran, Iran c Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran d Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Received 12 May 2015; accepted 15 June 2015 Available online 22 July 2015 KEYWORDS Abstract Background: Sulfite oxidase deficiency (SOD) is a rare neurometabolic inherited disor- Sulfite oxidase deficiency; der causing severe delay in developmental stages and premature death. The disease follows an auto- Case report; somal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an Exome sequencing enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and neuroimaging changes may imitate some common diseases. Since the prognosis of the disease is poor, using exome sequencing as a powerful and efficient strat- egy for identifying the genes underlying rare mendelian disorders can provide important knowledge about early diagnosis, disease mechanisms, biological pathways, and potential therapeutic targets. -
Mapping Our Genes—Genome Projects: How Big? How Fast?
Mapping Our Genes—Genome Projects: How Big? How Fast? April 1988 NTIS order #PB88-212402 Recommended Citation: U.S. Congress, Office of Technology Assessment, Mapping Our Genes-The Genmne Projects.’ How Big, How Fast? OTA-BA-373 (Washington, DC: U.S. Government Printing Office, April 1988). Library of Congress Catalog Card Number 87-619898 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technol- ogy, and politics. Congress is responsible for ‘(writing the rules” of what various Federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the U.S. Congress, The House Committee on Energy and Commerce requested that OTA undertake the project. The House Committee on Science, Space, and Technology, the Senate Com- mittee on Labor and Human Resources, and the Senate Committee on Energy and Natu- ral Resources also asked OTA to address specific points of concern to them. Congres- sional interest focused on several issues: ● how to assess the rationales for conducting human genome projects, ● how to fund human genome projects (at what level and through which mech- anisms), ● how to coordinate the scientific and technical programs of the several Federal agencies and private interests already supporting various genome projects, and ● how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. -
MUTED Antibody - C-Terminal Region (ARP63301 P050) Data Sheet
MUTED antibody - C-terminal region (ARP63301_P050) Data Sheet Product Number ARP63301_P050 Product Name MUTED antibody - C-terminal region (ARP63301_P050) Size 50ug Gene Symbol BLOC1S5 Alias Symbols DKFZp686E2287; MU; MUTED Nucleotide Accession# NM_201280 Protein Size (# AA) 187 amino acids Molecular Weight 21kDa Product Format Lyophilized powder NCBI Gene Id 63915 Host Rabbit Clonality Polyclonal Official Gene Full Name Muted homolog (mouse) Gene Family BLOC1S This is a rabbit polyclonal antibody against MUTED. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Partner Proteins BLOC1S2,DTNBP1,BLOC1S1,BLOC1S2,CNO,DTNBP1,SNAPIN,BLOC1S2,BLOC1S3,DTNBP1,PLDN,SQS TM1,YOD1 This gene encodes a component of BLOC-1 (biogenesis of lysosome-related organelles complex 1). Components of this complex are involved in the biogenesis of organelles such as melanosomes and platelet- Description of Target dense granules. A mouse model for Hermansky-Pudlak Syndrome is mutated in the murine version of this gene. Alternative splicing results in multiple transcript variants. Read-through transcription exists between this gene and the upstream EEF1E1 (eukaryotic translation elongation factor 1 epsilon 1) gene, as well as with the downstream TXNDC5 (thioredoxin domain containing 5) gene. -
Product Information
Product information PLDN, 1-172aa Human, His-tagged, Recombinant, E.coli Cat. No. IBATGP1472 Full name: pallidin NCBI Accession No.: NP_036520 Synonyms: HPS9, PA, PALLID Description: PLDN (Pallidin) may play a role in intracellular vesicle trafficking. It interacts with Syntaxin 13 which mediates intracellular membrane fusion. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. This protein involved in the development of lysosome-related organelles, such as melanosomes and platelet-dense granules. PLDN has been shown to interact with BLOC1S1, STX12, Dysbindin, CNO, BLOC1S2, MUTED and SNAPAP. Recombinant human PLDN protein, fused to His-tag at N-terminus, was expressed in E.coli and purified by using conventional chromatography techniques. Form: Liquid. In 20mM Tris-HCl buffer (pH 8.0) containing 2mM DTT, 10% glycerol, 100mM NaCl Molecular Weight: 21.9kDa (192aa), confirmed by MALDI-TOF (Molecular weight on SDS-PAGE will appear higher) Purity: > 90% by SDS - PAGE Concentration: 1mg/ml (determined by Bradford assay) 15% SDS-PAGE (3ug) Sequences of amino acids: MGSSHHHHHH SSGLVPRGSH MSVPGPSSPD GALTRPPYCL EAGEPTPGLS DTSPDEGLIE DLTIEDKAVE QLAEGLLSHY LPDLQRSKQA LQELTQNQVV LLDTLEQEIS KFKECHSMLD INALFAEAKH YHAKLVNIRK EMLMLHEKTS KLKKRALKLQ QKRQKEELER EQQREKEFER EKQLTARPAK RM General references: Huang L, et al. (1999). Nat Genet 23 (3): 329–32. Moriyama K., et al. (2002) Traffic 3:666-677 Storage: Can be stored at +4°C short term (1-2 weeks). For long term storage, aliquot and store at -20°C or -70°C. Avoid repeated freezing and thawing cycles. For research use only. This product is not intended or approved for human, diagnostics or veterinary use. -
Comparative Transcriptomics of Primary Cells in Vertebrates
Edinburgh Research Explorer Comparative transcriptomics of primary cells in vertebrates Citation for published version: Alam, T, Agrawal, S, Severin, J, Young, R, Andersson, R, Amer, E, Hasegawa, A, Lizio, M, Ramilowski, J, Abugessaisa, I, Ishizu, Y, Noma, S, Tarui, H, Taylor, MS, Lassmann, T, Itoh, M, Kasukawa, T, Kawaji, H, Marchionni, L, Sheng, G, Forrest, ARR, Khachigian, LM, Hayashizaki, Y, Carninci, P & De Hoon, M 2020, 'Comparative transcriptomics of primary cells in vertebrates', Genome Research. https://doi.org/10.1101/gr.255679.119 Digital Object Identifier (DOI): 10.1101/gr.255679.119 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Genome Research Publisher Rights Statement: is article, published inGenome Research, is avail-able under a Creative Commons License (Attribution 4.0 Internatio General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 1 1 Comparative transcriptomics of primary cells in vertebrates 2 Tanvir Alam1, Saumya Agrawal2, Jessica Severin2, Robert S. Young3,4, Robin Andersson5, Erik 3 Arner2, Akira Hasegawa2, Marina Lizio2, Jordan Ramilowski2, Imad Abugessaisa2, Yuri Ishizu6, 4 Shohei Noma2, Hiroshi Tarui7, Martin S. -
Impaired Maturation of Large Dense-Core Vesicles in Muted
ß 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 1365–1374 doi:10.1242/jcs.161414 RESEARCH ARTICLE Impaired maturation of large dense-core vesicles in muted-deficient adrenal chromaffin cells Zhenhua Hao1,2, Lisi Wei3, Yaqin Feng1,4, Xiaowei Chen3, Wen Du5, Jing Ma1, Zhuan Zhou3, Liangyi Chen3 and Wei Li1,6,* ABSTRACT Previous studies have suggested that the granin family plays an important role in LDCV biogenesis (Kim et al., 2001), but the The large dense-core vesicle (LDCV), a type of lysosome-related machinery for granin sorting into LDCVs is largely unknown. organelle, is involved in the secretion of hormones and The adaptor protein-3 (AP-3) complex is likely involved in granin neuropeptides in specialized secretory cells. The granin family is a sorting into immature LDCVs. In AP-3-deficient chromaffin driving force in LDCV biogenesis, but the machinery for granin sorting cells, LDCVs contain less granins, chromogranin A (CgA, also to this biogenesis pathway is largely unknown. The mu mutant known as CHGA) and secretogranin II (SgII, also known as mouse, which carries a spontaneous null mutation on the Muted gene SCG2), and exhibit enlarged size, decreased number and an (also known as Bloc1s5), which encodes a subunit of the biogenesis increase in releasing quantal size (i.e. the amount of transmitter of lysosome-related organelles complex-1 (BLOC-1), is a mouse released per vesicle) (Asensio et al., 2010; Grabner et al., 2006). model of Hermansky–Pudlak syndrome. Here, we found that LDCVs AP-3 and the HOPS complex interact physically and might act in were enlarged in mu adrenal chromaffin cells. -
Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation
RESEARCH ARTICLE Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation Jinmyung Choi1, Parisa Shooshtari1, Kaitlin E. Samocha2,3,4,5, Mark J. Daly2,3,4, Chris Cotsapas1,2,3,4,6* 1 Department of Neurology, Yale School of Medicine, New Haven Connecticut, United States of America, 2 Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America, 3 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America, 4 Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America, 5 Program in Genetics and Genomics, Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America, 6 Department of Genetics, Yale School of Medicine, New Haven CT, United States of America a11111 * [email protected] Abstract Using robust, integrated analysis of multiple genomic datasets, we show that genes de novo OPEN ACCESS depleted for non-synonymous mutations form a subnetwork of 72 members under strong selective constraint. We further show this subnetwork is preferentially expressed in Citation: Choi J, Shooshtari P, Samocha KE, Daly MJ, Cotsapas C (2016) Network Analysis of the early development of the human hippocampus and is enriched for genes mutated in Genome-Wide Selective Constraint Reveals a Gene neurological Mendelian disorders. We thus conclude that carefully orchestrated develop- Network Active in Early Fetal Brain Intolerant of mental processes are under strong constraint in early brain development, and perturbations Mutation. -
Homotypic Clusters of Transcription Factor Binding Sites Are a Key Component of Human Promoters and Enhancers
Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Research Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers Valer Gotea,1 Axel Visel,2,3 John M. Westlund,4 Marcelo A. Nobrega,4 Len A. Pennacchio,2,3 and Ivan Ovcharenko1,5 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA; 2Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; 3United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA; 4Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA Clustering of multiple transcription factor binding sites (TFBSs) for the same transcription factor (TF) is a common feature of cis-regulatory modules in invertebrate animals, but the occurrence of such homotypic clusters of TFBSs (HCTs) in the human genome has remained largely unknown. To explore whether HCTs are also common in human and other verte- brates, we used known binding motifs for vertebrate TFs and a hidden Markov model–based approach to detect HCTs in the human, mouse, chicken, and fugu genomes, and examined their association with cis-regulatory modules. We found that evolutionarily conserved HCTs occupy nearly 2% of the human genome, with experimental evidence for individual TFs supporting their binding to predicted HCTs. More than half of the promoters of human genes contain HCTs, with a dis- tribution around the transcription start site in agreement with the experimental data from the ENCODE project. In addition, almost half of the 487 experimentally validated developmental enhancers contain them as well—a number more than 25-fold larger than expected by chance. -
Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes
Neuropsychopharmacology (2017) 42, 1349–1360 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes 1,2 3,4 1 ’ 1,5 1,6 1 Emilie I Petit , Zuzanna Michalak , Rachel Cox , Colm MP O Tuathaigh , Niamh Clarke , Orna Tighe , 7 8 9,10 9 9,11 Konrad Talbot , Derek Blake , Josephine Joel , Alexander Shaw , Steven A Sheardown , 9,12 9,13 9 3 9 Alastair D Morrison , Stephen Wilson , Ellen M Shapland , David C Henshall , James N Kew , Brian P Kirby14 and John L Waddington*,1,15 1 2 Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; Molecular Pharmacology, Albert Einstein College of 3 4 Medicine, Bronx, NY, USA; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK; 5School of Medicine, University College Cork, Cork, Ireland; 6Office of Research and Innovation, Royal College of Surgeons in Ireland, Dublin, Ireland; 7Department of Neurology, University of California at 8 Los Angeles, Los Angeles, CA, USA; Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and 9 10 Genomics, Cardiff University, Cardiff, UK; Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK; Horizon Discovery, 11 12 13 Cambridge, -
Molecular Function of Rim1α: Role of Phosphorylation Sites
Molecular function of RIM1α: role of phosphorylation sites Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Johannes Alexander Müller aus Bonn Bonn, Juli 2019 Angefertigt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. 1. Gutachter: Prof. Dr. Susanne Schoch McGovern 2. Gutachter: Prof. Dr. Thorsten Lang Tag der Promotion: 09.10.2019 Erscheinungsjahr: 2020 Declaration: Parts of this thesis are already published in: Engholm-Keller K, Waardenberg AJ, Müller JA, Wark JR, Fernando RN, Arthur JW, Robinson PJ, Diet- rich D, Schoch S, Graham ME. The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation. PLoS Biology 2019; 17(3): e3000170 Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Müller JA, Schoch S, Quiroz FJU, Rebola N, Bao H, Little JP, Tkachuuk AN, Cai E, Hantman AW, Wang SS, DePiero VJ, Borghuis BG, Chapman ER, Dietrich D, DiGregorio DA, Fitzpatrick D, Looger LL. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nature Methods 2018; 15(11): 936-939 For a full list of publications, book chapters and conference presentations (also including works, that are not part of this thesis) please refer to section 11 (Publications). Finally. Index i Index List of Abbreviations vi List of Figures viii List of Tables xi 1 Summary 1 2 Introduction 3 2.1 Synapses . 3 2.2 The presynaptic terminal - a highly specialized subcellular compartment . 4 2.3 Generation, fusion and recycling of synaptic vesicles . 5 2.4 Heterogeneity of presynaptic vesicle pools . -
BLOS2 Negatively Regulates Notch Signaling During Neural and Hematopoietic Stem And
1 BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and 2 progenitor cell development 3 4 Wenwen Zhou 1, 6 #, Qiuping He 2, 6 #, Chunxia Zhang 2, 6, Xin He 1, Zongbin Cui 3, 5 Feng Liu 2, 6 *, and Wei Li 1, 4, 5 * 6 7 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and 8 Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 9 2 State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of 10 Sciences, Beijing 100101, China 11 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, 12 Chinese Academy of Sciences, Wuhan 430072, China 13 4 Center for Medical Genetics, Beijing Children’s Hospital, Capital Medical University; 14 Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children, 15 Beijing 100045, China; 16 5 Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China; 17 6 University of Chinese Academy of Sciences, Beijing 100039, China. 18 19 # Co-first authors. 20 * Correspondence should be addressed to: 21 Wei Li, Ph.D., Beijing Children’s Hospital, Capital Medical University, 56 Nan-Li-Shi Road, 1 22 Xicheng District, Beijing 100045, China. Tel: +86-10-5961-6628; Fax: +86-5971-8699; 23 e-mail: [email protected]; 24 Feng Liu, Ph.D., State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese 25 Academy of Sciences, Beijing 100101, China. Tel.: +86 (10) 64807307; Fax: +86 (10) 26 64807313; Email: [email protected]. 27 28 Running Title: BLOS2 negatively regulates Notch signaling 29 30 Key Words: BLOS2; Notch; stem and progenitor cell development; neurogenesis; 31 hematopoiesis; endo-lysosomal trafficking 32 33 The authors declare that no competing interests exist.