<<

Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations

2007 rearrangement at reversed-ends Ds element in Arabidopsis Lakshminarasimhan Krishnaswamy Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the and Genomics Commons, and the Molecular Biology Commons

Recommended Citation Krishnaswamy, Lakshminarasimhan, "Genome rearrangement at reversed-ends Ds element in Arabidopsis" (2007). Retrospective Theses and Dissertations. 15969. https://lib.dr.iastate.edu/rtd/15969

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genome rearrangement at reversed-ends Ds element in Arabidopsis by Lakshminarasimhan Krishnaswamy Adissertationsubmittedtothegraduatefaculty inpartialfulfillmentoftherequirementsforthedegreeof DOCTOROFPHILOSOPHY Major:PlantPhysiology ProgramofStudyCommittee: ThomasPeterson,MajorProfessor JackGirton MartinSpalding DanielVoytas StevenWhitham IowaStateUniversity Ames,Iowa 2007 Copyright©LakshminarasimhanKrishnaswamy,2007.Allrightsreserved. UMI Number: 3259493

UMI Microform 3259493 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii

TABLE OF CONTENTS

ABSTRACT iv

CHAPTER 1: TRANSPOSON BIOLOGY – A HISTORICAL PERSPECTIVE 1

Introduction 1

McClintock’s discovery 1

New transposable elements 2

Controlling elements or gene disruption by insertion? 3

Molecular studies on Transposons – the new era 3

The 1990s – Molecular era and Genomics era synergy 4

Transposon Diversity 5

Role of transposons in genome rearrangement 7

Effects of transposons on the host 8

Transposons as tools in functional genomics 9

Future Prospects 9

Significance of this thesis 10

References 11

CHAPTER 2: REVERSED END DS ELEMENT: A NOVEL TOOL FOR ENGINEERING IN ARABIDOPSIS 17

Abstract 17

Introduction 17

Materials and Methods 19

Results 20

Discussion 23

Figure Legends 30

References 43

CHAPTER 3: ‘FUSED-ENDS’ REARRANGEMENT AT REVERSED-ENDS DS ELEMENT IN ARABIDOPSIS: IMPLICATIONS FOR THE FATE OF FREE TRANSPOSON ENDS FOLLOWING EXCISION 48

iii

Abstract 48

Introduction 48

Results and Discussion 49

Table and Figure Legends 55

References 61 CHAPTER 4: AN ALTERNATE HYPOTHESIS TO EXPLAIN THE HIGH FREQUENCY OF ‘REVERTANTS’ IN HOTHEAD MUTANTS IN ARABIDOPSIS 64

Preface 64

Abstract 64

Introduction 65

Hypothesis 65

References 67 ACKNOWLEDGEMENTS 69

iv

ABSTRACT IncourseofMcClintock’sstudyonradiationinducedchromosomebreakage,she observedfrequentchromosomebreakgeneratedataspecificlocusonchromosome9. Theprecisionoffrequentbreaksatthisparticularlocusledtothediscoveryof Ac/Ds elements.Inrecentyears,molecularcharacterizationof Ac/Ds inducedchromosome breaksrevealthatwhenmultipletransposonendsareinproximity,thetransposasecould recognizenoncanonicaltransposonendsresultinginvariouskindsofchromosomal rearrangementsincluding,inversion,translocation,duplicationand,sometimes, chromosomebreaks.Previousstudiesinourlabshowthatinthe P1rr11 of the P1 gene,a5’endanda3’endof Ds elementareinreversedorientationwithreference toeachother.Transpositioninvolvingthesetwoendsresultedindeletionsandinversions intheflankingDNA. Inthisthesiswepresentourstudyontheefficacyofasyntheticreversedends Ds element,modeledaftertheconfigurationfoundin P1rr11 ,tocausedeletionsand inversionsinArabidopsisgenome.Ourstudyrevealedthatthereversedends Ds element isefficientingeneratingbothdeletionsandinversionsinthegenome.Thesizesofthe rearrangementsrangefrom2kbtoseveralmegabases.AnalysisoftheDNAsequencesat thetransposoninsertionsitessuggeststhattranspositionatthereversedendselement couldbelinear(participatingTIRsonsame)ornonlinear(participatingTIRs onsister) Ac/Ds insertioninmaizeischaracterizedby8bpduplicationatthetargetsite.In contrast,wefindthatinsertionofthereversedends Ds elementisflushoritisassociated with8bpor1bptargetsiteduplication.Insomeofthetranspositionevents,thesequences attherearrangementjunctionssuggestthattheexcisedtransposonendsformedahairpin betweenthetwostrands. Thesignificantcontributionsofourstudyare:Itvalidatestheutilityofthe reversedends Ds elementasagenomicstooltocausechromosomalrearrangements Itaddressescertainfundamentalquestionssuchasthesizeoftargetsite duplicationupon Ds insertionand,formationofhairpinstructureatthetransposonends. Theseobservationshighlightpossibledifferenceinthetranspositionmechanismof Ds elementinmaizeandArabidopsis.

1

CHAPTER 1: TRANSPOSON BIOLOGY – A HISTORICAL PERSPECTIVE

Introduction EversinceGregorMendelpostulatedhislawsofGenetics,thefieldofBiology hasmadeimmenseprogress.Beginningintheearly1900stherewasaboomperiodin Geneticsresearchforoverhalfacentury.ThediscoveryofthestructureofDNAby WatsonandCrickin1953sowedtheseedsforMolecularBiology,andinlessthan50 yearsBiologyhasevolvedintotheGenomicsera.Throughthissteadybutquick progressioninthisfield,differentareasofresearchhavebeenofforemostinterestat varioustimes.Interestingly,eversincethediscoveryofTransposonsbyBarbara McClintockinthe1940s,thestudyoftransposonbiologyhasundergoneaparallel progressionthroughtheseyears.Inthisarticle,wetrytotracethehistoryoftransposon researchthroughtheGenetics,MolecularBiologyandGenomicsera.

McClintock’s discovery BarbaraMcClintockispossiblythemostenigmaticofmodernscientists.Though sheiswellknownforherdiscoveryoftransposableelementsinmaize,herresearch interesthasspannedseveralaspectsofmaizegenetics. Inthe1920sduringhergraduatestudiesatRollinsEmerson’slabatCornell,she waspartofateamthatestablishedthedisciplineofmaize,andshe characterizedthe10maize.IncollaborationwithHarrietCreightonshe observedthecytologicalcorrelationforthephenomenonofcrossingover.Between1935 and1941,atUniversityofMissouri,Columbia,shestudiedXrayirradiatedmaizetomap genes.Heresheobservedringchromosomesandherstudiesondeletionofchromosome endscontributedtotheearlyunderstandingofbiology.Inoneofherstrainsshe observedspontaneousbreakageandfusionofchromosomearms,whichrepeatedover somaticandgerminaldivisions,andshedescribedthe‘breakagefusionbridge’cycle. ShemovedtoColdSpringHarborin1942andcontinuedtousethe‘breakage fusionbridge’strainstomapgenes.Sheidentifiedtwointerestingloci–‘ Dissociation ’ (Ds )and‘ Activator ’( Ac ),whichcouldtransposeorchangepositionsonthechromosome

2

(McClintock,1948).Inonecase,sheobservedfrequentchromosomebreakoccurringat the Ds locusonchromosome9in Ac dependentmanner.Interestingly,this Ds element couldmoveinthegenomeeventodifferentchromosomes.Inanothercase,the Ds locus seemedtoregulatetheexpressionofneighboringgenes.Thechangeinpositionofthe Ds elementcorrelatedwiththeexpressionofthe Cgene,andresultedinvariegationofthe kernelcolor.BasedonherobservationsMcClintockproposedthat Ac and Ds were ‘controllingelements’thatregulatedtheexpressionofothergenes. Atatimewhenthetruenatureofthegenewasyetunclear,andgeneswere thoughttobestaticstructuresinthenucleus,McClintock’sdiscoveryofmobilegenetic elementswasrevolutionary.Thoughsomescientistsunderstoodthesignificanceofher observations,McClintock’semphasisontheroleoftransposableelementsasregulators ofgeneexpressiondrewindifferentreactionfromthescientificcommunity.

New transposable elements Inthewakeofdiscoveryof Ac/Ds ,severalothertransposableelementsystems wereidentifiedinmaize.In1936MarcusRhoadesobservedfrequentmutabilityof anthocyaninpigmentationinthealeuroneoftheendosperminMexicanBlackcorn, givingadottedphenotype(Rhoades,1936).Hedeterminedthattheunstablephenotypeof the a1 genethatwasresponsibleforthealeuronepigmentationwascontrolledbythe ‘Dotted ’( Dt )gene(Rhoades,1938).BarbaraMcClintockproposedthat Dt wasa controllingelementanalogoustothe Ac/Ds system(McClintock,1950),andNuffer establishedthatthedottedphenotypeobservedinRhoades’plantsascausedbythe activityofthe Dt transposableelement(Nuffer,1955).Similarly,studyofthemutability phenomenoninthemaizeleaf,kernel,antherandhuskbyPetersonPAidentifiedthe EnhancerInhibitor (En/I )elementatthe‘ palegreenmutable ’( pgm)locus(Peterson, 1953).AlmostsimultaneouslyMcClintockidentifiedtheSuppressormutator( Spm/dSpm ) element(McClintock,1954).Lateritwasshownthatthesetwosystems, En/I and Spm/dSpm ,arecloselyrelatedandpossiblyidentical(Peterson,1965).

3

Controlling elements or gene disruption by insertion? Theyearsfollowingthediscoveryofthe Ac/Ds elementsweremarkedbygenetic characterizationofnewertransposonsinmaize.However,therewasanuncertainty amongbiologistswhethertransposonscausedalterationsingeneexpressionbytheir ‘controlling’influenceorbydisruptionofthegenesbyinsertion.Whenthelimitationsof maizegeneticstoresolvethispuzzlewasclearlyfelt,researchinbacterialgeneticswas breakingnewground.In1961JacobandMonodproposedtheoperonmodelfor regulationofexpressionofthe β− galactosidase genein E.coli (JacobandMonod,1961). Herethe LacI generegulatestheexpressionofthe Lac operonintrans.Basedonthis observationMcClintocksuggestedaparallelbetweenregulationofgeneexpressionin andtheeffectofthe‘controllingelements’inmaize(McClintock,1961). However,twootherpapersinthefollowingyearsseemedtoaddcredencetothe ‘disruptionofgeneexpressionbyinsertionofthetransposon’modelasadvocatedby Peterson(1967,1970).Firstisastudyonbacteriophageinducedin E.coli , whereTaylordemonstratedthattheviralepisomecausedfrequentmutationsbyinserting intothebacterialgenome(Taylor,1963).Evengreatersupportwasfromthediscoveryof the IS2 insertionsequenceselementcausingbyinsertionintothe gal operonin E.coli (Jordanetal.,1968). Inthefollowingdecade,moretransposableelementsincluding IS elements (reviewedbyIidaetal.,1983)and Tn elementsinbacteria(reviewedbyHeffronetal., 1983), Ty elementsinyeast(reviewedbyRoederandFink,1983)and copialike elements, Foldback elementsand PelementsinDrosophila(reviewedbyRubin,1983)were identified,mainlyduetotheirabilitytocausemutations,rearrangethegenome,and regulateormodifytheexpressionofothergenes.Thepowerofgeneticsinthesesystems, theirsimplicityandsmallsizeofgenome,coupledwiththeadvantageofemerging moleculartechniquesenabledcharacterizationofmanytransposableelementsatthe geneticandmolecularlevel.

Molecular studies on Transposons – the new era Thoughevidencefromtransposableelementsfromothersystemssupportedthe insertionmodelofmutagenesisandgeneregulation,themaizeelementswerestill

4 consideredtobe‘controllingelements’intheabsenceofdirectmolecularevidence contrarytothecontrollingelementhypothesis. Theearly1980swasasignificantperiodfortransposonbiology.In1983camethe firstevidencethatinsertionofa Ds elementcausedamutationinthe Adh1 geneinmaize (Sachsetal.,1983).Thiswasfollowedbythecloningofthe Ac andthena Ds element fromthemaizewaxygene(Fedoroffetal.,1983).ThesameyearBarbaraMcClintock wasrecognizedwiththeNobelPrizeforthediscoveryoftransposableelementsabout40 yearsearlier. Thecloningandmolecularstudiesonthemaize Ac/Ds transposonwerefollowed bycharacterizationofseveraltransposonsfromvariousorganisms.Asignificant breakthroughthatboostedtransposonresearchatthisjunctureistheidentificationof inyeast.Foralongtimenow,thesimilaritybetweenthe copia elements ofDrosophilaandwaswellknown.Flavellisolatedextrachromosomallinear copia elements(Flavell,1984),andBoekeetal.provedthatthe TyH3 element transpositioninyeastpassesthroughanRNAintermediate(Boekeetal.,1985).These twopapersestablishedthataclassoftransposonscalledretrotransposonstransposedvia anRNAintermediate.Soonretrotransposonswerereportedinotherorganismsincluding plants. Towardstheendofthe1980stransposonbiologywasnotlimitedto‘molecular stampcollecting’oftransposableelements,butopenedupneweravenuesofresearch. Theadvancementsinmoleculartechniquesandtheemerginggenomicstoolsenriched ourunderstandingofthefunctionandcomplexityoftheof,andthe effectsoftransposonsongenomecomplexity.

The 1990s – Molecular era and Genomics era synergy Transposonbiologyhasseentremendousadvancesinthepast15years. Researchershaveidentifiednewtransposons,understoodthemechanismsof transpositionatthemolecularleveltosomeextent,studiedtheeffectoftranspositionon thehostgenomestabilityanddynamics,andalsogatheredknowledgeonhowincertain instancesthetransposonsequencescontributetosomecellularfunctions.Inaddition, transposonshavebeenmodifiedtoserveastoolsinfunctionalgenomicsresearch.The

5 vastnessoftheknowledgeaccumulatedmakesitdifficulteithertoplaceitina chronologicalorderortodwellindetailinanytopic.Therefore,thediversityof transposableelements,andasummaryofourunderstandingandutilityoftransposons gatheredinthisperiodispresentedbrieflyinthefollowingpassages.Thereaderis requestedtorefertospecializedliteraturefordetaileddiscussiononthesetopics.

Transposon Diversity Duringtheearlydaysoftransposonbiology,transposonswereplacedintotwo classes–autonoumousandnonautonomouselements.Autonomouselementsarethose thatencodefunctionaltransposaseandotherfactorsessentialfortransposition,whereas nonautonomouselementslackoneormoreofthemoleculesrequiredfortransposition andthereforecannottransposeindependentofthecorrespondingautonomouselement. Intheearly1980s,theadventofmoleculartechniquesenabledidentificationof newertransposons,whichrequiredclassificationondifferentparameters.Eukaryotic transposonsarenowclassifiedintotwoclassesbasedonwhethertranspositioninvolves anRNAintermediateornot.

Class 1 InClass1transposons,thetransposonistranscribedintoRNAwhichisreverse transcribedbyatransposableelementencodedreversetranscriptase.TheresultingcDNA areinsertedatdifferentlocibyanintegrase.Class1elementsarealsocalled Retrotransposons,andincludebothautonomousandnonautonomouselements. RetrotransposonsarefurtherclassifiedasLTRelementsandNonLTRelements, basedontheirtranspositionmechanismandstructure.LTRsarenamedafterthe‘Long TerminalRepeats’indirectorientationateitherendofthetransposon.TheLTRsbear structuralsimilaritytoretroviruses.Theautonomouselementsencodeatleast2genes: gag geneencodesacapsidlikeprotein; pol geneencodesapolyproteinwithvarious activitiesincludingprotease,reversetranscriptase,RNaseHandintegrase.LTRelements arefurtherclassifiedinto copialike and gypsylike elements.TheNonLTR retrotransposonslackthelongterminalrepeatsandinsteadterminatewithasimple sequencerepeat.Theyaredividedintotwoclasses:‘Longinterspersednuclearelements’

6

(LINES)and‘Shortinterspersednuclearelements’(SINES).Theircodingregions includeagaglikeprotein,anendonucleaseandreversetranscriptase.AllSINES describedyethaveaninternalRNApolIIInearthe5’end.SomeoftheSINE elementssharewithcertainLINESatthe3’tailsequence,andcouldparasitize ontheirtranspositionmachinery.

Class 2 Theprokaryotic InsertionSequences (ISelements)andeukaryoticDNA transposonstransposebycutandpasteorreplicativemechanismwithoutanyRNA intermediate.Incutandpastetransposition,thetransposaserecognizestheterminal invertedrepeatsequences(TIRs)oneitherendsofthetransposableelement,cutsitout andinsertsatanewsite.Inordertoinsertthetransposon,astaggeredcutismadeatthe targetsitewhichcausesduplicationofafewbases–“Targetsiteduplication”(TSD), whichnowflanktheinsertedelement.Whenthetransposonisexcised,theflankingdirect repeatsarejoinedtoleavea‘footprint’.DNAtransposonsaregroupedintoseveral superfamiliesandfamiliesbasedonsequencesimilarity,lengthoftheTIRs,andlengthof theTSD. hAT , CACTA , Mutator , PIF/Harbinger , Tc1/mariner arewellcharacterized class2transposableelementgroupsineukaryotes.

Newer transposons Theadventofthegenomicserahasintroducedseveralnewtransposonfamilies. MITES: Miniatureinvertedrepeattransposableelements(MITES)werefirstidentifieda decadeagothroughcomputerassistedsearchesforrepeatedsequencesinthegrass genome(Bureauetal.,1996;Jiangetal.,2003).Theseelementsarecharacterizedby theirverysmallsize(lessthan600bp)andterminalinvertedrepeats.MITESare abundantlyrepresentedinthegenomesofplantsandanimals,andaremostlyinactive, althoughactiveMITEShavebeenreportedinrice(Kikuchietal.,2003). Helitrons and : TheseDNAtransposonswereidentifiedbycomputationalanalysisofgenome sequenceofdifferentorganisms(KapitonovandJurka,2001). Helitrons arepresumedto

7 transposebyrollingcirclereplicon,similartosomeplasmids,bacterialInsertion Sequences,singlestrandedbacteriophage,andplantgeminiviruses. Polintons areyetanothertypeofDNAtransposondiscoveredrecentlyby computationalanalysisofgenomesequences(KapitonovandJurka,2006). sequencesarewidelyfoundinseveralinvertebrateandvertebrategenomesequences,and evenprotistsandfungi,butarenotfoundinmammaliangenomesequence.Thepredicted mechanismof polinton transpositionisthemostcomplexknownforanyeukaryoticDNA transposon,whereasinglestrandofthetransposonisexcised,thesecondstrand synthesizedandthetransposonisinsertedinthehostgenome.Becauseofthenoveltyof themechanismoftransposition,HelitronsandPolintonscannotbeclearlyplacedinany oftheabovementionedclasses.

Role of transposons in genome rearrangement Theroleoftransposonsasinsertionalmutagenicagentsiswelldocumented.In addition,transposonsplayasignificantroleinvariouskindsofgenomerearrangements. Ithasbeenshownthattherepairmechanismfollowingdoublestrandbreakcausedby transposonexcisioncouldleadtointrachromosomal(AthmaandPeterson,1991)or ectopic(ShalevandLevy,1997)homologousrecombination.Inaddition,transposon sequencesdistributedthroughoutthegenomecouldprovidesequencehomologyfor ectopicrecombination(Montgomeryetal.,1991).Inanormaltransposon,the transposaserecognizestheterminalinvertedrepeatsateitherendoftheelement.Ifthe transposaserecognizestwoTIRsthatarereversedorindirectorientationinreferenceto eachother,suchnonstandardoraberranttranspositionreactioncouldleadto chromosomebreakage,inversionsordeletionsinthegenome(ZhangandPeterson,2004). Infact,chromosomebreakagecausedbyanaberranttranspositionofa Ds elementon chromosome9inmaizeledtotheidentificationofAc/Ds elementsbyMcClintock.Such rearrangementscouldhaveconsiderableimpactinrestructuringthegenome.Non standardtranspositionreactionatreversedtransposonendshasbeenshowntoresultin theformationofchimericgeneinmaize(Zhangetal.,2006).

8

Effects of transposons on the host Transposonactivityresultsinincreasedmutationratesandcanenhancethe adaptationoftheorganismtochangingenvironments(KidwellandLisch,1997). Transposonscaninactivateoraltertheexpressionofgeneswhentheyinsertintothe codingregionortheregulatoryelementsofgenes,andtherebyactasasourceofgenetic variation(SchwarzSommeretal.,1987).Transposableelementscouldcontributeto epigeneticsilencingofflankinggeneswhentheyaretargetedformethylationbythehost defensemechanism(ZilbermanandHenikoff,2004).Transposoninsertionsresultin duplicationofashortsequenceatthetargetsitewhichisseenasa‘footprint’after excisionoftheelement.Suchfootprintcouldmodifythegenecodingsequenceasshown inthecaseofthe Ascot transposonfrom A.immersus (Colotetal.,1998).Here, integrationofthetransposonintothe b2 sporecolorgeneledtocolorlessspores.Thetype offootprintproduceduponexcisionvariedanddifferenttypesofrevertantswere obtainedwith‘speckled’,‘banded’,‘spread’,‘blotchy’or‘doublebelted’spore phenotypes. Therearealsoexampleswheretransposonsaredirectlyinvolvedinthehostcell functions.The HeTAand TART inDrosophilahavebeenimplicatedin rescueofdamagedandchromosomeendmaintenance(Pardue,1996). Transposonssometimescontributetoformationofintrons(Wessleretal.,1987),or promoteexonshuffling(Morgante,2005).InArabidopsis,itappearsthatthetransposon DAYSLEEPER hasbeendomesticatedbythehosttoregulateglobalgeneexpressionand isessentialfornormalplantdevelopment(BundockandHooykaas,2005). Retrotranspositionofanengineered Line1 inratneuronal precursorcellshasbeenshowntoinfluencetheexpressionofneuronalgenesandaffect neuronalcellfate(Muotrietal.,2005).Inprimates,fusionofthetransposasedomainofa mobileelementtoahistonemethyltransferasegeneissupposedtohavegivenriseto SETMAR, achimericgene(Cordauxetal,2006). Transposonssometimesseemtobebeneficialtothehostandareconsideredas ‘pacemakersofevolution’;whileinotherinstancestheyarelikelyparasiticor‘selfish DNA’.Thedebatewhethertransposonsare‘angels’or‘imp’hasbeengoingonforover 25years.Butoflate,asyntheticviewofmutualisticrelationshipbetweenthehost

9 genomeandtransposableelements,tippingtowardsparasiticrelationinsomecasesis suggested(Jordan,2006).

Transposons as tools in functional genomics Fundamentalresearchoftenleadstoapplicationsthatfueladvancementofscience andtechnology.Thishascertainlybeentruewithtransposonbiology.Transposonshave beenwidelyusedtocausemutationsingenesbyinsertion,whichhasenabledgene identificationandcharacterization.Forinstance,the Ac/Ds transposonsystemfrommaize hasbeenusedinseveralheterologoussystemsincludingArabidopsistogeneratelibraries ofinsertionalmutants(eg.ParinovandSundaresan,2000),therebysimplifyinggene mapping.Transposonshavealsobeenusedinenhancertrapandpromotertrapconstructs tohelpidentifyenhancerandpromoterelementsinthegenome(AcostaGarciaetal., 2004).Aberranttranspositionreactionscausegenomerearrangementssuchasdeletion, inversionandtranslocation.Thedeletionscausedbysuchtranspositioncouldbeusefulin knockingoutfewgenes,andinstudyingtheeffectsofalterationsingenedosage.Such rearrangementsarealsousefulinstudyingthefunctionofchromosomalelementslike centromeresandneocentromeres.Further,transposonshavebeenusedasgenetherapy vectorsinmammaliancells(Ivicsetal.,2006).

Future Prospects Onekeyfeatureofprogressinthatscienceisitisunpredictable.However,itis temptingtoprojectcertainoutcomesbasedoncurrenttrendsinthefield.Infact,research isongoinginsomeoftheseaspectsandtheresultscouldberealizedinjustafewyears. Asthewholegenomesequencesfrommoreorganismsbecomeavailable,itwill leadtodiscoveryofnewtransposons.Howmanyofthesewillbeactiveisanopen question.However,withthesuccessinresurrectionoftwotransposons–Sleepingbeauty (Ivics,1997)and Frogprince (Miskeyetal.,2003),reconstructedfrominactive transposonsinthefishandfroggenomesrespectively,itislikelythatmoreinactive transposonscouldpossiblybeengineeredtoactivity.Thesenewertransposonswillenrich thegeneticists’toolkitforfunctionalgenomics.Deeperinsightintothemechanismsof transpositioncouldhelpusengineerprecisedeletions,inversionsandother

10 rearrangementsinthegenome.Onesignificantapplicationwouldbepreciseintegration ofthetransposonatadefinedtargetsequence.Currenttechniquesforgenerating transgenicplantssufferfrompoorgenetargetingefficiencies.Similarly,effortsfor efficientdeliveryandintegrationofgenetherapyconstructsinmammalsarealsoplagued withproblems.Viralvectorsarefairlyefficientgenetherapyvectors,buttheyoftenlead toimmunologicalcomplications,orgenotoxiceffectsduetononspecificintegration. Recentsuccessintheuseofthetransposons Sleepingbeauty , Frogprince , Tol1and piggyBack inmammaliangenetransfer(Wuetal.,2006)suggeststhattransposonscould somedaybeusedforpreciseintegrationoftransgeneatspecifictargetsite,inbothplants andanimals.Evidently,transposonbiologyholdsagreatdealofpromisefortheyearsto come

Significance of this thesis IncourseofMcClintock’sstudyonradiationinducedchromosomebreakage,she observedfrequentchromosomebreakgeneratedataspecificlocusonchromosome9. Theprecisionoffrequentbreaksatthisparticularlocusledtothediscoveryof Ac/Ds elements.Inrecentyears,molecularcharacterizationof Ac/Ds inducedchromosome breaksrevealthatwhenmultipletransposonendsareinproximity,thetransposasecould recognizenoncanonicaltransposonendsresultinginvariouskindsofchromosomal rearrangementsincludingdeletion,inversion,translocation,duplicationand,sometimes, chromosomebreaks(CourageTebbeetal.,1983;Wecketal.,1984;Ralstonetal.,1989, WeilandWessler,1993;Englishetal.,1995;MartinezFerezandDooner,1997;Zhang andPeterson,1999). Inthemaize P1rr11 alleleofthe P1 gene,a5’endanda3’endof Ds elementare inreversedorientationwithreferencetoeachother.ZhangandPeterson(2004)observed thattranspositioninvolvingthesetwoendsresultedindeletionsandinversionsinthe flankingDNA. Inthisthesiswereportontheefficacyofasyntheticreversedends Ds element (Figure2,Chapter2),modeledaftertheconfigurationfoundin P1rr11 ,tocause deletionsandinversionsinArabidopsisgenome.Ourstudyrevealedthatthereversed ends Ds elementisefficientingeneratingbothdeletionsandinversionsinthegenome.

11

Thesizesoftherearrangementsrangefrom2kbtoseveralmegabases.Analysisofthe DNAsequencesatthetransposoninsertionsitessuggeststhattranspositionatthe reversedendselementcouldbelinear(participatingTIRsonsamechromatid)ornon linear(participatingTIRsonsisterchromatids) Ac/Ds insertioninmaizeischaracterizedby8bpduplicationatthetargetsite.In contrast,wefindthatinsertionofthereversedends Ds elementisflushoritisassociated with8bpor1bptargetsiteduplication.Insomeofthetranspositionevents,thesequences attherearrangementjunctionssuggestthattheexcisedtransposonendsformedahairpin betweenthetwostrands. Thesignificantcontributionsofourstudyare: Itvalidatestheutilityofthereversedends Ds elementasagenomicstooltocause chromosomalrearrangements Itaddressescertainfundamentalquestionssuchasthesizeoftargetsite duplicationupon Ds insertionand,formationofhairpinstructureatthetransposonends. Theseobservationshighlightpossibledifferenceinthetranspositionmechanismof Ds elementinmaizeandArabidopsis. AnanomalousobservationinoneoftheArabidopsislinesinspiredustoproposea testablemodeltoexplainthenonMendelianinheritancereportedin hothead mutants (KrishnaswamyandPeterson,2007).Thispaperformsthelastchapterinthisthesis.

References

AcostaGarciaG,AutranD,VielleCalzadaJP.,Enhancerdetectionandgenetrappingas

toolsforfunctionalgenomicsinplants,MethodsMolBiol.2004,267,39741.

AthmaP,PetersonT., Ac induceshomologousrecombinationatthemaizePlocus, Genetics.1991May,128(1):16317.

BoekeJD,GarfinkelDJ,StylesCA,FinkGR., Ty elementstransposethroughanRNA

intermediate,Cell,1985,40(3),49150.

12

BundockP,HooykaasP.,AnArabidopsis hAT liketransposaseisessentialforplant development,Nature,2005,436(7048),28228.

BureauTE,RonaldPC,WesslerSR.,Acomputerbasedsystematicsurveyrevealsthe

predominanceofsmallinvertedrepeatelementsinwildtypericegenes,ProcNatl

AcadSciUSA.1996,93(16),8524852. ColotV,HaedensV,RossignolJL.,Extensive,nonrandomdiversityofexcision

footprintsgeneratedby Ds liketransposon Ascot1suggestsnewparallelswith

V(D)Jrecombination,MolCellBiol.1998,18(7):4337434. CordauxR,UditS,BatzerMA,FeschotteC.,Birthofachimericprimategenebycapture ofthetransposasegenefromamobileelement,ProcNatlAcadSciUSA.2006, 103(21),8101810. CourageTebbeU,DoringHP,FedoroffN,StarlingerP.Thecontrollingelement Ds at the Shrunken locusin Zeamays :structureoftheunstable shm5933 alleleand severalrevertants,Cell.1983Sep;34(2):383393. EnglishJJ,HarrisonK,JonesJ.AberrantTranspositionsofMaizeDouble Ds Like ElementsUsuallyInvolve Ds EndsonSisterChromatids,PlantCell.1995Aug; 7(8):12351247. FedoroffN,WesslerS,ShureM.,Isolationofthetransposablemaizecontrolling elements Ac and Ds ,Cell.1983,35(1),23524.

FlavellA.J.,Roleofreversetranscriptioninthegenerationofextrachromosomalcopia

mobilegeneticelements,Nature,1984,310,51451. HeffronF., Tn3 anditsRelatives,InMobileGeneticElements(ed.ShapiroJA.),

AcademicPress,Inc.,1983,pp.22326.

IidaS.,MeyerJ.,ArberW.,Prokaryotic IS Elements,InMobileGeneticElements(ed.

ShapiroJA.),AcademicPress,Inc.,1983,pp.15922.

13

IvicsZ,HackettPB,PlasterkRH,IzsvakZ.,Molecularreconstructionof SleepingBeauty , a Tc1 liketransposonfromfish,anditstranspositioninhumancells,Cell,1997,

91(4),50151.

IvicsZ,IzsvakZ.,Transposonsforgenetherapy!,CurrGeneTher.2006,6(5),59360.

JacobF.,MonodJ.,Ontheregulationofgeneactivity,ColdSpringHarborSymposium QuantitativeBiology,1961,16,19321.

JiangN,BaoZ,ZhangX,HirochikaH,EddySR,McCouchSR,WesslerSR.,Anactive

DNAtransposonfamilyinrice,Nature,2003,421(6919),16316.

JordanE.,SadlerH.,StarlingerP., Oo andstrongpolarmutationsinthegaloperonare insertions.,MolGenGenet.1968,102,35336.

JordanI.K.,Evolutionarytinkeringwithtransposableelements,ProcNatlAcadSciUS

A.2006,103(21),7941794. KapitonovVV,JurkaJ.,Rollingcircletransposonsineukaryotes,ProcNatlAcadSciU

SA.2001,98(15):8714871.

KapitonovVV,JurkaJ.,SelfsynthesizingDNAtransposonsineukaryotes,ProcNatl

AcadSciUSA.2006,103(12):4540454. KidwellMG,LischD.,Transposableelementsassourcesofvariationinanimalsand

plants,ProcNatlAcadSciUSA.1997,94,7704771. KikuchiK,TerauchiK,WadaM,HiranoHY.,Theplant MITE mPing ismobilizedin antherculture,Nature,2003,421(6919):16717. KrishnaswamyL,PetersonT.,Analternatehypothesistoexplainthehighfrequencyof "revertants"inhotheadmutantsinArabidopsis,PlantBiol(Stuttg).2007 Jan;9(1):3031. MartinezFerezIM,DoonerHK.SesquiDs ,thechromosomebreakinginsertionat bzm1 ,

linksdouble Ds totheoriginal Ds element,MolGenGenet.1997Aug;

255(6):580586.

14

McClintockB.,MutableLociinMaize,CarnegieInst.Washingtonyearbook.1948;47, 15516.

McClintockB.,MutableLociinMaize,CarnegieInst.Washingtonyearbook.1950;50,

17418.

McClintockB.,MutationsinmaizeandchromosomalaberrationsinNeurospora, CarnegieInst.Washingtonyearbook.1954,53,25426.

McClintockB.,Someparallelsbetweengenecontrolsystemsinmaizeandinbacteria,

AmNat.1961,95,26527.

MiskeyC,IzsvakZ,PlasterkRH,IvicsZ.,The FrogPrince :areconstructedtransposon from Ranapipiens withhightranspositionalactivityinvertebratecells,Nucleic

AcidsRes.2003,31(23),6873688.

MontgomeryEA,HuangSM,LangleyCH,JuddBH.,Chromosomerearrangementby ectopicrecombinationin Drosophilamelanogaster :genomestructureand

evolution,Genetics.1991,129(4),1085109.

MorganteM,BrunnerS,PeaG,FenglerK,ZuccoloA,RafalskiA.,Geneduplicationand

exonshufflingbyliketransposonsgenerateintraspeciesdiversityin maize,NatureGenetics.2005,37(9):997100.

MuotriAR,ChuVT,MarchettoMC,DengW,MoranJV,GageFH,Somaticmosaicism

inneuronalprecursorcellsmediatedby L1 retrotransposition,Nature.2005,

435(7044),90391. NufferM.G.,Dosageeffectofmultiple Dt locionmutationofainthemaizeendosperm,

Science.1955,121,39940.

PardueML,DanilevskayaON,LowenhauptK,SlotF,TraverseKL.,Drosophila

telomeres:newviewsonchromosomeevolution,TrendsGenet.1996,12(2),485.

15

ParinovS,SundaresanV,FunctionalgenomicsinArabidopsis:largescaleinsertional mutagenesiscomplementsthegenomesequencingproject,CurrOpinBiotechnol.

2000,11(2),15716.

PetersonP.A.,Amutable palegreen locusinmaize,Genetics.1953,38,68268.

PetersonP.A.,Relationshipbetweenthe Sp ,and En ControlSystemsinMaize,AmNat. 1965,99,39139.

PetersonP.A.,Acomparisionoftheactionofregulatorysystemsinmaizeandbacteria,

Genetics.1967,56,8. PetersonP.A.,Controllingelementsandmutablelociinmaize:theirrelationshipto bacterialepisomes,Genetica.1970,21,335. RalstonE,EnglishJ,DoonerHK.Chromosomebreakingstructureinmaizeinvolvinga

fractured Ac element,ProcNatlAcadSciUSA.1989Dec;86(23):94519455.

Rhoades,M.M.,TheEffectofvaryinggenedosageonaleuronecolourinmaize,Journal

ofGenetics.1936,33,34735. Rhoades,M.M.,Effectofthe Dt geneonthemutabilityofthe a1 alleleinmaize,

Genetics.1938,23,37739.

RoederG.S.,FinkG.G.,TransposobaleElementsinYeast,InMobileGeneticElements

(ed.ShapiroJA.),AcademicPress,Inc.,1983,pp.30032. RubinG.M.,DispersedRepetitiveinDrosophila,InMobileGeneticElements(ed.

ShapiroJA.),AcademicPress,Inc.,1983,pp.32936.

SachsM.M.,PeacockW.J.,DennisE.S.,GerlachW.L.,Maize Ac/Ds controlling elements:amolecularviewpoint,MAYDICA.1983,28,28930.

SchwarzSommerZ,ShepherdN,TackeE,GierlA,RohdeW,LeclercqL,MattesM,

BerndtgenR,PetersonPA,SaedlerH.,Influenceoftransposableelementsonthe

structureandfunctionofthe A1 geneof Zea mays ,EMBOJournal.1987,6(2), 28729.

16

ShalevG,LevyAA.,ThemaizetransposableelementAc inducesrecombinationbetween thedonorsiteandahomologousectopicsequence,Genetics.1997,146(3):1143

115. TaylorA.L,Bacteriophageinducedmutationin E.coli ,ProcNatlAcadSciUSA.1963, 50,1043105. WeckE,CourageU,DoringHP,FedoroffN,StarlingerP.Analysisof shm6233 ,a mutationinducedbythetransposableelement Ds inthe sucrosesynthase geneof Zeamays ,EMBOJ.1984Aug;3(8):17131716. WeilCF,WesslerSR.Molecularevidencethatchromosomebreakageby Ds elementsis

causedbyaberranttransposition,PlantCell.1993May;5(5):515522.

WesslerSR,BaranG,VaragonaM.,Themaizetransposableelement Ds issplicedfrom RNA,Science,1987,237(4817):91691.

WuSC,MeirYJ,CoatesCJ,HandlerAM,PelczarP,MoisyadiS,KaminskiJM.,

piggyBac isaflexibleandhighlyactivetransposonascomparedto Sleeping Beauty , Tol2 ,and Mos1 inmammaliancells,ProcNatlAcadSciUSA.2006,

103(41),150081501.

ZhangJ,PetersonT.Genomerearrangementsbynonlineartransposonsinmaize,

Genetics.1999Nov;153(3):14031410. ZhangJ,PetersonT.,Transpositionofreversed Ac elementendsgenerateschromosome

rearrangementsinmaize,Genetics,2004,167(4):1929193.

ZhangJ,ZhangF,PetersonT.,Transpositionofreversed Ac Elementendsgenerates

novelchimericgenesinmaize,PLoSGenetics,2006,2(10):e16. ZilbermanD,HenikoffS.,Silencingoftransposonsinplantgenomes:kickthemwhen

they'redown,GenomeBiology,2004,5(12),24.

17

CHAPTER 2: REVERSED END Ds ELEMENT: A NOVEL TOOL FOR CHROMOSOME ENGINEERING IN ARABIDOPSIS

Abstract Themaize Ac/Ds transposableelement(TE)transposesbythe“cutandpaste” mechanism.PreviousstudiesinmaizefromourlabshowthatwhentheTEendsarein reversedorientationwithrespecttoeachother,alternativetranspositionreactionscan occurresultinginlargescalegenomerearrangementsincludingdeletionsandinversions (ZhangandPeterson,2004).Westudiedtheefficacyofsuchalternativetransposition mediatedgenomerearranagementsinArabidopsis.Herewepresentouranalysisof33 independentchromosomerearrangements.Transpositionatthereversedends Ds element cancausedeletionsover1Mbp,andinversionsupto2.4Mbp.Weidentifiedadditional rearrangementsincludingareciprocaltranslocationandaputativeringchromosome. Someofthedeletionsandinversionsaregerminallytransmitted.

Introduction BarbaraMcClintock’sstudyonthe Ac/Ds transposablesystemismarkedbytwo observations(reviewedbyJones,2005).One,the Dissociation ( Ds )elementatthe ‘standard’locationproximaltothe waxy locusontheshortarmofchromosome9caused frequent,precisechromosomebreakageasobservedduringthepachytenestageof .Two,the Ds elementcouldtransposefromthestandardlocustootherlocisuch as C,Wx and Bz ,givingrisetonewincluding cm1, wx m1and bz m1,respectively. Shedescribedtwodifferent‘states’ofthe Ds element:stateI Ds elementscaused chromosomebreakagefrequentlybutunderwenttranspositionrarely.Ontheotherhand, thestateIIelementstransposedfrequentlybutseldomcausedchromosomebreakage. Molecularanalysisofseveral Ds elementsinthepasttwodecadesrevealsthatthe stateIIelementscorrespondtosimpletransposons(eg.Fedoroffetal.,1983)whereasthe stateIelementsarecomplexstructuresofthetransposableelementwhichoftenundergo aberranttranspositionreactions(CourageTebbeetal.,1983;Wecketal.,1984;Ralston etal.,1989,WeilandWessler,1993;Englishetal.,1995;MartinezFerezandDooner,

18

1997;ZhangandPeterson,1999).Afewofthe shrunken allelesgeneratedby McClintockhavebeenstudiedatthemolecularlevel(CourageTebbeetal.,1983;Burr andBurr,1982;Chaleffetal.,1981;Doringetal.,1981,Wecketal.,1984).Thelines whichshowfrequentchromosomebreakageatthe shrunken locuscarryadouble Ds element–one Ds insertedintoanother.Whenmultiple Ds termini(11bpTerminal InvertedRepeats(TIRs),plusabout250bpsubterminalsequence)arepresentinclose proximity,thena3’endanda5’endinnonstandardorientationwithreferencetoeach othercouldserveassubstrateforthetransposaseandresultinaberranttransposition (WeilandWessler,1993).Englishetal(1995)demonstratedthatinaberrant transpositionreactionsatdoubleDs elementsthatcausechromosomebreakage,the transposaserecognizedthe3’and5’endsonsisterchromatids.Thisisbelievedtooccur immediatelyafterDNAreplication.Inadditiontochromosomebreakage,suchcomplex transposonstructurescauseotherkindsofgenomerearrangementsincludingdeletions, duplicationandinversions.Themaize p1vv9D9A allelecarriesasimilarconfigurationof transposonends:anintact Ac elementandafractured Ac ( fAc )(the5’terminusisdeleted) thathavetheir5’and3’endsindirectorientation.ZhangandPeterson(1999)observed thattranspositioncaninvolvethe Ds endsonthesisterchromatids.Analysisofatwin sectorintheearofonesuchplantrevealedadeletionandacorrespondingduplication. Rearrangementatthisallelegenerates‘nesteddeletions’–aseriesofdeletionsextending fromoneoftheTIRstoaflankingchromosomalsiterepresentinginsertionoftheTIR (ZhangandPeterson,2005).Inascreenformutantsdefectiveinfemalegametogenesis, Pageetal.(2004)identifiedlargegenomicdeletionsflankingnormal Ds elementsata frequencyof510%;theyproposedthatthesedeletionsareaproductoftranspositionofa hybridelementinvolvingtheoneTIRofanewlytransposedelementandanotherTIR fromthedonorelement. Complexgenomerearrangementscanoccuralsowhenthetransposonendsarein reversedorientation(Figure1).Inthemaize P1rr11 allele,afulllength Ac elementand afractured Ac elementare13kbapartinsuchamannerthatthe5’TIRofthe Ac element andthe3’TIRofthe fAc elementareorientedtowardseachother(ZhangandPeterson, 2004).Inthisconfiguration,alternativetranspositionreactionsinvolvingthereversed endsinthemaize P1rr11 allelecouldgeneratedeletionsandinversionsinthegenome.It

19 wasproposedthatengineeredtransposonswiththetransposonendsinreversed orientationcouldbeusefulinchromosomemanipulation. Inthispapertheefficacyofreversed Ac endstocausechromosome rearrangementsinArabidopsisisexamined.Wereportherethattranspositionatreversed Ac endscangeneratebothdeletionsandinversions.Theserearrangementsrangefrom2 kbtoseveralmegabases.Inaddition,thetwotransposonendsfusedwitheachotherin severalinstances,reflectingabortedtransposition.

Materials and Methods

Plant Growth conditions SeedssownonMSmediaandappropriateselectionwerecoldstratifiedfor23 daysandmovedtothegrowthroomwiththefollowingconditions:24hourlight,25°C. After1012days,theselectedplantsweretransplantedtosoilandmovedtogrowth chamber:16hourlight,18°C.Uponbolting,theboltsweresupportedwithabamboo stakeandenclosedinasandwichwrappertofacilitateseedharvestandminimizepollen andseedcontamination.

DNA gel blot hybridization SouthernblotanalysiswascarriedoutaccordingtoSambrooketal.(1989). GenomicDNAisolatedfrom28mgofleaveswasdigestedwith Eco RI.Thedigested DNAwasseparatedby0.8%agarose(SeaKemLE)gelelectrophoresisandtransferred ontonylonmembrane(ZetaprobeGT,BioRad).Southernhybridizationwasperformed using[α32 P]radioactivelylabeledprobeDNA.Themembranewaswashedathigh stringencywashingconditionsinabufferconsistingof0.1×SSCand0.5%SDSat65 °CandexposedtoXrayfilm.

Plasmid rescue Forplasmidrescue,genomicDNAwasdigestedwith Eco RI or Xba Irestriction enzymeinavolumeof50linanovernightreaction.ThedigestedDNAwascleaned usingQIAprepspincolumn(Qiagen),andelutedin180lofwater.TheDNAwasself ligatedbyT4DNAligase(Promega)inavolumeof200lat16°Covernight.Thenthe

20

DNAwasethanolprecipitatedandresuspendedin30lofwater.45loftheligation mixturewaselectroporatedintotwentymicrolitresof Escherichiacoli DH10B (Invitrogen,Carlsbad,CA,USA).Transformed E.coli wasculturedonLBAmpagar medium.Afterovernightcultureat37°C,thecolonieswereinoculatedintoLBAmp liquidmedium.PlasmidscontainingthegenomicDNAweresequencedusingtheAc52 primer5'GTATATCCCGTTTCCGTTCCGTT3',whichiscomplementarytothe 5’subterminalsequence.Thesequenceofthesiteofinsertionobtainedfromtherescued plasmidwascomparedtotheArabidopsisgenomesequenceavailablewithPlant GenomesCentral,usingBLASTprogramandthesiteofinsertiondetermined.

Results

NIPB3 - The reversed Ds ends construct Couplandetal(1989)showedthat209bpoftheAc3’endand238bpofthe5’ endaresufficientfor Ds excisioncomparabletofullyfunctional3’and5’TIRs,in tobacco.Therefore,weincluded217basepairsofthe Ac 3’endand255bpof Ac 5’end inthepNIPB3construct(Figure2).InthisconstructtheTIRsarereversedandtherefore faceeachother.TheTIRsareseparatedbythegene iaaH ( indoleacetamidehydroxylase ) (Schroderetal.,1984),anegativeselectionmarkergene,underthetranscriptional controlof2'promoter.Indoleacetamidehydroxylaseconvertsnaphthaleneacetamide (NAM)tonaphthaleneaceticacid(NAA),whichisanauxin.Whenplantscarryingthe iaaH genearegrownonmediacontainingNAM,theNAAproducedbyindoleacetamide hydroxylasewillaffectplantdevelopmentandtheplantsshowapredominanthairyor knottedrootphenotype.Thisselectionservesasascreenforplantsinwhichtransposition ofthereversed Ds endshasresultedinlossoffunctional iaaH gene.Abacterialorigin ofreplication( ori )andthe βlactamase ( bla )geneareincludedbetweentheTDNA bordersofpNIPB3tofacilitateplasmidrescueoftheTDNAinsertionlocusintheplant genome.Plantselectionmarkergenes—nptII (resistancetokanamycin)and bar (resistancetobialaphos)—areincludedoneithersideofthereversed Ds ends.Whenone oftheselectionmarkergenesisdeletedbyarearrangementtheothercouldbeusedto selectplantsinthefollowinggeneration.

21

Generation of Arabidopsis lines containing a single copy of the reversed ends Ds construct Arabidopsis( NoO )plantscarrying rbcS :Ac 10173(obtainedfromCandace Waddell)(Honmaetal.,1993)weretransformedbyfloraldipmethod(Cloughetal.,

1998)usingAgrobacterium(GV1303)carryingthepNIPB3construct.TheT 1seedswere selectedonbialaphosmedia,andDNAblothybridizationperformedtoidentifysingle copyinsertionlines.Threesinglecopyinsertionlines–C15,C17&C42–were identifiedandplasmidrescuewasusedtodeterminethelocusofTDNAinsertionin theseplants(Figure3).SometimestheTDNAinsertionprocessintroducessomegenome rearrangementflankingtheTDNAborders(Nacryetal.,1998;Laufsetal.,1999;Tax andVernon,2001).IntheC15line,therightborderoftheTDNAisassociatedwithone suchrearrangementwherealargesegmentofchromosome2iscopiedontochromosome 1.Limitedmolecularanalysissuggeststhatthesegmentofchromosome2sequence locatedadjacenttotheTDNAisabout3.5Mb;however,theprecisejunctionof chromosome1chromosome2couldnotbedetermined.SouthernhybridizationandPCR resultsshowthatthissequenceisalsopresentatitsnormallocationonchromosome2 (datanotshown).

Screening for rearrangements in the single copy insertion lines

TheT 2seedsweresownonmediacontainingNAMincombinationwith bialaphosorkanamycin.Theresistantplantscarryingputativerearrangementswere transferredtosoil.MostselectionsweredoneusingbialaphosplusNAMbecausewe couldidentifylineswhichretainedthe ori/bla sequenceforplasmidrescue.Inour experimentweobservedthattheNAMselectionisnotareliablenegativeselection. Therefore,theNAMselectionservedonlytoenrichforplantswithrearrangements,and wereliedonDNAblothybridizationtoconfirmlossofthe iaaH genefromapparently ‘NAMresistant’plants.Southernblotanalysisoftheseplantsconfirmedthepresenceor absenceofthe ori/bla , nptII and iaaH fragmentsrespectively.Figure4showsa representativeautoradiogram.Theunrearrangedtransgenegives EcoRI fragmentsof3.2 kbwhenprobedwith ori/bla .Mostoftheplantstestedshowaclearalterationinthesize ofthe ori/bla hybridizingfragment,indicatingthepresenceofrearrangedDNAinthat

22 sample.The iaaH probeshouldhybridizetoa1.5kband3.2kbfragments;absenceof thisfragmentontheSouthernindicatesrearrangementatthereversedends Ds and subsequentlossofthe iaaH fragment.Similarly,absenceofthe nptII hybridizing fragmentindicatesdeletionofthatfragmentasaresultofrearrangement.Thesiteof insertionofthe5’TIRinplantscarryinggenomerearrangementswasdeterminedusing plasmidrescue.

Deletion, duplication, inversion, translocation and local rearrangement are formed by reversed ends transposition Thevariousrearrangements(Figure5)derivedfromtheNIPB3carryingplants arelistedinTable1.Mostoftherearrangements(19/33)identifiedaredeletions, howeverteninsertionswerealsoidentified. Inadditiontodeletionsandinversions,otherkindsofrearrangementswere observedatthereversedends Ds element.Theseincludeonelocalrearrangement,where thetransposonendsinsertintothe iaaH gene,achromosome1–chromosome2 translocation,andaputativeringchromosome.Thetranslocationandthering chromosomeweredetectedonlyinthesomatictissue,whereasthelocalrearrangement wasgerminallytransmitted.In50%ofplantsthatwereselectedtobeNAMresistant,by aPCRbasedscreenwedetectedarearrangementinwhichthe5’andthe3’endsligated togetherwithconcomitantdeletionofthe iaaH gene.

The TIRs could insert flush or generate an 8bp or 1bp Target Site Duplication Intenplants,plasmidrescueoftherearrangementandsequencingoftherescued plasmidwithaprimeronthe5’endindicatedthepresenceofaninversion.PCRanalysis ofthe3’endinsertionwasusedtoconfirmthattherearrangementsareindeedinversions. AllthePCRproductssequencedconfirmedaninversionaspredictedbasedonthe5’TIR insertionsite.Further,wenoticedthat,ofthe9inversionsthatwerecharacterizedfor both5’TIRand3’TIRinsertions,threeinversionscarriedaduplicationof8bpflanking the5’and3’TIR.Whereas,2inversionshadonly1bptargetsiteduplicationandthe other4lackedanytargetsiteduplication,i.e.wereflushinsertions(Table2).

23

Ac transposase can use 5’- and 3’-Ds ends on the same chromatid or sister- chromatids to effect transposition InthelineC17,theTDNAisinsertedinchromosome1insuchawaythatthe ori/bla sequenceandthe bar geneareproximal(i.e.closertothecentromere)tothe5’ terminusofthereversedendstransposon.Intwooftherearrangementeventsderived fromC17(#13and#14,Table1),the5’TIRhadinsertedproximaltotheTDNA insertionsiteandthesequencereadstowardstheTDNA.Onepossiblemechanismthat couldresultinsuchaninsertionis‘samechromatidtransposition’:thetransposase excisesthe5’and3’TIRonthesamechromatid,andinsertsthetransposonata proximalsite,deletingthecircularDNAformedbyinsertionofthe5’TIR(see iv in Figure1).Thiswouldimplythattherescuedplasmidinthisrearrangementeventis derivedfromthedeletedacentriccircularDNA,whichisprobablyunlikelyconsidering thelimitationsofplasmidrescuetechniquetodetectasingle,rarecircularmolecule. Thereforeweconsideredanalternative‘sisterchromatidtransposition’mechanism whereinthe5’TIRofonechromatidinsertsproximaltotheTDNAinthesister chromatid(Figure7).Suchinsertionwouldresultinreciprocaldeletionandduplication oftheDNAproximaltotheTDNA.Also,inthechromatidcarryingduplicationofthe chromosomalDNA,the iaaH segmentofthetransgenewillbepresentastandem duplication.Todeterminewhethertherearrangementofinterestisformedbysameor sisterchromatidtransposition,wetestedforpresenceoftandemduplicationofthe iaaH geneinC17IgenomicDNA(#13inTable1)byPCR.The1.7kbPCRproduct correspondingtothejunctionof iaaH tandemduplicationwassequencedandthe sequenceresultconfirmsthepredictedtandemduplicationofthe iaaH gene.

Discussion Inordertoevaluatethepossibilityandefficacyofgeneratinggenome rearrangementsinArabidopsisbyusinga Ds elementwiththeTIRsengineeredtoface eachother,wegeneratedtransgenicArabidopsislinescarryingtheNIPB3constructand screenedtheprogenyforgenomerearrangementsinthegenome.Ourresultsclearly indicatethatreversedends Ds elementscanefficientlygeneratedeletionsandinversions.

24

Inaddition,thissystemisalsocapableofgeneratingchromosomaltranslocationsand ringchromosomes.

Deletions and inversions are common Ofthe33rearrangementswehavecharacterized,19aredeletionsand10are inversions.Thedeletionsgeneratedfromalineformasequentialdeletionseries;for example,thedeletionsgeneratedfromtheC17linevaryoverarange338bp,742bp, 3.9kb,8.8kb,11.6kb,15.4kb,17.5kb,23kb,61kb,236kb,405kb,435kb,1.13MB(Figure 6).(Thesenumbersindicatethebasesdeletedfromthegenome.Thetotallengthof deletedDNAincludes2kbfromwithintheTDNA.)Thisclearlydemonstratesthe potentialofthereversedendstransposonsystemtocausechromosomaldeletions. Likewise,theinversionsalsovaryoverarangeof17.5kbto2.4Mb,andthe rearrangementintheselinesmaybeusefulasbalancerchromosomesfortheregion inverted. Themaininterestinstudyingrearrangementsatthereversedtransposonendsis thegenerationofnesteddeletions.Deletionsarehighlyusefultoolsingeneticstudiesfor mappinggenesandfordissectionofcomplexloci.Targeteddeletionscouldbeusedto removeoneorfewcopiesoftandemrepeatsofgenesandstudydosageeffect.Inmutant screenstoidentifynonlethalrecessivemutations,whenadeletionheterozygoteisused asastartingmaterial,themutantscanbeidentifiedinjustonegeneration. Gammairradiationhasbeenusedasatooltogeneratedeletions.Because irradiationisarandomprocessitistedioustoscreenfordeletionsinthedesiredlocus.In addition,irradiationcouldalsointroducerearrangementsandmutationsatotherlociand thereforecomplicaterecoveryandanalysisofsuchplants.Toolsthatcangenerate targeteddeletionscanovercomethesedrawbacks. Thecre/lox recombinationsystemhasbeensuccessfullyusedinmice(Ramirez Solisetal.,1995;Lietal.,1996;Wagneretal.,1997;Zehatal.,1998),tobacco(Dale andOw,1990;Bayleyetal.,1992;Russelletal.,1992;Medberryetal.,1995)and Arabidopsis(Russelletal.,1992;Osborneetal.,1995)togeneratelocusspecificgenome rearrangements.Acombinationofthecre/lox recombinationsystemand Ds transposable element( Dslox /cre)hasbeenusedinchromosomeengineeringasfollows(Osborneetal.,

25

1995):transgenicplantsaregeneratedwithaconstructcarryingtwo lox sites,onewithin a Ds elementandoneoutsidethe Ds element.Asafirststep,an Ac encodedtransposase effectsatranspositionofthe Dslox elementpreferablytoanearbysite.Inthefollowing generationtheCRErecombinaseexpressionisturnedonorintroducedtotheplant.CRE mediatedrecombinationbetweenthe2 lox siteswillresultindeletionorinversionofthe interveningDNAsegment.AcollectionofovertenthousandArabidopsisTDNA insertionlinescarryinga Dslox elementhasbeengeneratedbyWoodyetal.(2007). Eachoftheselinescouldbeusedasa Ds launchpadforlocalsaturationmutagenesis,by introducing Ac transposaseexpressioninthelines.Further,oncethe Ds elementhas transposed,a creexpressinglinecouldbecrossedintothissystem.CREmediated recombinationbetweentheloxsites(oneontheTDNAandtheotheronthetransposed Ds element)couldgeneratedeletionsinthegenome. Thereversed Ds endstranspositionsystemdescribedherehascertaindistinct advantagesoverthe Dslox /Cresystemdiscussedabove.First,togenerateaseriesof sequentialdeletionsusingthe Dslox system,severallinesof Ds transposedlineshaveto begenerated,andeachsuchlinecangiverisetoonlyonedeletionorinversiondepending ontherelativeorientationofthe lox sites.Incontrast,thereversed Ds endssystemcan generateaseriesofdeletionsandinversionsfromasingleline.Further,inArabidopsis, manyofthegerminalexcisioneventsoccurlateinthedevelopment(BancroftandDean, 1993),likelyafterthedeterminationofcelllinesleadingtotheformationofthepollen andova.Asaresultamajorityofthegerminaleventsobservedareindependentevents. Therefore,itispossibletogenerateaseriesofnesteddeletionsorinversionsevenfroma singleplant.Second,the Dslox systeminvolvedseveralstepsofcrossingin/crossingout orinducing/silencingtheexpressionofthe Ac transposaseandcrerecombinasegenes. Whereas,thereversedend Ds systemisasinglestepprocess,andoncethetransgene insertionlocusisidentified,onecanscreenforrearrangementswithinonegeneration.

Mechanistic variation in Ds insertion in Arabidopsis Duringtransposoninsertion,thetransposasemakesastaggeredcutatthetarget site,whichisrepairedtoformdirectrepeatsflankingthetransposon.Thesizeofthis stagger,andthereforetheflankingdirectrepeat,ischaracteristicofeachfamilyof

26 transposon.The Ac/Ds elementsinmaizeareflankedby8bptargetsiteduplications (MullerNeumannetal.,1984;Pohlmanetal.,1984).Insertionofthe Ac/Ds elementin thetobaccogenomeisalsoaccompaniedby8bptargetsiteduplications(Hehletal, 1990).Howeveritisnotevidentwhetherthegenerationofan8bptargetsiteduplication isapropertyofthetransposaseorthatofotherfactorsthatcouldbeinvolvedinthe transpositionreaction.Recenthighthroughputstudieson Ds flankingsequencein ArabidopsisbyKuromorietal(2004)andItoetal(2005)indicatethatonlyabout40%of Ds insertionsareflankedby8bptargetsiteduplications.However,thesetwostudiesdid notreportthenatureofthe Ds elementflankingsequenceintheremaining60%of insertions. Inourlines,ofthenineinversionsgeneratedbytranspositionatthereversed Ds ends,threeoftheeventsbearan8bpduplicationandanothertwohavejustonebasepair duplicationflankingtheTIRs,whiletheotherfourareflushinsertions.Thissuggeststhat themechanismand/orhostfactorsinvolvedin Ac/Ds insertioninArabidopsiscouldbe differentfrommaizeinsomewayswhichcouldresultinhigherfrequencyofinsertions withoutthetypical8bptargetsiteduplication. Onepossibleexplanationfortheflushandsinglenucleotideduplicationatthe transposontargetsiteisanonhomologousendjoining(NHEJ)repairmechanism betweentheexcisedtransposonendsandthetargetsite.However,aNHEJrepairwould sometimesinvolvelossofafewnucleotidesatthebrokenends.Absenceofsuch deletionsatthetargetsiteintheinversionsdoesnotfavorthismodel.

Both sister-chromatid rearrangement and same-chromatid rearrangement are observed Geneticstudiesinmaizehaveshownthat Ac elementscommonlytranspose duringorimmediatelyaftertheSphaseofthecellcycle,andthatoneofthetwo replicatedelementsismorecompetenttotranspose(GreenblattandBrink,1962; Greenblatt,1984;Chenetal.,1987,1992).Thisphenomenoniscalledchromatid selectivityandisthoughttobecontrolledbythemethylationstateofthetransposonends. AccordingtothemodelproposedbyWangetal.(1996),followingDNAreplication,the 5’endsonbothsisterchromatidsareequallytranspositioncompetent,whereas,onlyone

27 ofthetwo3’endsaretranspositioncompetentbasedonthestrandspecificmethylation pattern.InastandardtranspositionreactionatastateII Ds element,althoughitis theoreticallypossibleforatranspositioncompetent3’endononechromatidtoengagein atranspositioncomplexwiththe5’endonthesisterchromatid,nosucheventhasbeen reported.Accordingtothismodel,whenthetransposonendsarepresentasdirectrepeats, thetranspositionreactionwouldinvolvetheendsonsisterchromatids.Englishetal (1995)observedthattranspositionata“halfdouble Ds ”element(a5’endanda3’end presentasdirectrepeats)predominantlyusedthetransposonendsonsisterchromatidsas substrate.Incontrast,whenthe Ds endsareinreversedorientation,themethylation patternoftheDNAstrandsislikelytobesimilartothemethylationpatternonastandard transposonandthereforeitisexpectedthattranspositionatreversedendswouldalso involveonlytheendsonthesamechromatid.Inastudyontranspositionatreversed Ds endsatthe Plocusinmaize,ZhangandPeterson(2004)observedthattransposition involvedthetworeversedendsonthesamechromatid. Inthisstudy,weobservedaproximaldeletionintheC17lineandmolecular analysissuggeststhattranspositionatthereversedends Ds inArabidopsiscouldinvolve theendsonsisterchromatids(Figure7).However,sequenceanalysisoftheinversions andthelocalrearrangementwehavegeneratedshowthattheseareproductofsame chromatidrearrangement.Therefore,ourresultsindicatethepossibilityofbothsame chromatidtranspositionandsisterchromatidtranspositionatreversedends Ds elementin Arabidopsis.Becausethemethylationpatternoftheterminiinreversedends Ds element issimilartothemethylationpatternoftheterminiinastandardtransposon,wesuggest thatsisterchromatidtranspositionmayalsobepossibleatstandard Ds elementsin Arabidopsis.

Both somatic and germinal rearrangements are observed Ofthethirtythreerearrangementswehavecharacterized,onlytenrearrangements wereshowntobeheritablebasedontheirdetectionfrommorethanoneplant(siblingor progeny).Thereareseveralpossiblereasonsthattheotherrearrangementswerenot detectedinmultipleprogeny.Onepossibilityisthatmanyoftherearrangementsoccurred inthesomatictissuefromwhichgenomicDNAwasisolated,andthatthese

28 rearrangementswerenotincludedinthecellsthatgaverisetogametophytes.Itisalso likelythatsomeoftheserearrangementsoccurredlateduringthedevelopmentofthe gametophyteandthereforecontributetoaverysmallfractionoftheseedpool.Because ourscreendidnotincludealltheseedsfromaplant,wemightnothavedetected rearrangementsthatoccurredinfrequentlyinthesiblingplants.Thirdly,ifthe rearrangementdeletesoralterstheexpressionofagenecriticalforgametophyte developmentsuchrearrangementswillnotbetransmittedthroughthegermline. Howeveritisworthnotingthatalowgerminaltransmissionofreversedends Ds elementmediatedgenomerearrangementsisnotalimitationofthissystem perse .In Arabidopsis,thegerminaltransmissionof Ds transpositiondependsonseveralfactors includingbutnotlimitedtothepromoterdrivingtheexpressionofthetransposase,the positionofthe Ac geneinthegenomeandthepositionofthe Ds elementinthegenome. Swineburneetalcomparedthefrequencyof Ac excisioninArabidopsiswhenthe transposaseisexpressedunder ocs , nos and35Spromoters(Swinburneatal.,1992). Theydemonstratedthat,inArabidopsis,bothgerminalandsomaticexcisionfrequencies increasewithincreased Ac transposasetranscriptlevel.However,evengenetically identicalplantsshowvaryingsomaticandgerminalexcisionfrequencies . Honmaetal. (1993)studiedhighfrequencygerminaltranspositionof Ds ALS inArabidopsis.They comparedthefrequencyof Ds excisionwhenthe Ac transposase( Ac st )expressionis drivenby35S, rbcS ,or CHS promoter.CHS Ac st resultedinlowgerminalexcision frequenciesof0.4%and0.9%.Althoughtheyobservedamaximalgerminalexcision frequencyof64%intheF2generationof35SAc st lines,and28%and67%intheF2and F3generationsrespectivelyof rbcS Ac st lines,thereishighvariabilitynotonlybetween differentlinesbutalsobetweentheF2plantsderivedfromthesamecross.Forexample, manyoftheplantsshoweda<2%germinalexcisionfrequency. Inastudyontheinfluenceofvariousfactorsthatmightaffectthefrequencyof germinalandsomaticexcisionofmaize Ds elementinArabidopsis(BancroftandDean, 1993),fivedifferent Ds lines(allsinglelocus,singlecopy)showedsignificant differencesinthegerminalandsomaticexcisionfrequenciesbetweenthedifferentlines, indicatingthatthepositionoftheelementinthegenomehasaninfluenceontheexcision frequency.Additionally,environmentalfactorscouldinfluencethegerminalfrequencyof

29

Ds transposition.BancroftandDeanobservedathreefolddifferenceinthegerminal excisionfrequencybetweenplantsgrowningreenhouseandthosegrownundersterile conditions.Thisimpliesoneormoreenvironmentalfactorssuchasintensity,duration andqualityoflight,temperatureandhumiditymightaffectthegerminaltransmissionof Ds mediatedrearrangementsinArabidopsis. Inourexperimentsweusedthe rbcS Ac C10176linegeneratedbyHonmaetal. Theexactgerminalfrequencyof Ds excisionbythislineisnotavailable.However,it appearsthatthegerminal Ds excisionfrequencyisnotashighas28%asobservedby Honmaetalwiththe rbcS Ac st B1056line. Therefore,alowrateofgerminaltransmissionofthedeletionandinversions observedinourexperimentmaynotbealimitationofthereversedends Ds nested deletiontool.Possibly,introducingtheNIPB3constructintoalinethatexhibitsahigh frequencyofgerminal Ds excisionwouldenablegenerationofawiderrangeofgerminal rearrangements.Ourstudyconfirmstheefficacyofthissystemasafunctionalgenomics tooltogenerateawidevarietyofinformativerearrangements.

30

Figure Legends Figure 1 Transposition at reversed-ends Ds element:Thetransposasemakesa cut(arrowsini)attheendsoftheTIRs(redandgreentriangles).TheinterveningDNAis presumablylostasacircle(ii).Insertionofthetransposonatanewsitecanresultina varietyofrearrangements.Deletionandinversionaretwoprominentrearrangements. Insertionofthetransposonendsasshownin(iii)resultsindeletionofthe‘B’region(iv). Insertionofthetransposonendsasshownin(v)resultsininversionofthe‘B’region(vi). Figure 2 The pNIPB3 construct: Thegreenandredtrianglesrepresentthe3’ and5’endsof Ds element,respectively.The iaaHgeneisthenegativeselectionmarker thatconferssensitivitytonaphthaleneacetamide.NPTII geneconfersresistanceto kanamycin. BAR geneconfersresistancetobialaphos.The ori/bla segment(bacterial originofreplicationand betalactamasegene conferringresistancetoampicillin)is usefulforplasmidrescueoftheTDNAinsertionlocus.LBandRBaretheleftand rightborderTDNAsequence. Figure 3 pNIPB3 insertion sites in the three lines – C15, C17 and C42: The numberreferstothepositionofinsertionofleftborderandrightbordersofTDNA,as determinedbyplasmidrescue.Theredandgreentrianglesare5’endand3’end respectively.‘B’indicatesthepositionofthe bialaphosresistance geneand‘N’indicates thepositionofthe neomycinphosphotransferase gene.TheRBoftheTDNAinC15is flankedbyaduplicationofpartofchromosome2.(chromosomeandTDNAlengthsare notdrawntoscale) Figure 4 Southern hybridization to identify T2 plants carrying rearrangement at the reversed-ends Ds :A,BandCareautoradiogramsofthesame blotprobedwith ori/bla , nptII and iaaH DNAfragmentsrespectively.λHinDIII DNA ladderwasusedasasizemarkeronthegel.Plantscarryingrearrangement(s)are

31 identifiedbytheabsenceofthe iaaH band.Multiplebandswhenprobedwith ori/bla indicatehemizygosityand/orindependentsomaticrearrangements. Figure 5 Thedifferenttypesofgenomerearrangementsobservedatthereversed ends Ds element: i.TheNIPB3constructinsertedintheArabidopsisgenome. ii.AsegmentofArabidopsisgenomedistaltothetransgeneisdeletedalongwith theNPTIIgene(N). iii.AsegmentofArabidopsisgenomeproximaltothetransgeneisinvertedalong withtheBARgene(B). iv.FollowingexcisionattheTIRs,theTIRsfailtoinsertelsewhereinthegenome, butthebrokenendsarejoinedtoeachother. v.ThetwoTIRsinsertintothesequencethatliesinbetweenthem,resultingina localrearranagement. vi.ApericentricinsertionofoneoftheTIRsformsaringchromosome.A complementaryacentricchromosomeispredicted,butnotdetectedinourexperiment. vii.Insertionofthetransposonendsintoanonhomologouschromosomeresults inareciprocaltranslocation. Figure 6 Deletion series in the C17 line: Rearrangementatthereversedends Ds canformaseriesofnesteddeletions.Herethedistalnesteddeletionsdetectedintheline C17arerepresented.Theupperpartshowsallinsertions;inthelowerparttheregionof 24kbfromtheTDNAisenlarged.Theredarrowheadsrepresentthesiteofinsertionof the5’TIRintheserearrangements.Thesizesofdeletionsdepictedhereare338bp, 742bp,3.9kb8.8kb,11.6kb,15.4kb,17.5kb23kb,61kb,113kb,116kb,236kb,405kb, 435kb,1.13MB Figure 7 Sister chromatid transposition at reversed-ends Ds :Whenthe transposase(bluecircles)recognizethe5’and3’ends(redandgreentriangles respectively)onsisterchromatids,avarietyofrearrangementsarepossibledependingon

32 thesiteofinsertion.Therearrangementdepictedherecontainsadeletioninone chromatid,andacorrespondingduplicationintheotherchromatid. Onecharacteristicofthisrearrangementistheformationoftandemduplicationof the iaaH gene,whichcanbedetectedbyPCRusingoligosrepresentedbythearrowsin thebottomillustration.Thepredictedsequenceofthejunctionoftandem iaaH andthe sequencefromthePCRproductaregivenbelow.

33

Figure 1 Transposition at reversed-ends Ds element

34

Figure 2 The pNIPB3 Construct

35

Figure 3 pNIPB3 T-DNA insertion sites in the three lines – C15, C17 and C42

36

Figure 4 Southern hybridization on T2 generation plants of C15 and C17 lines

EcoR1digestedandori/bla probed 23.1 A 9.4 6.5 .

3.2 2.3 2.0

λH3 15F 15G 17F 17G 17H 17i 17J 17K 17L 17M 17N 17O 17P 17Q 17R 17S 17T

23.1 EcoR1digestedandNPTIIprobed B

9.4 6.5

2.3 2.0 2.1

λH3 15F 15G 17F 17G 17H 17i 17J 17K 17L 17M 17N 17O 17P 17Q 17R 17S 17T

23.1 EcoR1digestedandiaaH probed C 9.4 6.5

3.2

2.3 2.0 1.5 λH3 15F 15G 17F 17G 17H 17i 17J 17K 17L 17M 17N 17O 17P 17Q 17R 17S 17T

37

Figure 5 The different types of genome rearrangements observed at the reversed- ends Ds element

38

Figure 6 Deletion series in the C17 line

39

Figure 7 Sister chromatid transposition at reversed-ends Ds

40

Table1:Variousrearrangementsgeneratedbythereversedends Ds construct Parentline 5’TIRinsertionsite Natureof Sizeofthe # of genes andPlantID rearrangement rearrangement in the region 1 C15 13459814+ deletion 157bp 0 Ecl1 chr.2 (germinal) 2 C15 13459948+ deletion 290bp 0 RER137 chr.2 (germinal) 3 C17 24572418+ deletion 338bp 0 PH89cl2 chr.1 (germinal) 4 C17 24573498+ deletion 742bp 0 PRJcl1 chr.1 (germinal) 5 C17 24576671+ deletion 3.9kb 1 NK13cl4 chr. (germinal) 6 C17 24581566+ deletion 8.8kb 4 PRKcl1 chr.1 (germinal) 7 C17 24584359+ deletion 11.6kb 4 Rcl2 chr.1 8 C42 25575593 deletion 14.5kb 5 chr.1 9 C17 24588238+ deletion 15.5kb 6 NK6cl6 chr.1 10 C17 24593885+ deletion 17.5kb 8 K chr.1

11 C17 24595755+ deletion 23kb 8 Icl2and chr.1 (germinal) I4cl1 12 C17 24634219+ deletion 61.4kb 18 PROh1cl1 chr.1 13 C17 24458978+ deletion 113kb 27 Qcl3 chr.1 14 C17 24456006+ deletion 116kb 28 Icl4 chr.1 15 C17 24809216+ deletion 236kb 54 Rcl1 chr.1 16 C17 24977350+ deletion 404.6kb 105 RER237 chr.1 17 C17 25008039+chr.1 deletion 435kbor404kb 111 RER277cl1 or24976576+ chr.1 18 C17 23441421chr.1 deletion 1.13MB 305 19 C15 24581185 + chr.1 deletion 2.5Mb 637 PH65

41

Table1(continued) Parentline 5’TIRinsertionsite Natureof Sizeof #of andPlantID rearrangement rearrangement genesin the region 20 C17 24590304 Inversion 17.5kb 8 PH89cl3 chr.1 (germinal) and PH95cl2 21 C17 24511173 inversion. 61.5kb 12 PRIi3cl1 chr.1 22 C17 24720311 Inversion 147.5kb 36 Qcl2 chr.1 23 C15 24777089 Inversion 2.3Mb 47 PH65colG chr.1 24 C17 24806015 Inversion 233kb 54 Qcl6 chr.1 (germinal) 25 C17 24127891 Inversion 444.8kb 114 PH95cl3 chr.1 26 C17 23567105 Inversion 1Mb 270 PROh6cl1 chr.1 27 C15 14459689 Inversionor 999kb 289 RER43cl3 chr.2 reciprocal translocation 28 C15 24806015 Inversion 2.3Mb 586 RER108cl3 chr.1 29 C15 24669513 Inversion 2.4Mb 616 RER108cl3 chr.1

30 C15 Insertionintothe ‘local 1.4kb 0 RER151 iaaHgene rearrangement’ 31 Several Fusedends Fusedends Fusedends 0

32 C17 540311+ Ring 24Mb chr.1 chromosome 33 C17 16122026 Reciprocal chr1chr.2 Ohcl2 chr.2 translocation chimera (Thenumberreferstothepositiononthechromosome.+or–referstothe+and –strandofchromosome1,respectively,asinferredfromArabidopsisgenomesequence database.)

42

Table2:Reversedends Ds elementgeneratedinversions:theTargetSiteDuplication couldbe8bpor1bplong.Butin4/9cases,theinsertionisflush. Parentline 5’TIR 3’TIR Targetsite Sizeof #ofgenes andPlantID insertionsite insertion duplication inversion intheregion (p.rescue) site(PCR) C17, 24806015 24806016 Flush 233kbp 54 Qcl6and chr.1 +chr.1 insertion (germinal) Ii4cl1 C17 24590304 24590305 Flush 17548bp 8(germinal) PH89cl3and chr.1 +chr.1 insertion PH95cl2 C15Q 24669513 24669506 8bp 2.4Mbp 616 RER108cl3 chr.1 +chr1 C15Q 24806015 24806016 Flush 2.3Mbp 586 RER108cl4 chr.1 +chr1 insertion C15Q 14459689 14459689 1bp 999kbp 289 RER433 chr.2 +chr2 C17 24127891 24127891 1bp 444kbp 114 PH95col3 chr.1 +chr.1 C17 24511173 24511166 8bp 60.5kbp 12 PRIi3cl1 chr.1 +chr.1 C17 23567105 23567098 8bp 1Mbp 281 PROh6cl1 chr.1 +chr1 C17 24777089 24777091 Flush 205.5kbp 48 PH65colG chr.1 +chr1 insertion (Thenumberreferstothepositiononthechromosome.+or–referstothe+and –strandofchromosome1,respectively,asinferredfromArabidopsisgenomesequence database.)

43

References BancroftI,DeanC.Factorsaffectingtheexcisionfrequencyofmaizetransposable element Ds in Arabidopsis thaliana ,Mol.GenGenet(1993)240:6572. BayleyCC,MorganM,DaleEC,OwDW.Exchangeofgeneactivityintransgenicplants catalyzedbythe Crelox sitespecificrecombinationsystem,PlantMolBiol.1992 Jan;18(2):353361. BhaveMR,LawrenceS,BartonC,HannahLC.Identificationandmolecular characterizationof shrunken2cDNAclonesofmaize,PlantCell.1990Jun; 2(6):581588. BurrB,BurrFA. Ds controllingelementsofmaizeatthe shrunken locusarelargeand dissimilarinsertions,Cell.1982Jul;29(3):977986. ChaleffD,MauvaisJ,McCormickS,ShureM,WesslerS,FedoroffN.Controlling elementsinmaize,CarnegieInst.Wash.Yearbook.1981,80,158174. ChenJ,GreenblattIM,DellaportaSL.Transpositionof Ac fromthe Plocusofmaizeinto unreplicatedchromosomalsites,Genetics.1987Sep;117(1):109116. ChenJ,GreenblattIM,DellaportaSL.Molecularanalysisof Ac transpositionandDNA replication,Genetics.1992Mar;130(3):665676. CloughSJ,BentAF.Floraldip:asimplifiedmethodforAgrobacteriummediated transformationof Arabidopsis thaliana ,PlantJ.1998Dec;16(6):735743. CouplandG,PlumC,ChatterjeeS,PostA,StarlingerP.Sequencesneartheterminiare requiredfortranspositionofthemaizetransposonAc intransgenictobaccoplants, ProcNatlAcadSciUSA.1989Dec;86(23):93859388. CourageTebbeU,DoringHP,FedoroffN,StarlingerP.Thecontrollingelement Ds at the Shrunken locusin Zeamays :structureoftheunstable shm5933 alleleand severalrevertants,Cell.1983Sep;34(2):383393. DaleEC,OwDW.Intraandintermolecularsitespecificrecombinationinplantcells mediatedbybacteriophage P1 recombinase,Gene.1990Jul2;91(1):7985. DoringHP,NelsenSalzB,GarberR,TillmanE.Double Ds elementsareinvolvedin specificchromosomebreakage,Mol.Gen.Genet.1981219,299305.

44

DoringHP,PahlI,DuranyM.Chromosomalrearrangementscausedbytheaberrant transpositionofdouble Ds elementsareformedby Ds andadjacentnonDs sequences,MolGenGenet.1990Oct;224(1):4048. EnglishJJ,HarrisonK,JonesJ.AberrantTranspositionsofMaizeDouble Ds Like ElementsUsuallyInvolve Ds EndsonSisterChromatids,PlantCell.1995Aug; 7(8):12351247. FedoroffN,MauvaisJ,ChaleffD.Molecularstudiesonmutationsatthe Shrunken locus inmaizecausedbythecontrollingelement Ds ,JMolApplGenet.1983;2(1):11 29. GreenblattIM.AChromosomeReplicationPatternDeducedfromPericarpPhenotypes ResultingfromMovementsoftheTransposableElement,Modulator,inMaize, Genetics.1984Oct;108(2):471485 GreenblattIM,BrinkRA.TwinMutationsinMediumVariegatedPericarpMaize, Genetics.1962Apr;47(4):489501. HehlR,BakerB.Propertiesofthemaizetransposableelement Activator intransgenic tobaccoplants:aversatileinterspeciesgenetictool,PlantCell.1990Aug; 2(8):709721. HonmaMA,BakerBJ,WaddellCS.Highfrequencygerminaltranspositionof Ds ALS in Arabidopsis,ProcNatlAcadSciUSA.1993Jul1;90(13):62426246. ItoT,MotohashiR,KuromoriT,NoutoshiY,SekiM,KamiyaA,MizukadoS,SakuraiT, ShinozakiK.Aresourceof5,814dissociationtransposontaggedandsequence indexedlinesofArabidopsistransposedfromstartlocionchromosome5,Plant CellPhysiol.2005Jul;46(7):11491153.Epub2005Apr19. JonesRN.McClintock'scontrollingelements:thefullstory,CytogenetGenomeRes. 2005;109(13):90103. KuromoriT,HirayamaT,KiyosueY,TakabeH,MizukadoS,SakuraiT,AkiyamaK, KamiyaA,ItoT,ShinozakiK.Acollectionof11800singlecopy Ds transposon insertionlinesinArabidopsis,PlantJ.2004Mar;37(6):897905. LaufsP,AutranD,TraasJ.AchromosomalparacentricinversionassociatedwithT DNAintegrationinArabidopsis,PlantJ.1999Apr;18(2):131139.

45

LiZW,StarkG,GotzJ,RulickeT,GschwindM,HuberG,MullerU,WeissmannC. Generationofmicewitha200kbamyloidprecursorproteingenedeletionby Cre recombinasemediatedsitespecificrecombinationinembryonicstemcells,Proc NatlAcadSciUSA.1996Jun11;93(12):61586162. MartinezFerezIM,DoonerHK.SesquiDs ,thechromosomebreakinginsertionat bzm1 , linksdouble Ds totheoriginal Ds element,MolGenGenet.1997Aug; 255(6):580586. MedberrySL,DaleE,QinM,OwDW.Intrachromosomalrearrangementsgeneratedby Crelox sitespecificrecombination,NucleicAcidsRes.1995Feb11;23(3):485 490. MüllerNeumann,M.,Yoder,J.I.,andStarlinger,P.(1984).TheDNAsequenceofthe transposableelement Ac of Zeamays L.,Mol.Gen.Genet.1984198,1924. NacryP,CamilleriC,CourtialB,CabocheM,BouchezD.Majorchromosomal rearrangementsinducedbyTDNAtransformationinArabidopsis,Genetics.1998 Jun;149(2):641650. OdellJT,HoopesJL,VermerrisW.Seedspecificgeneactivationmediatedbythe Cre/lox sitespecificrecombinationsystem,PlantPhysiol.1994Oct;106(2):447 458. OsborneBI,WirtzU,BakerB.Asystemforinsertionalmutagenesisandchromosomal rearrangementusingthe Ds transposonand Crelox ,PlantJ.1995Apr;7(4):687 701. PohlmanRF,FedoroffNV,MessingJ.Thenucleotidesequenceofthemaizecontrolling element Activator ,Cell.1984Jun;37(2):635643. RalstonE,EnglishJ,DoonerHK.Chromosomebreakingstructureinmaizeinvolvinga fractured Ac element,ProcNatlAcadSciUSA.1989Dec;86(23):94519455. RamirezSolisR,LiuP,BradleyA.Chromosomeengineeringinmice,Nature.1995Dec 14;378(6558):720724. RussellSH,HoopesJL,OdellJT.Directedexcisionofatransgenefromtheplantgenome, MolGenGenet.1992Jul;234(1):4959.

46

SchroderG,WaffenschmidtS,WeilerEW,SchroderJ.TheTregionofTiplasmids codesforanenzymesynthesizingindole3aceticacid,EurJBiochem.1984Jan 16;138(2):387391. SwinburneJ,BalcellsL,ScofieldSR,JonesJD,CouplandG.ElevatedlevelsofActivator transposasemRNAareassociatedwithhighfrequenciesof Dissociation excision inArabidopsis,PlantCell.1992May;4(5):583595. TaxFE,VernonDM.TDNAassociatedduplication/translocationsinArabidopsis. Implicationsformutantanalysisandfunctionalgenomics,PlantPhysiol.2001 Aug;126(4):15271538. WagnerKU,WallRJ,StOngeL,GrussP,WynshawBorisA,GarrettL,LiM,FurthPA, HennighausenL. Cre mediatedgenedeletioninthemammarygland,Nucleic AcidsRes.1997Nov1;25(21):43234330. WangL,HeinleinM,KunzeR.Methylationpatternof Activator transposasebinding sitesinmaizeendosperm,PlantCell.1996Apr;8(4):747758. WeckE,CourageU,DoringHP,FedoroffN,StarlingerP.Analysisof shm6233 ,a mutationinducedbythetransposableelement Ds inthe sucrosesynthase geneof Zeamays ,EMBOJ.1984Aug;3(8):17131716. WeilCF,WesslerSR.Molecularevidencethatchromosomebreakageby Ds elementsis causedbyaberranttransposition,PlantCell.1993May;5(5):515522. WerrW,FrommerWB,MaasC,StarlingerP.Structureofthe sucrosesynthase geneon chromosome9of Zeamays L.,EMBOJ.1985Jun;4(6):13731380. WoodyST,AustinPhillipsS,AmasinoRM,KrysanPJ.The WiscDsLox TDNA collection:anarabidopsiscommunityresourcegeneratedbyusinganimproved highthroughputTDNAsequencingpipeline,JPlantRes.2007Jan;120(1):157 65.Epub2006Dec21. ZehK,AndahazyM,O'GormanS,BaribaultH.Selectionofprimarycellcultureswith cre recombinaseinducedsomaticmutationsfromtransgenicmice,NucleicAcids Res.1998Sep15;26(18):43014303. ZhangJ,PetersonT.Genomerearrangementsbynonlineartransposonsinmaize, Genetics.1999Nov;153(3):14031410.

47

ZhangJ,PetersonT.Transpositionofreversed Ac elementendsgenerateschromosome rearrangementsinmaize,Genetics.2004Aug;167(4):19291937. ZhangJ,PetersonT.Asegmentaldeletionseriesgeneratedbysisterchromatid transpositionof Ac transposableelementsinmaize,Genetics.2005Sep;171(1):333344. Epub2005Jun18.

48

CHAPTER 3: ‘FUSED-ENDS’ REARRANGEMENT AT REVERSED-ENDS DS ELEMENT IN ARABIDOPSIS: IMPLICATIONS FOR THE FATE OF FREE TRANSPOSON ENDS FOLLOWING EXCISION

Abstract Transpositionoftransposableelementsinvolvesseveralbiochemicalsteps.For manytransposons,themoleculardetailsofthereactionintermediatesinthisprocessare notevident.Westudiedtranspositionatreversed Ds endsinArabidopsis.Weobserved thatinabout50%oftheplantscarryingarearrangementatthereversedends Ds element, thetransposonterminiwereligatedtogether.Analysisofthesequencesattheseputative abortedtranspositionreactionssuggeststhattheexcisedendsofthetransposonform covalentlyclosedhairpinstructuresbetweenthetwostrands.Basedonourobservations wealsoproposeanovelmethodtoremoveselectionmarkergenesfromtransgenicplants.

Introduction Themaize Ac/Ds transposableelementsaremembersofthe hATtransposon superfamilywhichalsoincludesthe hobo elementofDrosophilaandthe Tam3 element of Antirrhinummajus .The hATelementstransposebyacutandpastemechanism. Transpositionisbelievedtooccurinasequentialmanner(Robbinsetal.,1989):oneof thetwoendsofthetransposonisexcisedfirstandligatedtothetargetsite,followedby excisionoftheothertransposonendandinsertionattherecipientsite.Repairofthegap atthedonorsiteleavesasmallsequencechangeknownasafootprint. Whilerepairofbrokenendsatthedonorsitehasbeenstudiedinsomedetail,little isknownaboutthefateofthe Ac transposonendsfollowingexcision.Recentlywe reportedthatreversedends Ds inArabidopsiscangiverisetovariousgenome rearrangements(Krishnaswamyetal.,2007).Inaddition,weobservedseveralcasesin whichthetransposonendswereligatedtogether.Herewepresentdetailedsequence analysisofthefused Ds endsjunction,andcompareourresultstotheobservationsof GorbunovaandLevy(1997,2000)intobaccoprotoplasts.Wealsodiscussthe

49 implicationsofthesefindingsintermsofdifferencesinDNArepairmachinerybetween differentspecies.

Results and Discussion

The fused-ends rearrangement mimics circularized Ds elements Westudiedtranspositionmediatedgenomerearrangementatreversed Ds termini inArabidopsislinescarryingasinglecopyofthepNIPB3construct(Figure1).pNIPB3 has217bpofthe3’and255bpofthe5’Ac terminiclonedinreverseorientation,with the11bpterminalinvertedrepeats(TIRs)facingeachother.Thenegativeselection markergene indoleacetamidehydroxylase ( iaaH )underthetranscriptionalregulationof the2’promoterisclonedbetweenthereversed Ds ends.Theconstructhas phosphinothricinacetyltransferase(bar,confersresistancetobialaphos)and neomycin phosphotransferase (nptII ,confersresistancetokanamycin)clonedoneithersideofthe transposonsequences.Abacterial originofreplication and betalactamasegene arealso includedintheTDNAtofacilitateplasmidrescueoftheTDNAinsertionsiteand rearrangementbreakpoints.ThisconstructwasintroducedintoArabidopsis( NoO )plants carrying rbcS :Ac 10173(obtainedfromCandaceWaddell)(Honmaetal.,1993)by floraldipmethod(CloughandBent,1998).Weidentifiedthreesinglecopyinsertion lines–C15,C17andC42–bySouthernhybridization.Wescreenedtheseedsfromthese linesonmediacontainingnaphthaleneacetamide(NAM),andseedlingsresistantto NAMweretransferredtosoil.Wecarriedoutmolecularcharacterizationoftheseplants bySouthernhybridization,plasmidrescueandPCR(asdescribedinKrishnaswamyetal., 2007)todeterminethenatureoftranspositionmediatedrearrangement. Transpositionatthereversed Ds endsresultsinavarietyofrearrangements includingdeletion,duplication,inversionandtranslocation(Krishnaswamyetal.,2007). Inaddition,37/74oftheplants(asdeterminedbyPCR;datanotshown)whichwere NAMresistanthadthetwo Ds terminifusedhead.Wesequencedthefusedends junctionsfrombothPCRamplifiedproductsandplasmidrescuedclones.Manyofthe fusedendshadseveralbasesdeletedfromboththeTIRs(Table1),whileinothers,in

50 additiontodeletionofafewbases,oneormorenucleotideswereinsertedbetweenthe TIRs(Table2). GorbunovaandLevy(1997)identifiedextrachromosomal Ac/Ds elements circularizedbyfusionofthe5’and3’endsintobaccoprotoplastsandsuggestedthatthe extrachromosomalcirclesareproductsofabortedtransposition.Sequenceanalysisofthe circularizedelementsrevealedthatthefusedjunctionscontainedbothdeletionsand insertions(GorbunovaandLevy2000).OurresultsinArabidopsisaresimilartothose observedintobaccoprotoplast.ThedeletionsobservedinArabidopsisareusuallysmaller thanthosereportedintobacco(0to12bpinArabidopsisvs.0to41bpintobacco).One caseinArabidopsisexhibiteda168bpdeletionfromthe3’end.Similarly,whilethe insertionsattherepairjunctionsinArabidopsiswere0–5bp,theinsertionsatthefused endsintobaccoincludedupto1kb.NoneofthefusedendsobservedinArabidopsishas boththeTIRsintact.Incontrast,over50%ofthefused Ac endsreportedintobaccohas boththeTIRsintactwithoutanydeletion.InbothArabidopsisandtobaccothedouble strandbreakiscausedby Ac transposase;thereforeitseemslikelythatthedifferences observedareduetodifferencesintherepairmachinerybetweenthetwoplants. Consistentwiththisview,OrelandPuchta(2003)observedthatbrokenDNAendsare morestableintobaccothaninArabidopsisduetolowerDNAexonucleaseactivityand/or duetobetterprotectionofthebrokenends.Basedonthisobservationitwashypothesized thatinorganismswithsmallergenomes,suchasArabidopsis,ahigherexonucleolytic activityatbrokenDNAendscouldhavecontributedtoadecreaseingenomesizeover evolutionarytimescale.Ourresultssupportthisview,andalsosuggestthatlessextensive copyingoffillerDNAatthebrokenendscouldhavealsolimitedthegrowthofthe Arabidopsisgenome. Inmaize,McClintockobservedthatinheritanceofanexcised Ac wasnot100% complete,andsometimesreinsertionofanexcised Ac remainedundetected.Lossofan excisedelementwasalsoreportedforthe Modulator element(analleleof Ac )atthe maize Plocus(Greenblatt,1984),andthe Ac elementatthemaize bronze locus(Dooner andBelachew,1989).Similarphenomenaof Ac losswerereportedintobacco(Joneset al.,1990)andArabidopsis(Altmannetal.,1992,Deanetal.,1992).Though transpositiontosisterchromatidsandmeioticsegregationarepossiblereasonsfornot

51 detectinganexcisedelementinthenextgeneration,analternativeexplanationisfailure oftheexcisedelementtoreinsert,althoughtheexcisionmechanismisunclear.We suggestthatthefusedendsrearrangementobservedatthereversedends Ds elementin Arabidopsisarealsolikelytobeabortedtranspositionreactions.

Fused-ends rearrangement not detected in Maize genome: WesearchedthemaizegenomedatabaseatplantGDB 1forthe5’and3’Acends intandem.InArabidopsisweobservethatthe11bpterminalsequenceoftheTIRsis oftenalteredwhentheendsfuse.Therefore,inoursearchweusedanEvaluecutoffof 1e 10 inordertodetectfusionswithsequencealterations.Wescanned2031BAC sequences(315,295,023basesintotal)availableatplantGDB,butdetectednofusedends. Howeveracaseofapparentlyfused Ds endsinArabidopsiswasreported previously(Yangetal.,2004).Thiscaseinvolvedanunusual Ds element( Dsmmd1 )in whichthe5’and3’Ds elementterminiareinternal,whereassequencesthatareinternal totheelementintheprogenitornowformthetermini.Itwassuggestedthat Dsmmd1 was formedbyintegrationofacircular Ds elementproducedbyabortivetransposition. Inmolecularstudiesonmaizeinourlab,fusedendsrearrangementareobserved whenthelengthof Ds endsaresameasstudiedinArabidopsis(217bp3’,and255bp5’ Ac termini).However,when239bpofthe3’and307bpofthe5’Ac terminiare includedintheconstruct,thenfusedendsrearrangementisnotdetected(ZhangJetal., unpublished).Thissuggeststhat,thoughtheshorterversionsofthe Ac terminiare sufficientforexcisionofthetransposon,reinsertionislessefficientcomparedtolonger Ac terminiresultinginabortivetransposition.

The transposon ends may form hairpin structure Fourofthefusedendssequencesgeneratedatthereversedends Ds elementin ArabidopsisincludeshortinsertionsbetweentheTIRs(Table 2).Oneofthefusedends containsa5bpfillersequencebetweentheTIRs.Thefivenucleotidesareaninverted duplicationofthelastfivebasesonthe5’TIR[ CATCC-GGATG ],formingapalindrome.

1http://www.plantgdb.org/ZmGDB/

52

Inaddition,threeothereventsshowsinglenucleotidefillersequences,wherethefiller baseiscomplementarytothelastbaseontheTIR. Coenetal.(1989)studied Tam3 excisionfootprintsin Antirrhinummajus and proposedthatfollowingtransposonexcision,thedonorsitegapisrepairedbyformation ofahairpinstructurebetweenthetwoexposedstrandsoftheDNA.Similarly, biochemicalstudiesontheinsect hAT element Hermes showthatthedonorsiteis repairedbyformationofhairpinstructurebetweenthetwostrands(Zhouetal.,2004). Ac/Ds elementtranspositioninyeastalsoinvolvesformationofhairpinstructureatthe donorsite(WeilandKunze,2000).AsimilarmechanismofjoiningbrokenDNAends occursduringV(D)JrecombinationindiversityandTcellreceptordiversity generationinthevertebrateimmunesystem(Rothetal.,1992).However,suchhairpin formationattheexcisedtransposonendshasnotbeenreportedfortransposonsfromany higherorganism.Incaseofthebacterialtransposons Tn5 (Bhasinetal.,1999)and Tn10 (Kennedyetal.,1998),theexcisedtransposonendsformacovalentlyclosedhairpin betweenthetwostrands.Weproposethatthe Ac transposonendsmayalsoform covalentlyclosedhairpinintermediates(Figure2).Accordingtoourmodel,the transposaserecognizesthe5’and3’TIRandmakesadoublestrandbreak(sequentially orsimultaneously).Thiscouldbefollowedbyexonucleolyticdeletionofafewbases fromtheends.The3’OHofthefreeendattacksthefree5’phosphateofthe complementarystrandinatransesterificationreactionandformsacovalentlyclosed hairpinattheendoftheTIR.OneorbothTIRscouldformthishairpin.Thehairpin structureisresolvedbyendonucleolyticnickonthestrandformingthehairpin; dependingonwherethenickismade,aninverseduplicationgeneratesapalindrome.The DNArepairmachineryjoinstheTIRstherebyfusingthetwoends.Thismodelis supportedbyourobservationsofpalindromicsequencesatthefusedendsjunctions, whichmayrepresentabortivetranspositions.Whetherhairpinstructuresareformed duringnormaltranspositionremainsunclear.Inthecaseof hermes transposableelement, ahairpinintermediatecouldbedetectedatthedonorsitebyaninvitroassay(Zhouetal., 2004),wherethehairpinformedatthetranspositiondonorsitewasconfirmedby sequencingthehairpinformingstrands.However,the Ac elementsystemhasnotbeen

53 showntotransposeinvitro,andthereforeasimilarexperimentisnotfeasiblewiththe Ac elementasyet.

Reversed-ends Ds element as a tool to remove marker genes from transgenes: IntheNIPB3constructwiththereversed Ds ends,theendsareseparatedby2.6kb whichincludethe 2’iaaH gene,anegativeselectionmarker.InPCRanalysisofDNA fromvegetativetissuesofT 2plants,50%oftheplantshavefusedendsrearrangement withthelossofthe 2’iaaH gene.OftheseventeenfusedendssequencelistedinTable1 and2,fivearedetectedinasiblingoraprogenyplant;inseveraladditionalcases inheritanceofthefusedendsrearrangementwasdetectedbyPCR.Thisshowsthatthe fusedendsrearrangementcanbegerminallytransmitted.Wesuggestthatthisreaction couldbeusedforremovalofmarkergenesfromtransgenicplants. Inplanttransformations,selectionmarkergenesareincludedinthetransgene constructtoselectfortransformedplants/cells.Theselectionmarkergenesusually conferresistancetospecificantibioticsorherbicides.However,oncethegenefora desiredtraitisintegratedinthetransgenicplant,itisoftendesirabletoremovethe selectionmarkergenebecauseofpossibleecologicalrisksandsocialconcerns.Thereare severalstrategiesdevisedtodevelopselectionmarkergenefreetransgenicplants(for detaileddiscussion,seereviewbyDarbanietal.,2007). Basedonourstudyofrearrangementatreversed Ds ends,weproposethatthe fusedendsformationcouldbeusedtoremoveselectionmarkergenesfromtransgenic plants(Figure3).Inadditiontothegene(s)fordesiredtrait(s)thetransgeneconstruct couldcarryapairofreversed Ds endsthatgeneratefusedendsupontransposase mediatedexcision.Apositiveselectionmarkergene,anegativeselectionmarkergene andastabilized Ac transposasegeneunderthetranscriptionalcontrolofaninducible promotercanbeclonedbetweenthe Ds TIRs.Thetransformedplantscouldbescreened fortheexpressionofthepositiveselectionmarkergene.Onceplantlineswithdesired traitsaredeveloped,the Ac transposasecouldbeinducedtoexpress.Theprogenyplants couldbeselectedforabsenceofthenegativeselectionmarkergene,andmolecular characterizationcouldbeperformedtoconfirmtheformationoffusedendsanddeletion ofthemarkergene.

54

Acknowledgement:WethankYuanbinRuforhisassistancewithsearchingthe maizegenomedatabaseforfused Ds endssequence.

55

Table and Figure Legends Table 1: Fused Ds TIRswithdeletions:Thefusedendsshownherehavelost severalbasesfromboththeTIRs.Thenumberofbaseslostfromthe5’and3’TIRare listedinthelasttwocolumns.Thesequencesinredarefromthe5’TIRandsequencesin greenarefromthe3’TIR. Table 2: Fused Ds TIRswithdeletionsandinsertions:Someofthefusedends haveadditionalbasesinsertedbetweenthefusedends.Thesequencesinredarefromthe 5’TIR;sequencesingreenarefromthe3’TIR;the‘inserted’basesareinblack. Figure 1: ThepNIPB3construct:Thegreenandredtrianglesrepresentthe3’ and5’endsof Ds element,respectively.The iaaHgeneisthenegativeselectionmarker thatmakestheplantsensitivetonaphthaleneacetamide. NPTII geneconfersresistanceto kanamycin,and Bar geneconfersresistancetobialaphos.The ori/bla sequence(bacterial originofreplicationand betalactamasegene conferringresistancetoampicillin)is usefulforplasmidrescueoftheTDNAinsertionlocus.LBandRBaretheleftand rightborderTDNAsequence. Figure 2: Modelforhairpinformationattheendsofexcisedtransposon:i.The transposasecutsattheendoftheTIRs.ii.Exonucleaseactivityremovessomeofthe basesfromoneorbothTIRs.Thisisfollowedbyformationofahairpinbetweenthetwo strandsatoneorbothTIRs.iii.Thehairpinisresolvedbynickingonestrand.Depending onwherethenickoccurs,itcouldresultintheformationofaninverserepeatsequence.iv. DNAsynthesisfillsintherecessed3’end.v.ThetwoTIRsareligatedtogether.The resulting5bppalindromeisindicatedbythearrows. Figure 3: Aconstructdesignfordeletingselectionmarkergenesfromtransgenic plants:‘ind.P: Ac st ’–stabilized Ac transposaseundertranscriptionalregulationofan induciblepromoter;‘+SMG’–positiveselectionmarkergene;‘–SMG’–negative selectionmarkergene;‘DTG’–desiredtraitgene;‘RB’and‘LB’–rightborderandleft borderoftheTDNA.

56

Table 1Fused Ds TIRs with deletions

57

Table 2 Fused Ds TIRs with deletions and insertions

58

Figure 1 The pNIPB3 construct

59

Figure 2 Hairpin formation at the ends of excised transposon

60

Figure 3 A reversed-ends Ds element construct to remove selection marker gene from transgenic plants

61

References

Altmann T,SchmidtR,WillmitzerL.Establishmentofagenetaggingsystemin

Arabidopsisthaliana basedonthemaizetransposableelement Ac ,TheorAppl

Genet.1992,84(3/4):371383.

BhasinA,GoryshinIY,ReznikoffWS.Hairpinformationin Tn5 transposition,JBiol Chem.1999Dec24;274(52):3702137029.

CloughSJ,BentAF.Floraldip:asimplifiedmethodforAgrobacteriummediated

transformationof Arabidopsis thaliana ,PlantJ.1998Dec;16(6):735743.

CoenES,RobbinsTP,AlmeidaJ,HudsonA,CarpenterR.Consequencesand mechanismsoftranspositionin Antirrhinummajus ,MobileDNA ,editedbyBerg

DEandHoweMH.,1989,413–436.

DarbaniB,EimanifarA,StewartCNJr,CamargoWN.Methodstoproducemarkerfree

transgenicplants,BiotechnolJ.2007Jan;2(1):8390. DeanC,SjodinC,PageT,JonesJ,ListerC.Behaviourofthemaizetransposableelement

Ac in Arabidopsis thaliana ,PlantJ.19922:6981.

DoonerHK,BelachewA.TranspositionPatternoftheMaizeElementAcfromthe Bz M2(ac) Allele,Genetics.1989Jun;122(2):447457.

GorbunovaV,LevyAA.Circularized Ac/Ds transposons:formation,structureandfate,

Genetics.1997Apr;145(4):11611169.

GorbunovaV,LevyAA.AnalysisofextrachromosomalAc/Ds transposableelements, Genetics.2000May;155(1):349359.

GreenblattIM.AChromosomeReplicationPatternDeducedfromPericarpPhenotypes

ResultingfromMovementsoftheTransposableElement, Modulator ,inMaize,

Genetics.1984Oct;108(2):471485.

62

HonmaMA,BakerBJ,WaddellCS.Highfrequencygerminaltranspositionof Ds ALS in Arabidopsis,ProcNatlAcadSciUSA.1993Jul1;90(13):62426246.

JonesJD,CarlandF,LimE,RalstonE,DoonerHK.Preferentialtranspositionofthe

maizeelement Activator tolinkedchromosomallocationsintobacco,PlantCell.

1990Aug;2(8):701707. KennedyAK,GuhathakurtaA,KlecknerN,HanifordDB. Tn10 transpositionviaaDNA

hairpinintermediate,Cell.1998Oct2;95(1):125134.

KunzeR,WeilCF.hAT and CACTA planttransposons,MobileDNAII,ed.CraigNL,

CraigieR,GellertM,LambowitzAM.,2002,565–610. OrelN,PuchtaH.DifferencesintheprocessingofDNAendsin Arabidopsis thaliana

andtobacco:possibleimplicationsforgenomeevolution,PlantMolBiol.2003

Mar;51(4):523531. RobbinsTP,CarpenterR,CoenES.Achromosomerearrangementsuggeststhatdonor

andrecipientsitesareassociatedduring Tam3 transpositionin Antirrhinum majus ,

EMBOJ.1989Jan;8(1):513.

RothDB,MenetskiJP,NakajimaPB,BosmaMJ,GellertM.V(D)Jrecombination: brokenDNAmoleculeswithcovalentlysealed(hairpin)codingendsinscid

mousethymocytes,Cell.1992Sep18;70(6):983991.

SaedlerH,NeversP.Transpositioninplants:amolecularmodel,EMBOJ.1985

Mar;4(3):585590. WeilCF,KunzeR.Transpositionofmaize Ac/Ds transposableelementsintheyeast

Saccharomyces cerevisiae ,NatGenet.2000Oct;26(2):187190.

YangX,MaH,MakaroffCA.,Characterizationofanunusual Ds transposableelementin

Arabidopsisthaliana :insertionofanabortivecirculartranspositionintermediate. PlantMolBiol.2004Aug;55(6):90517.

63

ZhouL,MitraR,AtkinsonPW,HickmanAB,DydaF,CraigNL.,TranspositionofhAT elementslinkstransposableelementsandV(D)Jrecombination,Nature.2004Dec

23;432(7020):9951001.

64

CHAPTER 4: AN ALTERNATE HYPOTHESIS TO EXPLAIN THE HIGH FREQUENCY OF ‘REVERTANTS’ IN Hothead MUTANTS IN ARABIDOPSIS (AnarticlepublishedinthePlantBiology 2)

Preface Inourstudyonchromosomalrearrangementatreversedends Ds inArabidopsis describedinchapter2andchapter3,someoftheplantsintheC15lineseemedtoexhibit nonMendelianinheritanceofthechromosomalrearrangements.Thiswassimilartowhat wasreportedforthe hothead mutantsinArabidopsis.IntheC15line,severalT2plants germinallyinheriteda2kbdeletion.Surprisingly,asmallnumberoftheseplantsseemed togiverisetoseveralT 3plantsthatrevertedbacktointactreversedendselement.When theexperimentwasrepeatedwithstringentcontrolforpollenandseedcontamination,the reversionphenomenonwasnotobserved. Nevertheless,thisobservationinspiredustoproposeatestablemodeltoexplain thenonMendelianinheritancein hothead mutants.Thishypothesis,whichwaspublished inPlantBiol,2007;9(1):3031,ispresentedhere.

Abstract Lolleetal.reportedahighfrequencyofgenomicchangesinArabidopsisplants carryingthehotheadmutationandproposedthatthechangesobservedweretheresultof agenecorrectionsystemmediatedbyahypotheticalRNAcache.Here,weproposea verydifferenthypothesistoexplainthedatareportedbyLolleetal.Ourhypothesisis basedonarelativelystraightforwarddevelopmentalaberrationinwhichmaternalcells ("Legacycells")fusewiththedevelopingembryo,resultinginachimera,whichcould thengiverisetotheaberrantgeneticsegregationsreportedbyLolleetal.

2ReprintedwithpermissionofthePlantBiology, 2007,9(1):3031.

65

Introduction Lolleetal(2005)reportednonMendelianinheritanceinArabidopsisplantsof hth /hth ( hothead) genotype.When hth /hth plantswereselfpollinated,theyobserved4.0 to8.2%reversionof hth to HTH ,theprogenyinheritingagenotypefoundinthe grandparentbutnotdetectedintheparent.Thereversiontoancestralsequencewasnot limitedtothe HTH locusbutalsooccurredatothermolecularmarkersequencestested. LolleetalproposedaRNAtemplatemediatededitingmechanism.Accordingto thismodel,ayetundetectedcacheofRNAtemplatesarepassedonfromgenerationto generation,andareusedastemplatefor‘correcting’changestothegenomesequence. Thismechanismmayoccurnormallyataverylowfrequencyinnonmutantplants,and atelevatedfrequenciesinthe hth /hth mutantbackground. SincetheoriginalpublicationbyLolleetal.,atleastthreealternativeexplanations havebeenadvanced.Chaudhury(2005)proposedamechanisminwhichthe hth DNA sequenceisrestoredbyageneconversionmechanismusinghomologousgenomic sequencesastemplates.Inaddition,itwassuggestedthat hth mutantcuticlesmayhave increasedpermeabilityandsotheembryosaccouldbemoreporoustoDNAfragments arisingfromthedegradedspores,facilitatingthehomologybasedsequenceediting. Similarly,amodelproposedbyRay(2005)involvesgeneconversionbasedonchromatin fragmentsoriginatingfromthedegeneratingnonfunctionalmegasporeswhichcouldbe takenupbytheeggcellandarchivedinawaythatisinaccessibletodetectionbyPCRor DNAhybridization.Thesupernumerarychromatinfragmentscouldpropagatewithinthe meristemandserveastemplateforconversionofthealteredgenomesequences.Finally, ComaiandCartwright(2005)proposedabiochemicalmechanismofmutagenesisand selectiontoexplainthe hth reversionphenomena.Accordingtothismodel, hth mutant plantsmayaccumulateamutagenicandtoxicmetabolite;themutagenicitycouldenhance therateofreversion,whilethetoxicitymayleadtoselectionforthe Hth revertant genotype.

Hypothesis ThefourhypothesesproposedpreviouslytoexplaintheobservationsbyLolleet alarenotmechanisticallyrelatedtothe hothead mutantphenotypeandtheknown

66 functionofthe Hothead gene.Here,weproposeanalternativemechanismthatisbased onthephenotypicalterationin hothead mutantplants.HOTHEADisinvolvedinthe formationofextracellularmatrixandthebiosynthesisoflongchainalpha,omega dicarboxylicfattyacids(Kurdyukov,S.etal,2006).Thesefattyacidsarerequiredforthe crosslinkingthatensurestheintegrityoftheouterepidermalcellwall. Hothead mutants aredefectiveinepidermalcellinteraction,leadingtofusionofthefloralorgans (Krolikowski,K.A.etal,2003).Weproposethatinboth hth /hth and hth /HTH plants, someofthematernaldiploidcellsmayfusewiththedevelopingembryoandbecome incorporatedintothemeristematiczone.Thenumberofthese‘ LatentLegacyCells ’that becomeincorporatedintothedevelopingmeristemmaybeveryfew,andthuswould escapedetectionbyDNAhybridizationorPCRoftheprogenysomatictissue.However, whenthefloralmeristemformsgametes,thelatentlegacycellsmaypassontheiralleleto thenextgeneration.Dependingontheproportionoflatentlegacycellsinthefloral meristem,thenumbersofprogenyexhibitingthegrandparentalgenotypemayrangefrom 0to10%. Akeypredictionofourmodelisthatprogenyplantsthatexhibit“genomic instability”of hth orothermarkersshouldcontaintheentiregenomederivedfromthe ancestrallegacycell;whereas,modelsinvolvingstochasticmolecularchangesat individuallociwouldbeexpectedtogenerateplantsinwhichthegenotypeofdifferent lociarenotnecessarilycorrelated.Pertinenttothispoint,Lolleetal.reportedthatthe progenyofacrossof hth /hth (Ler.)X HTH /HTH (Col.),exhibited“genomicinstability’ atsixdifferentmolecularmarkersincludingAG,GAPC,GL1,HTH,RGA,andUFO (Table3inLolleetal.),althoughitwasnotstatedwhetherchangesatdifferentlociwere correlated. Ourmodelisbasedontheobservationthat hth mutantsaredefectiveinepidermal cellinteractionandexhibitinappropriatecellfusions.Theoriginofthehypothetical legacycellsthatundergofusionwiththedevelopingembryoin hothead plantsisunclear. Itistemptingtospeculatethatthesecellscouldbederivedfromtheinteguments,which areepidermalinorigin.Anotherpossiblecandidateisamegasporemothercell(MMC); GrossniklausUandSchneitzK(1998)haveobservedthatabout5%ofwildtype

67

Arabidopsisovulescontain2megasporemothercells(MMCs),ofwhichonlyone matures. Themajordisadvantageofourmodelisthatitproposestwobiological phenomenawithlittleornoprecedence:First,thefusionofa“legacycell”ofunknown originwiththedevelopingembryo;Second,thepersistenceofthe“legacycell”inalatent statewithinthemeristemfromwhichitcancontributetothegametesgivingrisetothe nextgeneration.Ontheotherhand,ourmodelismechanisticallylesscomplicatedthan thealternativehypotheses,anditmakesstraightforward,testablepredictionsregarding thegenotypesofhotheadprogenyplantsthatexhibit“reversion”tograndparental genotypes. Acknowledgement :WethankDrs.PhilBecraftandErikVollbrechtforhelpful discussions.

References

ChaudhuryA.,Plantgenetics:hotheadhealerandextragenomicinformation,Nature,

2005,437,E1E2, Comai,andCartwright,R.A.,Atoxicmutatorandselectionalternativetothenon

MendelianRNAcachehypothesisforhotheadreversion,PlantCell,2005,

17(11):28562858. GrossniklausU&SchneitzK.,Themolecularandgeneticbasisofovuleand

megagametophytedevelopment,Seminarsincell&developmentalbiology,1998,

9(2):227238.

Krolikowski,K.A.,Victor,J.L.,Wagler,T.N.,Lolle,S.J.&Pruitt,R.E.,Isolationand characterizationoftheArabidopsisorganfusiongeneHOTHEAD,PlantJournal,

2003,35(4),501511.

KurdyukovS,FaustA,TrenkampS,BarS,FrankeR,EfremovaN,TietjenK,Schreiber

L,SaedlerH,YephremovA.,Geneticandbiochemicalevidenceforinvolvement

68

ofHOTHEADinthebiosynthesisoflongchainalpha,omegadicarboxylicfatty

acidsandformationofextracellularmatrix,Planta,2006, 224(2):31529 .

Lolle,S.J.,Victor,J.L.,Young,J.M.&Pruitt,R.E.,Genomewidenonmendelian

inheritanceofextragenomicinformationinArabidopsis,Nature,2005,434,505–

509. Ray,A.,Plantgenetics:RNAcacheorgenometrash?,Nature,2005,437,E1–E2.

69

ACKNOWLEDGEMENTS Iwouldliketoplaceonrecordmythankstosomeofthepeoplewhohave facilitatedmyPh.D.research,andmademystayatAmesawonderfulexperience Dr.Petersonhasbeenanidealmentor.Hetakesmentoringnotasatask,butas commitmentclosetoheart.Ireallyappreciatethefactthathemakesitapointtomeet everymemberofthegroupindividuallyeveryweekanddiscussesprogressinresearch. Inthesemeetings,hepatientlylistenstothementeesandprovidesdeepinsights(justgive himanautoradiogramandwatchhimlookforbandsanddecipherdetailsfromthedark bands!).Hedoesnotdirectlyputforwardhissuggestions;rather,heposesquestionsthat willmakethestudentthinkintherightdirection.HisattentiontodetailsisonequalityI wouldliketocultivate. Dr.Girton,Dr.Spalding,Dr.VoytasandDr.Whitham:ItismyfortunethatIhadan excellentgroupofscientistsonmyPOScommittee.Myformalmeetingswiththe committeeoccurredonlythreetimes:1.thefirstmeeting,2.preliminaryexamination,3. finaldefenseexamination.However,Ihavemetwitheachmemberseveraltimesin betweenanddiscussedmyresearchwiththem.Theyhavealwaysbeenveryencouraging, especiallyattimeswhenbenchworkwasshootinglotoftroubles. Dr.JianboZhang’sknowledgeontranspositionhasalwaysamazedme.Hehas helpedmeunderstandthisscience. Dr.EricaUngerWallacehasbeenawalkinggoogle:ifyouareinneedfortrouble shootinginexperiments,orwantapieceofinformationimmediately,shehasthesolution oratleastsheknowswheretolookfor! Xianyan(Justin),ChuanheandFenghavebeenwonderfulfriendsinthelab. Terryisaveryhelpfulpersonandhiswittycommentsareunforgettable.Ever sinceheleftthelab,wemisshimandhisWOI! Brian,Tanya,LisaandNikkihavehelpedmewithseveralgenomicDNA extractions. DianehasbeenverykindintakingcareofmyplantsduringmyvisitstoIndia. Sheisalwaysquicktowriteanemailandupdatemeonmyplants. Zhuying’smeticulosityimpressesme.

70

Antony,Anjan,Parijat,Darshana,Jyothi,Ramesh,andmanyotherfriendshave madelifeatAmesverywarm. MyextendedfamilybackinIndiahasbeenveryencouraging,supportiveand patientthroughthepastsixandhalfyearsofmyPh.D. Mysincerethankstoallthepeoplementionedabove,andalotmore.Itisnot practicallypossibleformetolisteveryonetowhomIliketoexpressmygratitude.For instance,Iwouldliketothankallmyteachersrightfromchildhood.Butforthe‘Teacher’ Iwouldhavecontinuedtobeindarkness.IamverygratefulforeverythingIhave received. Sincerely, Lakshminarasimhan. Ames,Iowa.