IPM Front Matter

Total Page:16

File Type:pdf, Size:1020Kb

IPM Front Matter Integrated Pest Management For Schools: A Catalog of Resources Edited by Clay W. Scherer and Philip G. Koehler Department of Entomology and Nematology Institute of Food and Agricultural Sciences University of Florida Gainesville, FL 32601 2002 i ©2002 University of Florida, Institute of Food and Agricultural Sciences. Limited quotation from this book in other publications is permitted provided that proper credit is given. All rights reserved. Published 2002. Printed in the United States of America. — of related interest Many other items of interest are available from the Cooperative Extension Service and the Institute of Food and Agricultural Sciences at the University of Florida. Find out about all the books, manuals, videos, compact discs, flash cards and other media available from the University of Florida Institute of Food and Agricultural Sciences. Contact your County Extension Agent or: IFAS Extension Bookstore — University of Florida 1-800-226-1764 — Don’t forget to visit our Web site! The Institute of Food and Agricultural Science at the University of Florida has an extensive collection of information available online on the World Wide Web. Begin your visit with us at: http://schoolipm.ifas.ufl.edu/ Acknowledgments This manual was produced with support from EPA and posted to the University of Florida School IPM website through a grant from the Center for Integrated Pest Management. Graphic design, production and cover design by Jane Medley. ii Contents Contributors .............................................................................................................. iv Preface ...................................................................................................................... vii 1. What is School IPM?............................................................................................... 1 2. Information for the Administrator ........................................................................ 5 Getting Started ..................................................................................................... 5 Sample Letters .................................................................................................... 10 Contracts ............................................................................................................ 11 Regulatory .......................................................................................................... 16 Assessment Tools and Training Materials for School IPM Practitioners ........ 17 Forms ................................................................................................................. 26 3. Educational Presentations for School IPM .......................................................... 31 Informational and News Releases ..................................................................... 31 IPM Design ......................................................................................................... 39 Pests .................................................................................................................... 62 4. Technical Information on School IPM ................................................................. 85 IPM Design ......................................................................................................... 85 Pests .................................................................................................................. 106 Pesticides .......................................................................................................... 161 Nonpesticidal Components of an IPM Program ............................................ 194 Appendix 1: School IPM Organization Directory ................................................. 201 Appendix 2: State and Regional Poison Control Centers ...................................... 207 Appendix 3: Video-based Presentation Order Form (The ABCs of IPM) ............ 217 Appendix 4: IPM-related Web Sites ....................................................................... 219 iii Contributors Jerry Jochim Monroe County Community School Corp. Bloomington, Indiana T.A. Barry Sacramento, California Dr. William H. Kern, Jr. Department of Entomology and Nematology Brian Becker University of Florida Wisconsin Department of Agriculture Division of Agricultural Resource Management Dr. John Klotz Trade and Consumer Protection Department of Entomology University of California, Riverside Robert A. Belmont Florida Pest Control Association Dr. Philip G. Koehler Orlando, Florida Department of Entomology and Nematology University of Florida Deanna Branscome Department of Entomology and Nematology Sandra K. Kraft University of Florida Pinto & Associates, Inc. For Maryland Department of Agriculture Jerry Bukovsky Maryland Pest Control Association Dr. Mike Linker Department of Entomology Edward A. Crow North Carolina State University Maryland Department of Agriculture Pesticide Regulation Section Tim C. McCoy Annapolis, Maryland Department of Entomology and Nematology University of Florida S. Darr Bio-integral Resource Center Dr. Dini Miller Berkeley, California Entomology Department Virginia Polytechnic Institute and State University T. Drlik Bio-integral Resource Center Dr. Jon Morehouse Berkeley, California Department of Entomology and Nematology University of Florida Steve Dwinell Bureau of Entomology and Pest Control Dr. O. Norman Nesheim Florida Department of Agriculture and Consumer Services Pesticide Information Office University of Florida Jerry Gahlhoff Department of Entomology and Nematology H. Olkowski University of Florida Bio-integral Resource Center Berkeley, California Dr. Albert Greene United States General Services Administration W. Olkowski Washington, D.C. Bio-integral Resource Center Berkeley, California Dr. Paul Guillebeau University of Georgia Lawrence J. Pinto Entomology Department Pinto & Associates, Inc. For Maryland Department of Agriculture Mr. Lyndon Hawkins Department of Pesticide Regulation Dr. Peggy K. Powell Sacramento, California Compliance Assistance Program Pesticide Regulatory Programs, Plant Industries Division West Virginia Department of Agriculture iv Thomas E. Powell Department of Entomology and Nematology University of Florida Dr. Patti Pritchard Department of Entomology North Carolina State University Dr. Byron Reid Bayer Corporation Kansas City, Missouri Dina L. Richman Department of Entomology and Nematology University of Florida Jason S. Rulen Pesticide Regulatory Programs, Plant Industries Division West Virginia Department of Agriculture Dr. Clay Scherer Department of Entomology and Nematology University of Florida Donald E. Short Department of Entomology and Nematology University of Florida S.E. Simmons Sacramento, California T.E. Tidwell Sacramento, California Cynthia Tucker Department of Entomology and Nematology University of Florida Dr. Karen Vail Entomology Department University of Tennessee Dr. Steve M. Valles U.S. Department of Agriculture Agricultural Research Service Gainesville, Florida Dr. Thomas J. Weissling Department of Entomology and Nematology University of Florida Dr. David Williams U.S. Department of Agriculture Agricultural Research Service Gainesville, Florida v vi Preface This reference manual was created from documents initially developed for the National School IPM World Wide Web site, which is located at http://schoolipm.ifas.ufl.edu. Many School IPM practi- tioners from around the country have contributed material to the web site to make it the leading resource for School IPM information. Soon after development of the web site it was noted that not everyone inter- ested in School IPM information had internet access. In addition, many Pest Management Professionals (PMP) expressed their interest in a hard copy manual to maintain in the office or shop. This manual is the result of such requests. The Web site and this manual are intended for a very broad audience. Concerned parents, school offi- cials, PMPs, teachers, School IPM coordinators/practitioners, regulatory officials, and even students, will all find this reference to be a comprehensive resource. For additional detailed information on specific topics, a listing of related WWW links and reference sources is provided in Appendix IV. The manual is separated into four chapters. The first chapter provides an introduction to School IPM and possible mechanisms to initiate IPM implementation. The second chapter provides tools for the school administrator to help manage a School IPM program. The third chapter of the manual is intended to be used by School IPM practitioners/coordinators when communicating concepts of School IPM to broad audiences. This chapter contains sample news releases (which increase awareness and help create support for IPM programs) and brief slide presentations covering IPM. The fourth chapter is the “meat” of managing pests. This chapter contains detailed information and is designed to be a teaching tool for PMPs, technicians, and School IPM coordinators. The concept of Integrated Pest Management is relatively new to urban environments. It has been shown that implementation of IPM in schools can reduce risks associated with traditional pest control. With increased awareness/communication and improved teaching/training programs it is hoped that all schools will soon be implementing IPM. Use of this manual should aid in accomplishing this goal. Dr. Clay Scherer Dr. Phil Koehler University of Florida May 2001 vii viii WHAT IS SCHOOL IPM? 1 What is School IPM? Clay Scherer
Recommended publications
  • Study Guide Entomology & Nematology Department
    STUDY GUIDE ENTOMOLOGY & NEMATOLOGY DEPARTMENT DPM COMPREHENSIVE EXAMINATIONS The Entomology & Nematology Comprehensive Examinations consist of 3 sections: pest identification (30%), pest biology and management (40%), and core concepts and synthesis (30%). These examinations are limited to information about invertebrate animal pests, principally insects and nematodes, but also plant feeding mites and terrestrial molluscs. A. Pest identification Students will be presented with insects, mites, molluscs, and nematodes that they must identify. Some may be recognizable by sight, but others may require keys for identification. Students will be provided with identification aids (keys), where necessary, and be expected to use them to identify the subjects accurately. The unknowns will be selected from the list of important insect, mite, mollusc, and nematode pests (Table 1) though we will emphasize those with a single or double asterisk [* or **]), as these normally are the more important pests. Included in this list are some that pose a threat but are not currently found in Florida. B. Pest biology and management Students will answer 8-10 questions on insect, mite, mollusc, and nematode pest biology (sampling, distribution, life cycle, damage) and management. The animals for which students are responsible to know biology and management are listed in Table 1 (preceded by double asterisk [**]). C. Core Concepts and Synthesis Section: Students will answer 3 or 4 questions that cover core areas of Entomology/Nematology and demonstrate knowledge of core areas, but also analysis and problem solving. Suggested reference/reading material is listed in Table 2. You might want to read through these in preparation for the Comprehensive Examinations.
    [Show full text]
  • Cockroach Marion Copeland
    Cockroach Marion Copeland Animal series Cockroach Animal Series editor: Jonathan Burt Already published Crow Boria Sax Tortoise Peter Young Ant Charlotte Sleigh Forthcoming Wolf Falcon Garry Marvin Helen Macdonald Bear Parrot Robert E. Bieder Paul Carter Horse Whale Sarah Wintle Joseph Roman Spider Rat Leslie Dick Jonathan Burt Dog Hare Susan McHugh Simon Carnell Snake Bee Drake Stutesman Claire Preston Oyster Rebecca Stott Cockroach Marion Copeland reaktion books Published by reaktion books ltd 79 Farringdon Road London ec1m 3ju, uk www.reaktionbooks.co.uk First published 2003 Copyright © Marion Copeland All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publishers. Printed and bound in Hong Kong British Library Cataloguing in Publication Data Copeland, Marion Cockroach. – (Animal) 1. Cockroaches 2. Animals and civilization I. Title 595.7’28 isbn 1 86189 192 x Contents Introduction 7 1 A Living Fossil 15 2 What’s in a Name? 44 3 Fellow Traveller 60 4 In the Mind of Man: Myth, Folklore and the Arts 79 5 Tales from the Underside 107 6 Robo-roach 130 7 The Golden Cockroach 148 Timeline 170 Appendix: ‘La Cucaracha’ 172 References 174 Bibliography 186 Associations 189 Websites 190 Acknowledgements 191 Photo Acknowledgements 193 Index 196 Two types of cockroach, from the first major work of American natural history, published in 1747. Introduction The cockroach could not have scuttled along, almost unchanged, for over three hundred million years – some two hundred and ninety-nine million before man evolved – unless it was doing something right.
    [Show full text]
  • Distribution and Population Dynamics of the Asian Cockroach
    DISTRIBUTION AND POPULATION DYNAMICS OF THE ASIAN COCKROACH (BLATTELLA ASAHINIA MIZUKUBO) IN SOUTHERN ALABAMA AND GEORGIA Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. ___________________________________ Edward Todd Snoddy Certificate of Approval: ___________________________ ___________________________ Micky D. Eubanks Arthur G. Appel, Chair Associate Professor Professor Entomology and Plant Pathology Entomology and Plant Pathology ___________________________ ___________________________ Xing Ping Hu George T. Flowers Associate Professor Interim Dean Entomology and Plant Pathology Graduate School DISTRIBUTION AND POPULATION DYNAMICS OF THE ASIAN COCKROACH (BLATTELLA ASAHINIA MIZUKUBO) IN SOUTHERN ALABAMA AND GEORGIA Edward Todd Snoddy A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master of Science Auburn, Alabama May 10, 2007 DISTRIBUTION AND POPULATION DYNAMICS OF THE ASIAN COCKROACH (BLATTELLA ASAHINIA MIZUKUBO) IN SOUTHERN ALABAMA AND GEORGIA Edward Todd Snoddy Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. _______________________ Signature of Author _______________________ Date of Graduation iii VITA Edward Todd Snoddy was born in Auburn, Alabama on February 28, 1964 to Dr. Edward Lewis Snoddy and Lucy Mae Snoddy. He graduated Sheffield High School, Sheffield, Alabama in 1981. He attended Alexander Junior College from 1981 to 1983 at which time he transferred to Auburn University. He married Tracy Smith of Uchee, Alabama in 1984.
    [Show full text]
  • Dictyoptera: Blattaria: Polyphagidae) from Korea Reveal About Cryptocercus Evolution? a Study in Morphology, Molecular Phylogeny, and Chemistry of Tergal Glands
    PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA 151: 61±79. 31 DECEMBER 2001 What does Cryptocercus kyebangensis, n.sp. (Dictyoptera: Blattaria: Polyphagidae) from Korea reveal about Cryptocercus evolution? A study in morphology, molecular phylogeny, and chemistry of tergal glands PHILIPPE GRANDCOLAS,1 YUNG CHUL PARK,2 JAE C. CHOE,3 MARIA-DOLORS PIULACHS,3 XAVIER BELLEÂS,3 CYRILLE D'HAESE,1 JEAN-PIERRE FARINE,4 AND REÂMY BROSSUT4 1ESA 8043 CNRS, Laboratoire d'Entomologie, MuseÂum national d'Histoire naturelle, 45, rue Buffon, 75005 Paris, FranceÐ [email protected] 2School of Biological Sciences, Seoul National University, Kwanak-ku Shilim-dong San 56-1, Seoul 151-742, South Korea 3Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona (CSIC), Jordi Girona 18, 0834 Barcelona, Spain 4UMR 5548 CNRS, Faculte des Sciences, Universite de Bourgogne, 6, bd. Gabriel, 21000 Dijon, France ABSTRACTÐThe description of a new species of the woodroach Cryptocercus kyebangensis Grandcolas from South Korea offers the opportunity to bring comparative information within the genus. This species, though morphologically very similar to other East Asian and North American species, presents conspicuous differentiation of both ribosomal genes (sequenced fragments of 12S and 16S) and chemical blends from tergal glands (proportions of linalyl acetate and the alcohol 4, 6, 8-trimethyl-7, 9- undecadien-5-ol, compounds previously identi®ed in females originating from North America). A phylogenetic reconstruction involving Blatta orientalis as an outgroup, Therea petiveriana as a polyphagid relative, C. kyebangensis and 17 North American Cryptocercus populations showed that C. kyebangensis stands as a sister-group of North American Cryptocercus, thus suggesting that one beringian vicariance has taken place in the early differentiation of the genus.
    [Show full text]
  • The Control of Turkestan Cockroach Blatta Lateralis (Dictyoptera: Blattidae)
    Türk Tarım ve Doğa Bilimleri Dergisi 7(2): 375-380, 2020 https://doi.org/10.30910/turkjans.725807 TÜRK TURKISH TARIM ve DOĞA BİLİMLERİ JOURNAL of AGRICULTURAL DERGİSİ and NATURAL SCIENCES www.dergipark.gov.tr/turkjans Research Article The Control of Turkestan Cockroach Blatta lateralis (Dictyoptera: Blattidae) by The Entomopathogenic nematode Heterorhabditis bacteriophora HBH (Rhabditida: Heterorhabditidae) Using Hydrophilic Fabric Trap Yavuz Selim ŞAHİN, İsmail Alper SUSURLUK* Bursa Uludağ University, Faculty of Agriculture, Department of Plant Protection, 16059, Nilüfer, Bursa, Turkey *Corresponding author: [email protected] Receieved: 09.09.2019 Revised in Received: 18.02.2020 Accepted: 19.02.2020 Abstract Chemical insecticides used against cockroaches, which are an important urban pest and considered public health, are harmful to human health and cause insects to gain resistance. The entomopathogenic nematode (EPN), Heterorhabditis bacteriophora HBH, were used in place of chemical insecticides within the scope of biological control against the Turkestan cockroaches Blatta lateralis in this study. The hydrophilic fabric traps were set to provide the moist environment needed by the EPNs on aboveground. The fabrics inoculated with the nematodes at 50, 100 and 150 IJs/cm2 were used throughout the 37-day experiment. The first treatment was performed by adding 10 adult cockroaches immediately after the establishment of the traps. In the same way, the second treatment was applied after 15 days and the third treatment after 30 days. The mortality rates of cockroaches after 4 and 7 days of exposure to EPNs were determined for all treatments. Although Turkestan cockroaches were exposed to HBH 30 days after the setting of the traps, infection occurred.
    [Show full text]
  • Living on the Edge
    Living on The Edge There are many examples of animals that thrive in extreme conditions. Can you sort the fact from the fiction? Know before you begin • This activity can be done inside or outside • All supplies are easy to find, substitute or leave out entirely • Adult supervision is recommended • Please choose a safe space for this activity Materials • Living on the Edge Quiz • Your brain Instructions Read the animal description and see if you can sort the real survivors from the fakes. DataBase Center for Life Science (DBCLS) 1900 Benjamin Franklin Parkway Philadelphia, PA 19103 215-299-1182 A N S P . O R G LIVING ON THE EDGE QUIZ CIRCLE ONE 1. The Yeti crab is a blind crustacean that lives near hydrothermal vents and uses fibrous arms to trap bacteria floating out of the REAL FAKE vents for food. 2. The bearded goby lives in the Benguela dead zone. It prefers to lay in the hypoxic mud which is known for lack of oxygen and REAL FAKE the toxic concentrations of hydrogen sulfide. 3. The tardigrade, also called a water bear, can survive in space. REAL FAKE 4. The ice crawler is an insect that scours ice caves and glaciers REAL FAKE looking for its food even in below-freezing temperatures. 5. Giant tube worms live their lives attached to hydrothermal vents. REAL FAKE 6. Pacific sleeper sharks can be found swimming around undersea volcanos and even darting in and out of the plumes ejected by REAL FAKE the volcanos. 7. Remipedes are the only venomous crustaceans.
    [Show full text]
  • RESEARCH ARTICLE a New Species of Cockroach, Periplaneta
    Tropical Biomedicine 38(2): 48-52 (2021) https://doi.org/10.47665/tb.38.2.036 RESEARCH ARTICLE A new species of cockroach, Periplaneta gajajimana sp. nov., collected in Gajajima, Kagoshima Prefecture, Japan Komatsu, N.1, Iio, H.2, Ooi, H.K.3* 1Civil International Corporation, 10–14 Kitaueno 1, Taito–ku, Tokyo, 110–0014, Japan 2Foundation for the Protection of Deer in Nara, 160-1 Kasugano-cho, Nara-City, Nara, 630-8212, Japan 3Laboratory of Parasitology, School of Veterinary Medicine, Azabu University, 1-17-710 Fuchinobe, Sagamihara, Kanagawa 252-5201 Japan *Corresponding author: [email protected] ARTICLE HISTORY ABSTRACT Received: 25 January 2021 We described a new species of cockroach, Periplaneta gajajimana sp. nov., which was collected Revised: 2 February 2021 in Gajajima, Kagoshima-gun Toshimamura, Kagoshima Prefecture, Japan, on November 2012. Accepted: 2 February 2021 The new species is characterized by its reddish brown to blackish brown body, smooth Published: 30 April 2021 surface pronotum, well developed compound eyes, dark brown head apex, dark reddish brown front face and small white ocelli connected to the antennal sockets. In male, the tegmen tip reach the abdomen end or are slightly shorter, while in the female, it does not reach the abdominal end and exposes the abdomen beyond the 7th abdominal plate. We confirmed the validity of this new species by breeding the specimens in our laboratory to demonstrate that the features of the progeny were maintained for several generations. For comparison and easy identification of this new species, the key to species identification of the genus Periplaneta that had been reported in Japan to date are also presented.
    [Show full text]
  • Scrub Oak Preserve Animal Checklist Volusia County, Florida
    Scrub Oak Preserve Animal Checklist Volusia County, Florida Accipitridae Cervidae Cooper's Hawk Accipiter cooperii White-tailed Deer Odocoileus virginianus Red-tailed Hawk Buteo jamaicensis Red-shouldered Hawk Buteo lineatus Charadriidae Bald Eagle Haliaeetus leucocephalus Killdeer Charadrius vociferus Acrididae Corvidae American Bird Grasshopper Schistocerca americana Scrub Jay Aphelocoma coerulescens American Crow Corvus brachyrhynchos Agelenidae Fish Crow Corvus ossifragus Grass Spider Agelenopsis sp. Blue Jay Cyanocitta cristata Anatidae Dactyloidae Wood Duck Aix sponsa Cuban Brown Anole Anolis sagrei Blattidae Elateridae Florida woods cockroach Eurycotis floridana Eyed Click Beetle Alaus oculatus Bombycillidae Emberizidae Cedar Waxwing Bombycilla cedrorum Eastern Towhee Pipilo erythrophthalmus Cardinalidae Eumenidae Northern Cardinal Cardinalis cardinalis Paper wasp Polistes sp. Cathartidae Formicidae Turkey Vulture Cathartes aura Carpenter ants Camponotus sp. Black Vulture Coragyps atratus Fire Ant Solenopsis invicta Certhiidae Fringillidae Blue-gray Gnatcatcher Polioptila caerulea American Goldfinch Carduelis tristis Geomyidae Phalacrocoracidae Southeastern Pocket Gopher Geomys pinetis Double-crested Cormorant Phalacrocorax auritus Gruidae Picidae Sandhill Crane Grus canadensis Northern Flicker Colaptes auratus Pileated Woodpecker Dryocopus pileatus Hesperiidae Red-bellied Woodpecker Melanerpes carolinus Duskywing Erynnis sp. Downy Woodpecker Picoides pubescens Hirundinidae Polychrotidae Tree Swallow Tachycineta bicolor Green Anole
    [Show full text]
  • Clinical Report: Head Lice
    CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care Head Lice Cynthia D. Devore, MD, FAAP, Gordon E. Schutze, MD, FAAP, THE COUNCIL ON SCHOOL HEALTH AND COMMITTEE ON INFECTIOUS DISEASES Head lice infestation is associated with limited morbidity but causes a high abstract level of anxiety among parents of school-aged children. Since the 2010 clinical report on head lice was published by the American Academy of Pediatrics, newer medications have been approved for the treatment of head lice. This revised clinical report clarifies current diagnosis and treatment protocols and provides guidance for the management of children with head lice in the school setting. Head lice (Pediculus humanus capitis) have been companions of the human species since antiquity. Anecdotal reports from the 1990s estimated annual direct and indirect costs totaling $367 million, including remedies and other consumer costs, lost wages, and school system expenses. More recently, treatment costs have been estimated at $1 billion.1 It is important to note that head lice are not a health hazard or a sign of poor hygiene and This document is copyrighted and is property of the American Academy of Pediatrics and its Board of Directors. All authors have filed are not responsible for the spread of any disease. Despite this knowledge, conflict of interest statements with the American Academy of there is significant stigma resulting from head lice infestations in many Pediatrics. Any conflicts have been resolved through a process approved by the Board of Directors. The American Academy of developed countries, resulting in children being ostracized from their Pediatrics has neither solicited nor accepted any commercial schools, friends, and other social events.2,3 involvement in the development of the content of this publication.
    [Show full text]
  • SECTOR WIEWS Vol
    ^^^<.-^-< SECTOR WIEWS Vol. 18 No. 5 May, 1971 -311^ UNDERSTANDING,6 AND TREATING INFESTATIONS OF LICE ON HUMANS Benjamin Ken and John H. Poorbaugh, Ph.D. Infestation with human lice, or pediculosis, Therefore, sucking lice found established still occurs even in societies with generally upon humans can only be human lice, of which high standards of sanitation. Public health there are three distinct kinds: head lice, body agencies may become involved if infestations lice, and crab lice. More than one of these include or expose a substantial number of peo- kinds may infest a person at the same time. ple, which occasionally happens especially at public institutions such as Jails, schools, The common and scientific names of human and state or county hospitals. lice now accepted by the Entomological Soci- ety of America (Blickenstaff, 19 70) and sever- This compilation is presented as a guide al common synonyms found in the older litera- to the accurate and recognition proper treat- ture are: ment of those occasional infestations of hu- man lice which still annoy and potentially 1.) head louse Pediculus humanus threaten our citizens. capi- tis De Geer Identification and Biology of Human Lice synonym Pediculus capitis De Geer Human lice are part of a rather large group 2.) body louse Pediculus humanus hu- of insects known as sucking lice which are manus Linnaeus permanent parasites on the bodies of mammals synonyms Pediculus humanus corpo- throughout the world. These insects spend ris De Pediculus corporis De their entire life on the bodies of their animal Geer; Geer; Pediculus vestimenti Nitzsch hosts where they suck blood for nourishment and obtain necessary moisture and warmth.
    [Show full text]
  • Oriental Cockroach, Blatta Orientalis Linnaeus (Insecta: Blattodea: Blattidae)1 Kim Mccanless2
    EENY159 Oriental Cockroach, Blatta orientalis Linnaeus (Insecta: Blattodea: Blattidae)1 Kim McCanless2 Introduction The oriental cockroach is approximately 1 inch long (22 to 27mm) and dark brown to black. Males have wings The origin of the oriental cockroach, Blatta orientalis covering 3/4 of their body, and the female has very short Linnaeus, is uncertain, but it is thought to be from Africa (rudimentary) wings. The inner wing folds like a fan and is or south Russia. It is a major household pest in parts of membranous. The outer part of the wing is narrow, leathery the northwest, mid-west, and southern United States. It is and thick. The styli between a pair of jointed cerci can also sometimes referred to as the “black beetle” or a “water identify the male. Both the male and female are flightless. bug” because of its dark black appearance and tendency to harbor in damp locations. Description Figure 2. Male oriental cockroach, Blatta orientalis Linnaeus. Credits: Rebecca W. Baldwin, University of Florida Figure 1. Female oriental cockroach, Blatta orientalis Linnaeus. Credits: Rebecca W. Baldwin, University of Florida 1. This document is EENY-159 (IN316), one of a series of Featured Creatures from the Entomology and Nematology Department, UF/IFAS Extension. Published October 2000. Revised July 2014. This document is also available on Featured Creatures website at http://entomology.ifas.ufl.edu/creatures. Please visit the EDIS website at http://edis.ifas.ufl.edu. 2. Kim McCanless, Entomology and Nematology Department, UF/IFAS Extension, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations.
    [Show full text]
  • A Dichotomous Key for the Identification of the Cockroach Fauna (Insecta: Blattaria) of Florida
    Species Identification - Cockroaches of Florida 1 A Dichotomous Key for the Identification of the Cockroach fauna (Insecta: Blattaria) of Florida Insect Classification Exercise Department of Entomology and Nematology University of Florida, Gainesville 32611 Abstract: Students used available literature and specimens to produce a dichotomous key to species of cockroaches recorded from Florida. This exercise introduced students to techniques used in studying a group of insects, in this case Blattaria, to produce a regional species key. Producing a guide to a group of insects as a class exercise has proven useful both as a teaching tool and as a method to generate information for the public. Key Words: Blattaria, Florida, Blatta, Eurycotis, Periplaneta, Arenivaga, Compsodes, Holocompsa, Myrmecoblatta, Blatella, Cariblatta, Chorisoneura, Euthlastoblatta, Ischnoptera,Latiblatta, Neoblatella, Parcoblatta, Plectoptera, Supella, Symploce,Blaberus, Epilampra, Hemiblabera, Nauphoeta, Panchlora, Phoetalia, Pycnoscelis, Rhyparobia, distributions, systematics, education, teaching, techniques. Identification of cockroaches is limited here to adults. A major source of confusion is the recogni- tion of adults from nymphs (Figs. 1, 2). There are subjective differences, as well as morphological differences. Immature cockroaches are known as nymphs. Nymphs closely resemble adults except nymphs are generally smaller and lack wings and genital openings or copulatory appendages at the tip of their abdomen. Many species, however, have wingless adult females. Nymphs of these may be recognized by their shorter, relatively broad cerci and lack of external genitalia. Male cockroaches possess styli in addition to paired cerci. Styli arise from the subgenital plate and are generally con- spicuous, but may also be reduced in some species. Styli are absent in adult females and nymphs.
    [Show full text]