Luminescence Science and Display Materials

Total Page:16

File Type:pdf, Size:1020Kb

Luminescence Science and Display Materials Lighting and Imaging Devices Photoluminescence. In the fluorescent lamp, the cathode at one end of the lamp emits electrons and the anode collects electrons at its other end. (In ac operated devices, the electrodes act both as anode and cathode, depending on the phase of the current.) The electrons excite and ionize mercury atoms in the vapor phase. UV radiation from the excited mercury atoms is absorbed by impurity ions in the powder phosphor coating on the lamp wall. The activator impurities in turn relax and may transfer energy to other ions, which then re-emit radiation at a lower energy in the visible region of the Luminescence Science spectrum or emit themselves. The development of the Sb3+ and Mn2+ activated halophosphate phosphor [Ca (PO ) (F,Cl):Sb,Mn] in the 1940s and Display Materials 5 4 3 was a significant breakthrough in by Cees Ronda and Alok Srivastava fluorescent lighting. The lighting industry underwent a revolution Luminescence is defi ned broadly as the generation of light in the 1970s when a blend of three rare-earth ion containing phosphors in excess of that radiated thermally. Man’s fascination with [activators: Eu2+ (blue), Tb3+ (green), luminescence stems from when an otherwise invisible power and Eu3+ (red)] was proposed for good is converted into visible light. The commercial importance of color rendering, higher efficiency, and better maintenance in fluorescent luminescence is ubiquitous, being manifest in lamps, displays, lamps. Prior to their discovery, three- X-ray machines, etc. In ECS, the Luminescence and Display band spectra were predicted to provide Materials (LDM) Division provides a forum for work on the good color rendition and maximum physics and chemistry of light generation from electrical energy luminous efficiency. These and newer rare-earth phosphors have revolutionized and the technology of the various light producing devices. fluorescent lamps, making high current Aspects of these areas are briefl y described in the following density compact lamps possible and sections. providing the best efficiency, even more than 100 lumens per watt, and good color rendition (mid-1980s) in Luminescence Science radiation from mercury discharge 36 W fluorescent lamps. In recent and Technology (photoluminescence) or electron years, research on new luminescent bombardment (cathodoluminescence). compositions for fluorescent lamps has Materials that generate luminescence In addition, luminescence may be come to a standstill. Important issues are called phosphors. Commercial generated directly from an electric field nowadays are Hg consumption by phosphors are mostly inorganic (electroluminescence) or from infrared fluorescent lamps and reduction of the compounds prepared as powders (with radiation (up-converting luminescence) or price of the phosphor layer. grain sizes usually in the order of 2- even mechanically (triboluminescence). 20 µm) or thin films. The phosphor Fluorescent lamps are used not only materials contain one or more impurity To have any technical importance, for interior lighting. Liquid crystal ions or activators (A), typically present a luminescent material must be easily display (LCD) screens have boosted in 0.01-100 mol % concentrations. The excited by the appropriate excitation and the demand for fluorescent lamps with actual emission is generated on these must have high quantum efficiency, the a small diameter. Generally, the color activator ions. Typical activators are ratio of the number of quanta absorbed temperature of the light emitted by such rare earth- or transition-metal ions, ions to the number emitted. Nonradiative lamps is high, some 9000 K. undergoing s-p transitions (like Bi3+), losses are commonly caused by The advent of efficient near UV and and molecular anions like the tungstate interactions with lattice vibrations and blue light-emitting diodes (LEDs) has or vanadate groups. Sensitizers (S) what are known as killer impurities. revived research on photoluminescent are useful if the activator ions cannot Further, the activator must convert the materials. The requirement of absorption be excited, e.g., because of forbidden energy absorbed to a useful frequency of in the near UV/blue region and emission transitions. In such cases, the exciting visible light. A suitable phosphor must in the visible part of the spectrum, energy is absorbed by the sensitizers and maintain well under the excitation mode coupled to the necessity of strong subsequently transferred to the activator and must be easily manufactured. The (optically allowed) absorption of the LED ions. Common to all these moieties is synthesis of efficient phosphors not only radiation by the phosphors has induced the not completely filled electron shell requires the best in high temperature a world-wide research activity for Eu2+ in at least one state (ground state, excited chemistry, but also in precursor and Ce3+ doped inorganic phosphors. state) involved. preparation and handling and purity of To tune the optical properties of these starting materials. Device manufacturing Activators or sensitizers may be activator ions as to their suitability in involves still other sciences, such as excited by high-energy photons, LEDs, apart from well-known yttrium- thin film technology and suspension such as X-rays or ultraviolet chemistry. (continued on next page) The Electrochemical Society Interface • Spring 2006 55 Luminescence Science... phosphors include materials with (continued from previous page) much greater X-ray stopping power and better conversion efficiency. This greatly reduces the patient exposure needed for a good quality picture. The luminescent materials applied are X-ray stimulated phosphors in the form of a single crystal, a sintered ceramic, or a glass, which converts the X-ray radiation to a wavelength detectable by a light detector that is placed on one side of the rod. These rods form the detectors for the computed tomography (CT) unit. The X-ray scintillation counters must be efficient in converting X-ray radiation into visible or near IR radiation, must be able to be fabricated so as not to scatter light, and must have little or no afterglow. The scintillators CsI: Tl and CdWO4 are currently used as single crystal detectors in commercial CT scanners. Examples of commercial ceramic scintillator materials are 3+ 3+ (Y,Gd)2O3:Eu and Gd2O2S:Pr . FIG. 1. Energy level scheme and quantum cutting in the Gd3+-Eu3+ ion pair. In step 1, energy is Scintillators are also used in high- transferred from Gd3+ to Eu3+ by cross relaxation, energy particle detection, such as γ-rays. leaving a still excited Gd3+ ion behind, which A total of 12,000 crystals of Bi4Ge3O12 transfers the remaining energy to a second Eu3+ ion (BGO) are used at CERN (Geneva) for in step 2. this purpose. In addition, the medical imaging modality positron emission tomography (PET) also relies on high- energy particle detection. For this application, very fast scintillators with a high density (in view of the high energy of the particles) are required. Examples are BGO, Gd2SiO5:Ce, and Lu2SiO5: Ce. A material which is less dense but extremely fast and bright is LaBr3:Ce. Developments in ceramic crystals are also driven by the laser industry. Ceramic crystals have distinct advantages FIG. 2. Evolution of light sources. over single crystal rods in terms of ease of production and costs. aluminum-garnet (YAG):Ce, many new the ultraviolet radiation is provided by a Electroluminescence compositions based on or containing xenon discharge (emitting between 147 Apart from inorganic LEDs (see N3- ions have been developed. This race is and 200 nm) instead of the conventional above), there is strong interest in still going on. In the meantime, efficacies mercury-based discharge (254 nm). electroluminescence originating from have reached those of fluorescent lamps, Quantum cutting based on energy organic or polymeric molecules (OLED). albeit at lower light levels. At this time, transfer in ion pairs (like Gd3+ -Eu3+, see Work on organic luminescence started in LEDs are used for backlighting in (small) Fig. 1) has been studied in detail after the late 1980s, after exploring work by displays, in automotive applications, pioneering work at Utrecht University Tang and van Slyke. Electrons and holes and for decorative and signing purposes. in The Netherlands. In principle, the recombine in organic layers, leading to General lighting is a next target. In quantum efficiency can be high, but is the emission of (visible) light. Issues here addition, solid-state light sources can be hampered by the weak absorption of are charge transport (toward the emitting solar powered, enabling light generation the Gd3+ ion. No suitable sensitization layer) and device stability. Emission can at virtually all places in the world. schemes have been identified thus be due to band-to-band like transitions Vacuum UV phosphors. Vacuum UV far. Until now, no systems suitable for but also to optical transitions on rare excited phosphors lead to the possibility practical applications have been found. earth- (like Eu3+) or transition-metal of developing a mercury-free fluorescent A third mechanism in which quantum ions (like Ir3+). Apart from the search lamp. Quantum efficiencies in excess of cutting proceeds via host lattice states for efficiently emitting compositions, unity (up to 140%) have been reported (multiplication over the bandgap) stability of these compositions and by GE and Philips research groups in has also been investigated. In this their machinability are issues.
Recommended publications
  • LED Retrofit Headlamp Light Sources Ensure Legal Access to the German Automotive Market
    LED Retrofit Headlamp Light Sources Ensure legal access to the German automotive market Your challenges Before September 2020, the Kraftfahrt-Bundesamt hazards. Other advantages include: (Federal Motor Transport Authority) did not permit the ■ Near-daylight luminescence for improved visibility replacement of vehicle headlamps with LED retrofit ■ Quicker response time to 100% light light sources for driving beams and passing beams in ■ Highly resistant to vibration and shock Germany, as the appropriate homologation guidelines did ■ Longer lifetime not exist. Consequently, vehicle owners could not modify ■ Higher efficiency (lm/W), fewer CO2 emissions and their old halogen lamps with LEDs and manufacturers more environmentally friendly were unable to sell LED retrofits for vehicles registered on German public roads. Why is retrofitted LED headlamp light source testing and compliance important? The advantages of headlamps equipped with All external light sources on a vehicle, such as headlights or LED retrofit brake lights, are considered “technical lighting equipment” According to a study by the Allgemeiner Deutscher and must be type approved. Any subsequent modifications Automobil-Club (ADAC), retrofitting car headlights with to the type-approved lighting equipment will have an impact LEDs offers a road traffic safety gain. This is because on the type approval of the entire vehicle, and result in the retrofitted LED headlights are more durable, have a longer loss of the operating licence for public roads. beam range and their white light improves contrast. It is therefore essential that any LED updates made to Overall, LEDs have been proven to increase driver safety headlamps are installed correctly, do not disadvantage through improved visibility and earlier detection of road other road users and meet current safety requirements.
    [Show full text]
  • Introduction 1
    1 1 Introduction . ex arte calcinati, et illuminato aeri [ . properly calcinated, and illuminated seu solis radiis, seu fl ammae either by sunlight or fl ames, they conceive fulgoribus expositi, lucem inde sine light from themselves without heat; . ] calore concipiunt in sese; . Licetus, 1640 (about the Bologna stone) 1.1 What Is Luminescence? The word luminescence, which comes from the Latin (lumen = light) was fi rst introduced as luminescenz by the physicist and science historian Eilhardt Wiede- mann in 1888, to describe “ all those phenomena of light which are not solely conditioned by the rise in temperature,” as opposed to incandescence. Lumines- cence is often considered as cold light whereas incandescence is hot light. Luminescence is more precisely defi ned as follows: spontaneous emission of radia- tion from an electronically excited species or from a vibrationally excited species not in thermal equilibrium with its environment. 1) The various types of lumines- cence are classifi ed according to the mode of excitation (see Table 1.1 ). Luminescent compounds can be of very different kinds: • Organic compounds : aromatic hydrocarbons (naphthalene, anthracene, phenan- threne, pyrene, perylene, porphyrins, phtalocyanins, etc.) and derivatives, dyes (fl uorescein, rhodamines, coumarins, oxazines), polyenes, diphenylpolyenes, some amino acids (tryptophan, tyrosine, phenylalanine), etc. + 3 + 3 + • Inorganic compounds : uranyl ion (UO 2 ), lanthanide ions (e.g., Eu , Tb ), doped glasses (e.g., with Nd, Mn, Ce, Sn, Cu, Ag), crystals (ZnS, CdS, ZnSe, CdSe, 3 + GaS, GaP, Al 2 O3 /Cr (ruby)), semiconductor nanocrystals (e.g., CdSe), metal clusters, carbon nanotubes and some fullerenes, etc. 1) Braslavsky , S. et al . ( 2007 ) Glossary of terms used in photochemistry , Pure Appl.
    [Show full text]
  • Improving the Scintillation Performance of Ksr2i5:Ce3+ Through Exploration of Activator Concentration and Growth Conditions
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2019 Improving the Scintillation Performance of KSr2I5:Ce3+ through Exploration of Activator Concentration and Growth Conditions Eleanor Paige Comer University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Comer, Eleanor Paige, "Improving the Scintillation Performance of KSr2I5:Ce3+ through Exploration of Activator Concentration and Growth Conditions. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5414 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Eleanor Paige Comer entitled "Improving the Scintillation Performance of KSr2I5:Ce3+ through Exploration of Activator Concentration and Growth Conditions." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Nuclear Engineering. Charles L. Melcher, Major Professor We have read this thesis and recommend its acceptance: Mariya Zhuravleva, Eric Lukosi Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Improving the Scintillation Performance of KSr2I5:Ce3+ through Exploration of Activator Concentration and Growth Conditions A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Eleanor Paige Comer May 2019 Copyright © 2019 by Eleanor P.
    [Show full text]
  • Comparison of Colorimetric, Fluorescence and Luminescence Analysis
    www.aladdin-e.com Comparison of colorimetric, fluorescence and luminescence analysis Introduction 25°C, and 37°C, Over the years, the enzyme immunoassay that greater than six months shelf life when stored Engvall and Perlmann first described has taken at 4°C, many different forms. Today there are commercially available, heterogeneous, homogeneous, cell-based, capable of being conjugated to an antigen or colorimetric, fluorescent and luminescent, to antibody, name just a few, versions of the original ELISA. inexpensive, They all have antibody-antigen complexes and easily measurable activity, enzyme reactions in common. In this technical high substrate turnover number, bulletin, we here will focus on the enzyme linked unaffected by biological components of the immunosorbent assay and discuss three types of assay. detection systems — colorimetric, fluorescent, and luminescent. By far, the two most popular enzymes are All ELISA, regardless of the detection system peroxidase and alkaline phosphatase. Each has employed, require the immobilization of an their advantages and disadvantages. Both are antigen or antibody to a surface. They also quite stable when handled and stored properly, require the use of an appropriate enzyme label and both can be stored at 4°C for greater than 6 and a matching substrate that is suitable for the months. Both are also commercially available as detection system being used. Associated with the free enzymes and as enzyme conjugates (enzyme enzyme-substrate reaction are several labeled antibodies, etc.) and are relatively requirements, such as timing and development inexpensive. However, there are some differences conditions, that need to be optimized to result in between these two enzymes that should be a precise, accurate and reproducible assay.
    [Show full text]
  • Request to Renew Exemption 1(A)
    Request to renew Exemption 1(a) under the RoHS Directive 2011/65/EU Mercury in single-capped (compact) fluorescent lamps below 30 W Date: January 15, 2015 LIGHTINGEUROPE Contents Contents ................................................................................................................... 2 1 Name and contact details ................................................................................. 4 2 Reason for application ...................................................................................... 4 3 Summary of the exemption request .................................................................. 4 4 Technical description of the exemption request ................................................ 7 4.1 Description of the lamps and their applications .................................................. 7 4.1.1 Lamps covered by this exemption .................................................................. 7 4.1.2 Applications covered by this exemption .......................................................... 8 4.1.3 Annex I category covered by this exemption ................................................ 10 4.2 Description of the substance ............................................................................ 11 4.2.1 Substance covered by this exemption .......................................................... 11 4.2.2 Function of mercury in lamps ....................................................................... 11 4.2.3 Location of mercury in lamps.......................................................................
    [Show full text]
  • Tips for Improved Luminescence Performance Getting the Most of out of Your Biotek Reader
    Tips for Improved Luminescence Performance Getting the Most of Out of Your BioTek Reader In order to achieve the best possible luminescence results from your BioTek microplate reader, several different parameters must be addressed. While there are an infinite number of possible combinations, addressing just a few key issues will greatly increase the likelihood of experimental success. In this technical note, we describe some of those issues and parameters. Introduction BioTek offers two reader series capable of measuring fluorescence: the Synergy HT and the FLx800. Depending on the model and type the end user will be able to perform various luminescent reactions. For example, only those readers configured with injectors have the capability to perform flash luminescence assays, while virtually all the luminescent capable readers can perform glow assays. Listed below are several different parameters, which may or may not apply to any one specific reader. Getting Started Plate Type: The type of plate used does matter. Opaque white plates have been shown to provide the best performance for luminescence assays, as they maximize the signal. Other plates can be used, such as white sided with clear bottom if necessary. Solid black plates will also work, but the signal will be significantly reduced. Quality plates should not allow any light leakage through the walls of the microplate. Filter Wheel Settings: In order to prevent any stray light from entering the optical path, an opaque plug is located in the excitation wheel in lieu of an excitation filter. Generally an open aperture on the emission filter wheel is used when performing luminescence measurements.
    [Show full text]
  • Toxicological Profile for Zinc
    TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
    [Show full text]
  • Electroluminescence Vs. Photoluminescence
    Electroluminescence vs. Photoluminescence This application note presents a brief comparison in characterization of light-emitting material such as GaN using electroluminescence and photoluminescence. In photoluminescence (PL), excess carriers (electrons and holes) are photo-excited by exposure to a sufficiently intense light source, and the luminescence emitted from the radiative recombination of these photo-excited carriers. PL mapping combines conventional PL with a scanning stage. Both the intensity and the peak wavelength uniformity across the whole wafer can thus be acquired and used for evaluation. Electroluminescence (EL) is similar to photoluminescence, except that in electroluminescence the excess carriers are produced by current injection and it is usually measured on finished device. The photoluminescence is mainly determined by the optical properties of the material, while the electroluminescence is determined by a number of factors such as the optical properties and physical structures of the optically active layers, the electrical properties of two conductive regions which are used for cathode and anode contacts, and the properties of the electrical contacts through which the electrical current injected. It is well known that photoluminescence is not equivalent to electroluminescence. High photo-luminescence efficiency is necessary but not sufficient for good light-emitting materials or wafers. A wafer with high photoluminescence efficiency may or may not exhibit high electroluminescence efficiency and hence good light emitting diodes (LEDs). The different emission mechanism between PL and EL could also result in huge emission wavelength/intensity change. It has been reported that, at least in green LED, top contact layer could change the MQW PL emissions dramatically, and EL spectra from the fabricated devices were very different from the MQW PL measurements.
    [Show full text]
  • On the Model of a Compact Fluorescent Lamp As Load of a Mixed Lv Network
    Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia ON THE MODEL OF A COMPACT FLUORESCENT LAMP AS LOAD OF A MIXED LV NETWORK Mihaela Albu1, Aurel–Ionuţ Chirilă1, Ioan–Dragoş Deaconu1 1”Politehnica” University of Bucharest, Faculty of Electrical Engineering, 060042 Bucharest, Splaiul Independenţei 313, Romania [email protected] (Albu Mihaela) Abstract The need of an optimal integration of dispersed generation (mainly based on renewable sources, which are usually intermittent and provide electricity in DC form) led to a new distribution system, which includes DC layer as an active network (generation, storage and loads are all interconnected at direct voltage by means of uni- or bi-directional power electronics converters). At a first stage, these DC networks should operate interconnected with the AC distribution system. One main application in the near future is considered to be the use of a DC layer in office buildings. Therefore, models of the system components have to be developed, as to accurately simulate the network behavior for various states. In this paper, firstly a PSpice model of a CFL lamp was derived, as to allow different simulations conditions when supplied with DC at various voltage levels. Then a set of experiments conducted both in DC and AC enabled the model validation. For various CFLs, the I(U) characteristics were obtained and appropriate numerical model of the corresponding CFL impedance for DC supply were derived, as to be further implemented in complex grid models developed within Matlab workspace. Finally, conclusions regarding the efficiency of a DC supply grid are drawn, together with an assessment within the power quality frame.
    [Show full text]
  • Exploring Photoluminescence
    Name: Class: LUMINESCENCE Visual Quantum Mechanics It’s Cool Light! ACTIVITY 5 Exploring Photoluminescence Goal In the previous activity, we explored several types of luminescence and compared it with incandescence. In this activity, we will investigate luminescent materials that require light to emit light. These materials are called photoluminescent. In a dark room, open the black envelope labeled “A” assigned by your instructor that contains an object that has been placed in it overnight. Take the object out of the envelope. ? Does object “A” emit light? If it does, in the space provided below describe the emitted light. Turn on the lights and expose the object to the light. After a few seconds, turn off the lights. ? Does object “A” seem to emit light when the lights are on? ? Now, turn the light off again. Does light come from object “A” ? If it does, in the space provided below describe the characteristics of the emitted light. Photoluminescence, unlike the other types of luminescence, requires light in order to emit light. As a result, the chart used in the first activity to identify the different types of luminescence (Figure 1-3) needs to be expanded to include Figure 5-1 illustrated on the following page. Kansas State University @2001, Physics Education Research Group, Kansas State University. Visual Quantum Mechanics is supported by the National Science Foundation under grants ESI 945782 and DUE 965288. Opinions expressed are those of the authors and not necessarily of the Foundation. 5-1 Luminescence ENERGY: Light photoluminescence object glows after light is removed yes no phosphorescence fluorescence Figure 5-1: Photoluminescence Addition to Luminescence Chart According to Figure 5-1, a photoluminescent object emits light or glows as a result of shining light on the object.
    [Show full text]
  • Electronic Structure Descriptor for the Discovery of Narrow-Band Red
    Article pubs.acs.org/cm Electronic Structure Descriptor for the Discovery of Narrow-Band Red-Emitting Phosphors † † ‡ † Zhenbin Wang, Iek-Heng Chu, Fei Zhou, and Shyue Ping Ong*, † Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0448, United States ‡ Physics Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States *S Supporting Information ABSTRACT: Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow- band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first- principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth. ■ INTRODUCTION activator concentration is found to have little influence on the 2+ Phosphor-converted light-emitting diodes (pc-LEDs) are an emission band position. The chemically similar CaLiAl3N4:Eu energy efficient and environmentally friendly lighting source for narrow-band red-emitting phosphor also has an emission peak 1−7 λ ∼ 6 solid-state lighting.
    [Show full text]
  • LED Laboratory Lighting [PDF]
    Ancient TL Vol. 26 No.1 2008 11 LED laboratory lighting G.W. Berger and C. Kratt Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA (e-mail: [email protected]) (Received 29 April 2008; in final form 21 May 2008) _____________________________________________________________________________________________ Introduction Instrumentation Over the last three decades there have been various We measured optical fluxes (μW/cm2) from our recommendations about laboratory lighting. These various light sources using a NIST-traceable have changed with changing understanding of the calibrated radiometer (Model IL-1400a, International luminescence responses of quartz and feldspars, as Light, www.intl-lighttech.com). Filter F-15957 and a well as with changes in the availability of affordable cosine diffuser are mounted over the UV stabilized lighting technology (e.g., Sutton and Zimmerman, silicon photodiode detector (SEL033). We measured 1978; Jensen and Barbetti, 1979; Spooner and spectra over the range 350-2500 nm, using an Prescott, 1986; Smith, 1988; Galloway and Napier, Analytical Spectral Devices (ASD) Inc. Fieldspec® 1991; Lamothe, 1995; Spooner et al., 2000; Huntley Pro spectroradiometer (www.asdi.com). This and Baril, 2002). spectroradiometer consists of 3 detector arrays (and diffraction gratings), with response boundaries at In reviewing the excitation spectrum of feldspar by ~980 nm and ~1800 nm. The response function has a Ditlefsen (1991) and their own tests on loess, Huntley 10-20% variation over the interval 520-800 nm, and and Baril (2002) summarize that when one is the response falls off by a factor of 4 between ~800 preparing quartz, the reddest visually comfortable nm and 950 nm.
    [Show full text]