Molecular Phylogeny of East and Southeast Asian Fossorial Moles (Lipotyphla, Talpidae)

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of East and Southeast Asian Fossorial Moles (Lipotyphla, Talpidae) Journal of Mammalogy, 95(3):455–466, 2014 Molecular phylogeny of East and Southeast Asian fossorial moles (Lipotyphla, Talpidae) AKIO SHINOHARA,* SHIN-ICHIRO KAWADA,NGUYEN TRUONG SON,CHIHIRO KOSHIMOTO,HIDEKI ENDO,DANG NGOC CAN, AND HITOSHI SUZUKI Division of Bio-resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Downloaded from https://academic.oup.com/jmammal/article-abstract/95/3/455/876160 by guest on 13 September 2019 Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan (AS, CK) Department of Zoology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki 305-0005, Japan (SK) Department of Vertebrate Zoology, Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam (NTS, DNC) The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan (HE) Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan (HS) * Correspondent: [email protected] The diversity of fossorial moles in East and Southeast Asia is contained in the 2 species-rich genera Mogera (8 species) and Euroscaptor (8 or more species), and the 3 monospecific genera Scapanulus, Scaptochirus, and Parascaptor. To better understand the evolution and biogeography of these fossorial moles, we conducted molecular phylogenetic analyses using mitochondrial cytochrome-b (Cytb; 1,140 base pairs [bp]) and 12S rRNA (approximately 830 bp) and nuclear recombination activating gene 1 (Rag1; 1,010 bp) gene sequences from 5 species of Euroscaptor,6ofMogera, and the single species of Scaptochirus. Phylogenetic estimates revealed 5 distinct lineages of East and Southeast Asian fossorial moles: Mogera, Scaptochirus, Euroscaptor mizura, E. parvidens, and E. malayana–E. klossi–E. longirostris. Our results support the monophyly of Mogera but not Euroscaptor, indicating a need for taxonomic revision of the latter genus. We hypothesize that Mogera originated in the central portion of its range and then dispersed to peripheral islands, such as Taiwan and the Japanese Islands. The fragmented distribution of Southeast Asian Euroscaptor presumably arose from habitat competition (invasion) from Mogera species, long-range dispersal, vicariance events, or a combination of these, explaining the high species richness of fossorial moles in this region. Key words: Euroscaptor, Insectivora, Lipotyphla, Mogera, molecular phylogeny, phylogeography, Scaptochirus, Soricomorpha, Talpidae Ó 2014 American Society of Mammalogists DOI: 10.1644/13-MAMM-A-135 The diversity of fossorial moles in East and Southeast Asia (Allen 1938; Ziegler 1971; Motokawa 2004; Kawada and is contained in the 2 species-rich genera Mogera (8 species) Yokohata 2009; see also Sa´nchez-Villagra et al. 2006). and Euroscaptor (8 or more species), and the 3 monospecific The genus Mogera is widely distributed in East Asia (eastern genera Scapanulus, Scaptochirus, and Parascaptor (Hutterer China, Taiwan, Korea, Japan, and Primorye) and Southeast 2005; Kawada et al. 2008, 2012). Four of these genera Asia (southeastern China to northern Vietnam). Of the 8 (Mogera, Euroscaptor, Scaptochirus, and Parascaptor) belong currently recognized species, the large Japanese mole (M. wogura) and La Touche’s mole (M. latouchei) have wide to the tribe Talpini (Hutterer 2005), and have been predom- distributions in East Asia and Southeast Asia, respectively inantly classified by their dental formula: 44 teeth in (Allen 1938). The remaining 6 species are each confined to Euroscaptor (i 3/3, c 1/1, p 4/4, m 3/3, total 44), 42 in rather small geographic areas. The insular mole (M. insularis) Mogera (i 3/2, c 1/1, p 4/4, m 3/3, total 42), 42 in Parascaptor and Kano’s mole (M. kanoana) are endemic to Taiwan. The (i 3/3, c 1/1, p 3/4, m 3/3, total 42), and 40 in Scaptochirus (i 3/ 3, c 1/1, p 3/3, m 3/3, total 40). Because of different combinations of tooth loss, it has been suggested that the dental formula observed in Euroscaptor is the ancestral condition www.mammalogy.org 455 456 JOURNAL OF MAMMALOGY Vol. 95, No. 3 remaining 4 species are endemic to Japan. The lesser Japanese surveys of Southeast Asian fossorial mole populations are mole (M. imaizumii) occurs in eastern Japan (Abe 1974, 2005; needed to elucidate the evolutionary history of fossorial taxa in Ohdachi et al. 2009). The Sado mole (M. tokudae) and the Asia. Etigo mole (M. etigo) are confined to Sado Island and the In our previous studies, we examined the phylogenetic Echigo Plain, respectively. The Senkaku mole (M. uchidai)is relationships of 21 talpid species, including 8 Asian fossorial restricted to Uotsuri Island in the Senkaku Islands (Abe 2005; mole species, and showed that the Asian fossorial moles Ohdachi et al. 2009). formed a monophyletic group to the exclusion of the European Phylogenetic analyses of the genus Mogera are available for Talpa species group (Shinohara et al. 2003, 2004a, 2004b, the East Asian taxa. In particular, the Japanese species, except 2008; Kawada et al. 2007; see also Cabria et al. 2006; for M. uchidai, have been subjected to analyses using Colangelo et al. 2010; Crumpton and Thompson 2013). The Downloaded from https://academic.oup.com/jmammal/article-abstract/95/3/455/876160 by guest on 13 September 2019 mitochondrial DNA (mtDNA) sequences (Okamoto 1999; phylogenetic relationships both among and within the genera Tsuchiya et al. 2000) and nuclear gene sequences (Shinohara et examined, however, have not yet been completely resolved, al. 2004a, 2005; Kirihara et al. 2013). In addition, phylogeo- partly due to ambiguous relationships (Shinohara et al. 2008). graphic analyses of M. imaizumii (Iwasa et al. 2006), M. To obtain finer resolution of Asian talpine phylogeny, we insularis, M. kanoana (Kawada et al. 2007), and M. wogura conducted molecular phylogenetic analyses focusing on the from the Korean Peninsula and adjacent regions (M. w. Southeast Asian fossorial moles. coreana and M. w. robusta—Koh et al. 2012) also have been documented using mtDNA sequences. These recent molecular phylogenetic and phylogeographic studies suggested that the MATERIALS AND METHODS species richness of the modern Mogera lineage is the result of a DNA extraction and sequencing.—The species examined in combination of multiple migration events from mainland Asia this study are listed in Table 1 and mapped in Fig. 1. Details of to the peripheral islands and vicariance events (Tsuchiya et al. collecting localities and species identification of the 2000; Shinohara et al. 2004a, 2005; Iwasa et al. 2006; Kawada Vietnamese and Thai specimens were given in Kawada et al. et al. 2007; Kirihara et al. 2013); however, none of these (2009) and Kawada et al. (2006), respectively. The specimens studies included the Southeast Asian member of the genus, M. of Taiwanese moles used in this study were the same as in latouchei. Kawada et al. (2007). La Touche’s mole (M. latouchei)is The genus Euroscaptor is distributed mainly in Southeast sometimes considered a synonym of the insular mole (M. Asia, with at least 8 species described. One species, the insularis), but recent studies (Kawada et al. 2007, 2009) based Japanese mountain mole (E. mizura), occurs on the Japanese on morphological and karyological characteristics have Islands, whereas all others occur in mainland Asia and indicated that M. latouchei is a distinct species. In this study Southeast Asia (Hutterer 2005). The 7 Southeast Asian species we follow Kawada et al. (2007, 2009). The nomenclature and are the Kloss’s mole (E. klossi) from Thailand; the greater classification follows Ohdachi et al. (2009) for Japanese moles Chinese mole (E. grandis) from Mt. Emei, China; the long- and Hutterer (2005) for other species. We used the species nosed mole (E. longirostris) from southern China to northern name E. malayana for the Malaysian mole; the history of the Vietnam; the small-toothed mole (E. parvidens) from central species name for this mole was reported in Kawada et al. Vietnam; the Malaysian mole (E. malayana) from peninsular (2003, 2008). Malaysia; the Himalayan mole (E. micrura) from the Genomic DNA from preserved liver, spleen, or muscle, or a Himalayas; and a recently described species from northern combination of these, was extracted by proteinase-K digestion Vietnam, E. subanura (Hutterer 2005; Can et al. 2008; Kawada and phenol–chloroform–isoamyl alcohol extraction procedures, et al. 2008, 2012). Their habitats are extremely fragmented and followed by ethanol precipitation to purify extracted DNA. The usually restricted to highlands, although the ranges of these polymerase chain reaction method for amplification of Southeast Asian species are not well documented. To date, complete mitochondrial cytochrome-b (Cytb; 1,140 base pairs genetic studies to reconstruct the evolutionary history and [bp]), partial mitochondrial 12S rRNA (12S; approximately explain the current species diversity of Euroscaptor have not 900 bp), and partial nuclear recombination activating gene 1 been conducted. Motokawa (2004) examined the skulls of 2 (Rag1; 1,010 bp) genes followed our previous study (Shino- Euroscaptor species and reported that the genus is not hara et al. 2004a). The Cytb gene was first amplified using the monophyletic. By using molecular genetic markers, Shinohara universal primer pair L-14724 and H-15915 (Irwin et al. 1991) et al. (2004b, 2008) reported the phylogenetic position of the and then nested amplifications were carried out using 2 primer Malaysian mole (reported as E. micrura, but specified as E. pairs: L-14724 (Suzuki et al. 1997) and SNH-570, and H- malayana in Kawada et al. [2008]) and the short-faced mole 15916 (Suzuki et al. 2000) and SNL-491. Amplification of 12S (Scaptochirus moschatus), which is widely distributed in was performed using the universal primer pair L-613 (Mindell China; this analysis also supported a paraphyletic origin of et al. 1991) and H-1478 (Kocher et al. 1989), with nested Euroscaptor.
Recommended publications
  • Revision of the Mole Genus Mogera (Mammalia: Lipotyphla: Talpidae)
    Systematics and Biodiversity 5 (2): 223–240 Issued 25 May 2007 doi:10.1017/S1477200006002271 Printed in the United Kingdom C The Natural History Museum Shin-ichiro Kawada1, 6 , Akio Shinohara2 , Shuji Revision of the mole genus Mogera Kobayashi3 , Masashi Harada4 ,Sen-ichiOda1 & (Mammalia: Lipotyphla: Talpidae) Liang-Kong Lin5 ∗ 1Laboratory of Animal from Taiwan Management and Resources, Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan Abstract We surveyed the central mountains and southeastern region of Taiwan 2Department of Bio-resources, and collected 11 specimens of a new species of mole, genus Mogera. The specimens Division of Biotechnology, were characterized by a small body size, dark fur, a protruding snout, and a long Frontier Science Research Center, University of Miyazaki tail; these characteristics are distinct from those of the Taiwanese lowland mole, 5200, Kihara, Kiyotake, M. insularis (Swinhoe, 1862). A phylogenetic study of morphological, karyological Miyazaki 889-1692, Japan 3Department of Asian Studies, and molecular characters revealed that Taiwanese moles should be classified as two Chukyo Woman’s University, distinctive species: M. insularis from the northern and western lowlands and the new Yokone-cho, Aichi 474-0011, species from the central mountains and the east and south of Taiwan. The skull of Japan 4Laboratory Animal Center, the new species was slender and delicate compared to that of M. insularis. Although Osaka City University Graduate the karyotypes of two species were identical, the genetic distance between them School of Medical School, Osaka, Osaka 545-8585, Japan was sufficient to justify considering each as a separate species. Here, we present a 5Laboratory of Wildlife Ecology, detailed specific description of the new species and discuss the relationship between Department of Life Science, this species and M.
    [Show full text]
  • Uropsilus, Talpidae): Implications for Taxonomy and Conservation Tao Wan1,2†, Kai He1,3† and Xue-Long Jiang1*
    Wan et al. BMC Evolutionary Biology 2013, 13:232 http://www.biomedcentral.com/1471-2148/13/232 RESEARCH ARTICLE Open Access Multilocus phylogeny and cryptic diversity in Asian shrew-like moles (Uropsilus, Talpidae): implications for taxonomy and conservation Tao Wan1,2†, Kai He1,3† and Xue-Long Jiang1* Abstract Background: The genus Uropsilus comprises a group of terrestrial, montane mammals endemic to the Hengduan and adjacent mountains. These animals are the most primitive living talpids. The taxonomy has been primarily based on cursory morphological comparisons and the evolutionary affinities are little known. To provide insight into the systematics of this group, we estimated the first multi-locus phylogeny and conducted species delimitation, including taxon sampling throughout their distribution range. Results: We obtained two mitochondrial genes (~1, 985 bp) and eight nuclear genes (~4, 345 bp) from 56 specimens. Ten distinct evolutionary lineages were recovered from the three recognized species, eight of which were recognized as species/putative species. Five of these putative species were found to be masquerading as the gracile shrew mole. The divergence time estimation results indicated that climate change since the last Miocene and the uplift of the Himalayas may have resulted in the diversification and speciation of Uropsilus. Conclusions: The cryptic diversity found in this study indicated that the number of species is strongly underestimated under the current taxonomy. Two synonyms of gracilis (atronates and nivatus) should be given full species status, and the taxonomic status of another three potential species should be evaluated using extensive taxon sampling, comprehensive morphological, and morphometric approaches. Consequently, the conservation status of Uropsilus spp.
    [Show full text]
  • Late Pleistocene and Holocene Small Mammal (Lipotyphla, Rodentia, Lagomorpha) Remains from Medvezhyi Klyk Cave in the Southern Russian Far East
    Proceedings of the Zoological Institute RAS Vol. 324, No. 1, 2020, pp. 124–145 10.31610/trudyzin/2020.324.1.124 УДК 599+569:551.](571.63) Late Pleistocene and Holocene small mammal (Lipotyphla, Rodentia, Lagomorpha) remains from Medvezhyi Klyk Cave in the Southern Russian Far East V.E. Omelko1*, Y.V. Kuzmin2, 3, M.P. Tiunov1, L.L. Voyta4 and G.S. Burr5 1Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 100-Letiya Vladivostoku Ave, 159, Vladivostok 690022, Russia; e-mail: [email protected]; [email protected] 2Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Academika Koptuga Ave., 3, Novosibirsk 630090, Russia; e-mail: [email protected] 3Laboratory of Mesozoic and Cenozoic Continental Ecosystems, Lenina Ave., 36, Tomsk State University, Tomsk 634050, Russia. 4Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, Saint Petersburg 199034, Russia; e-mail: [email protected] 5National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan; e-mail: [email protected] ABSTRACT Late Pleistocene-Holocene faunal complexes of small mammals (Lipotyphla, Rodentia, and Lagomorpha) from the Russian Far East are described for the first time. We used material from the Medvezhyi Klyk Cave, located in Southern Sikhote-Alin. The numerous fossil findings from the cave display a remarkable taxonomic diversity and high degree of preservation. AMS 14C dating used for determination of deposits age. The Holocene sediments were divided into three periods: Early, Middle, and Late. The Pleistocene deposits age was not exactly determined, but under approximately estimation it can reach 50–60 ka.
    [Show full text]
  • Lipotyphla: Talpidae: Euroscaptor)
    Proceedings of the Zoological Institute RAS Vol. 320, No. 2, 2016, рр. 193–220 УДК 599.362 (597) SECRETS OF THE UNDERGROUND VIETNAM: AN UNDERESTIMATED SPECIES DIVERSITY OF ASIAN MOLES (LIPOTYPHLA: TALPIDAE: EUROSCAPTOR) E.D. Zemlemerova1, A.A. Bannikova1, V.S. Lebedev2, V.V. Rozhnov3, 5 and A.V. Abramov4, 5* 1Lomonosov Moscow State University, Vorobievy Gory, 119991 Moscow, Russia; e-mails: [email protected], [email protected] 2Zoological Museum, Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia; e-mail: [email protected] 3A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia; e-mail: [email protected] 4Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia; e-mail: [email protected] 5Joint Vietnam-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam ABSTRACT A study of the Southeast Asian moles of the genus Euroscaptor based on a combined approach, viz. DNA sequence data combined with a multivariate analysis of cranial characters, has revealed a high cryptic diversity of the group. An analysis of mitochondrial cytochrome b gene and five nuclear genes has revealed two deeply divergent clades: the western one (E. klossi + E. malayana + E. longirostris from Sichuan + Euroscaptor spp. from northern Vietnam and Yunnan, China), and the eastern one (E. parvidens s.l. + E. subanura). The pattern of genetic variation in the genus Euroscaptor discovered in the present study provides support for the existence of several cryptic lineages that could be treated as distinct species based on their genetic and morphological distinctness and geographical distribution.
    [Show full text]
  • An Evolutionary View on the Japanese Talpids Based on Nucleotide Sequences
    Mammal Study 30: S19–S24 (2005) © the Mammalogical Society of Japan An evolutionary view on the Japanese talpids based on nucleotide sequences Akio Shinohara1,*, Kevin L. Campbell2 and Hitoshi Suzuki3 1 Department of Bio-resources, Division of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan 2 Department of Zoology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 3 Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan Abstract. Japanese talpid moles exhibit a remarkable degree of species richness and geographic complexity, and as such, have attracted much research interest by morphologists, cytogeneticists, and molecular phylogeneticists. However, a consensus hypothesis pertaining to the evolutionary history and biogeography of this group remains elusive. Recent phylogenetic studies utilizing nucleotide sequences have provided reasonably consistent branching patterns for Japanese talpids, but have generally suffered from a lack of closely related South-East Asian species for sound biogeographic interpretations. As an initial step in achieving this goal, we constructed phylogenetic trees using publicly accessible mitochondrial and nuclear sequences from seven Japanese taxa, and those of related insular and continental species for which nucleotide data is available. The resultant trees support the view that four lineages (Euroscaptor mizura, Mogera tokuade species group [M. tokudae and M. etigo], M. imaizumii, and M. wogura) migrated separately, and in this order, from the continental Asian mainland to Japan. The close relationship of M. tokudae and M. etigo suggests these lineages diverged recently through a vicariant event between Sado Island and Echigo plain. The origin of the two endemic lineages of Japanese shrew-moles, Urotrichus talpoides and Dymecodon pilirostris, remains ambiguous.
    [Show full text]
  • The Preface of “Evolutionary Biology and Phylogeny of the Talpidae”
    Mammal Study 30: S3 (2005) © the Mammalogical Society of Japan The preface of “Evolutionary biology and phylogeny of the Talpidae” The symposium “Evolutionary biology and phylogeny pleasure to say “Mission accomplished”! of the Talpidae” was held on the 3rd of August as part of This symposium was accompanied by three poster the IX International Mammalogical Congress (IMC9) in presentations. Dr. N. Sagara presented his new research Sapporo, Japan, 31 July–5 August 2005, and attracted topic, ‘Myco-talpology’, which is the science pertaining about 50 individuals interested in the family Talpidae to the ecological relationships between mushrooms and and other subterranean mammals. moles. Dr. Y. Yokohata communicated his and his After a brief introduction by Dr. Y. Yokohata, Dr. S. student’s research on lesser Japanese moles. The first Kawada highlighted his recent studies on the karyologi- poster examined the social relationships between indi- cal and morphological aspects of the lesser-known Asian vidual moles in captivity, while the second documented mole species, and forwarded several taxonomic prob- and compared the diet of an isolated insular population lems yet to be addressed. Dr. A. Loy followed this (Kinkasan Island) of moles inhabiting a ‘turf’ habitat presentation by discussing the origin and evolutionary altered by high populations of sika deer with those in history of Western European fossorial moles of the genus natural ‘forest’ environments. Talpa based on her and her collaborators’ studies of their In this proceeding, the following
    [Show full text]
  • Genetic and Morphologic Diversity of the Moles (Talpomorpha, Talpidae, Mogera) from the Continental Far East
    Received: 15 August 2018 | Revised: 23 December 2018 | Accepted: 26 December 2018 DOI: 10.1111/jzs.12272 ORIGINAL ARTICLE Genetic and morphologic diversity of the moles (Talpomorpha, Talpidae, Mogera) from the continental Far East Elena Zemlemerova1,2 | Alexey Abramov3 | Alexey Kryukov4 | Vladimir Lebedev5 | Mi-Sook Min6 | Seo-Jin Lee6 | Anna Bannikova2 1A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Abstract Moscow, Russia Taxonomy of the East Asian moles of the genus Mogera is still controversial. Based on 2 Lomonosov Moscow State University, the sequence data of 12 nuclear genes and one mitochondrial gene, we examine ge- Moscow, Russia netic variation in the Mogera wogura species complex and demonstrate that M. ro- 3Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia busta, from the continental Far East, and M. wogura, from the Japanese Islands, are 4Federal Scientific Center of the East not conspecific. Our data do not support the existence of two or more species of Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Mogera in the Russian Far East. We suggest that the form “coreana” from the Korean Vladivostok, Russia Peninsula should be treated as a subspecies of M. robusta. Our morphological analy- 5 Zoological Museum, Lomonosov Moscow sis shows that M. r. coreana differs from typical M. robusta, from Primorye, primarily State University, Moscow, Russia in its smaller size. We show that there is strong morphological variability among con- 6Conservation Genome Resource Bank for Korean Wildlife (CGRB), Research Institute tinental moles, which may be associated with ecological and geographical factors. for Veterinary Science, College of Veterinary The time since the split between M.
    [Show full text]
  • Influence of Evolutionary Allometry on Rates of Morphological Evolution and Disparity in Strictly Subterranean Moles (Talpinae, Talpidae, Lipotyphla, Mammalia)
    J Mammal Evol DOI 10.1007/s10914-016-9370-9 ORIGINAL PAPER Influence of Evolutionary Allometry on Rates of Morphological Evolution and Disparity in strictly Subterranean Moles (Talpinae, Talpidae, Lipotyphla, Mammalia) G. Sansalone1,2,3 & P. Colangelo 2,4 & T. Kotsakis1,2 & A. Loy2,5 & R. Castiglia6 & A. A. Bannikova7 & E. D. Zemlemerova7 & P. Piras8,9 # Springer Science+Business Media New York 2017 Abstract The adaptation to a particular function could di- size variables. Evolutionary allometric trajectories exhibited rectly influence the morphological evolution of an anatomi- convergence of humeral shape between the two tribes, even cal structure as well as its rates. The humeral morphology of when controlling for phylogeny, though a significant differ- moles (subfamily Talpinae) is highly modified in response to ences in the evolutionary rates was found between the two intense burrowing and fully fossorial lifestyle. However, lit- tribes. Talpini, unlike Scalopini, seem to have reached a tle is known of the evolutionary pathways that marked its robust fossorial morphology early during their evolution, diversification in the two highly fossorial moles tribes and their shape disparity did not change, if it did not de- Talpini and Scalopini. We used two-dimensional landmark- crease, through time. Furthermore, the basal Geotrypus spp. based geometric morphometrics and comparative methods to clearly set apart from the other highly fossorial moles, understand which factors influenced the rates and patterns of exhibiting a significant acceleration of evolutionary shifts the morphological evolution of the humerus in 53 extant and toward higher degree of fossorial adaptation. Our observa- extinct species of the Talpini (22 extant plus 12 extinct) and tions support the hypothesis that the evolution of allometry Scalopini(sixextantplus13extinct)tribes,foratotalof623 may reflect a biological demand (in this case functional) that humeri.
    [Show full text]
  • A Checklist of the Mammals of South-East Asia
    A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east
    [Show full text]
  • A Higher-Level MRP Supertree of Placental Mammals Robin MD Beck*1,2,3, Olaf RP Bininda-Emonds4,5, Marcel Cardillo1, Fu- Guo Robert Liu6 and Andy Purvis1
    BMC Evolutionary Biology BioMed Central Research article Open Access A higher-level MRP supertree of placental mammals Robin MD Beck*1,2,3, Olaf RP Bininda-Emonds4,5, Marcel Cardillo1, Fu- Guo Robert Liu6 and Andy Purvis1 Address: 1Division of Biology, Imperial College London, Silwood Park campus, Ascot SL5 7PY, UK, 2Natural History Museum, Cromwell Road, London SW7 5BD, UK, 3School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia, 4Lehrstuhl für Tierzucht, Technical University of Munich, 85354 Freising-Weihenstephan, Germany, 5Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany and 6Department of Zoology, Box 118525, University of Florida, Gainesville, Florida 32611-8552, USA Email: Robin MD Beck* - [email protected]; Olaf RP Bininda-Emonds - [email protected]; Marcel Cardillo - [email protected]; Fu-Guo Robert Liu - [email protected]; Andy Purvis - [email protected] * Corresponding author Published: 13 November 2006 Received: 23 June 2006 Accepted: 13 November 2006 BMC Evolutionary Biology 2006, 6:93 doi:10.1186/1471-2148-6-93 This article is available from: http://www.biomedcentral.com/1471-2148/6/93 © 2006 Beck et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The higher-level phylogeny of placental mammals has long been a phylogenetic Gordian knot, with disagreement about both the precise contents of, and relationships between, the extant orders.
    [Show full text]
  • Molecular Phylogenetics of Shrews (Mammalia: Soricidae) Reveal Timing of Transcontinental Colonizations
    Molecular Phylogenetics and Evolution 44 (2007) 126–137 www.elsevier.com/locate/ympev Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations Sylvain Dubey a,*, Nicolas Salamin a, Satoshi D. Ohdachi b, Patrick Barrie`re c, Peter Vogel a a Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland b Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan c Laboratoire Ecobio UMR 6553, CNRS, Universite´ de Rennes 1, Station Biologique, F-35380, Paimpont, France Received 4 July 2006; revised 8 November 2006; accepted 7 December 2006 Available online 19 December 2006 Abstract We sequenced 2167 base pairs (bp) of mitochondrial DNA cytochrome b and 16S, and 1390 bp of nuclear genes BRCA1 and ApoB in shrews taxa (Eulipotyphla, family Soricidae). The aim was to study the relationships at higher taxonomic levels within this family, and in particular the position of difficult clades such as Anourosorex and Myosorex. The data confirmed two monophyletic subfamilies, Soric- inae and Crocidurinae. In the former, the tribes Anourosoricini, Blarinini, Nectogalini, Notiosoricini, and Soricini were supported. The latter was formed by the tribes Myosoricini and Crocidurini. The genus Suncus appeared to be paraphyletic and included Sylvisorex.We further suggest a biogeographical hypothesis, which shows that North America was colonized by three independent lineages of Soricinae during middle Miocene. Our hypothesis is congruent with the first fossil records for these taxa. Using molecular dating, the first exchang- es between Africa and Eurasia occurred during the middle Miocene. The last one took place in the Late Miocene, with the dispersion of the genus Crocidura through the old world.
    [Show full text]
  • Lipotyphla, Mammalia) from the Pliocene and Pleistocene of Transbaikalia and Irkutsk Region (Russia
    Acta zoologica cracoviensia, 50A(1-2): 15-48, Kraków, 31 May, 2007 New data on Soricomorpha (Lipotyphla, Mammalia) from the Pliocene and Pleistocene of Transbaikalia and Irkutsk Region (Russia) Barbara RZEBIK-KOWALSKA Received: 15 Dec., 2006 Accepted: 18 Jan., 2007 RZEBIK-KOWALSKA B. 2007. New data on Soricomorpha (Lipotyphla, Mammalia) from the Pliocene and Pleistocene of Transbaikalia and Irkutsk Region (Russia). Acta zoo- logica cracoviensia, 50A(1-2): 15-48. Abstract. Remains of five genera and 14 species (Talpidae and Soricidae) have been found in the Pliocene and Pleistocene sediments of ten localities in Western Transbaikalia and Irkutsk Region. Besides fossil (Petenyia sp., Sorex palaeosibiriensis) and Recent taxa (Asioscalops altaica, Crocidura sp., Neomys fodiens, Sorex minutissimus, S. minutus, S. roboratus, S. cf. isodon and S. cf. daphaenodon) known today from the Asiatic continent, two new fossil Sorex species (S. erbajevae and S. baikalensis) have been described. Thus, the number of fossil Sorex species cited so far from Asia (16) increased to 21. Key words: Fossil mammals, Soricomorpha, Plio/Pleistocene, Siberia. Barbara RZEBIK-KOWALSKA, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, S³awkowska str. 17, 31-016 Kraków, Poland. E-mail: [email protected] I. INTRODUCTION Central and East Asia are considered to be of fundamental importance for the evolution of the in- sectivores. However our current knowledge of fossil representatives of this group is limited. Most fossils are only tentatively identified to family, subfamily or genus levels. As a result all new infor- mation concerning the fossil insectivore fauna of Asia is of great value and importance.
    [Show full text]