Predicting Heterosis and Inbreeding Depression from Population Size and Density to Inform Management Efforts

Total Page:16

File Type:pdf, Size:1020Kb

Predicting Heterosis and Inbreeding Depression from Population Size and Density to Inform Management Efforts Received: 10 January 2020 | Accepted: 27 March 2020 DOI: 10.1111/1365-2664.13643 RESEARCH ARTICLE Predicting heterosis and inbreeding depression from population size and density to inform management efforts Linus Söderquist | Anna Broberg | Viktor Rosenberg | Nina Sletvold Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Abstract Biology Centre, Uppsala University, Uppsala, 1. Effective population size should be positively related to census size and den- Sweden sity, and it is expected to influence the strength of genetic drift, inbreeding Correspondence and response to selection, and thus the distribution of the genetic load across Linus Söderquist Email: [email protected] populations. 2. We examined whether census population size and density predict the strength of Funding information Svenska Forskningsrådet Formas, Grant/ inbreeding depression, heterosis and population mean fitness at the seed stage Award Number: 2014-601 in the terrestrial orchid Gymnadenia conopsea by conducting controlled crosses Handling Editor: Jin-Tian Li (self, outcross within and between populations) in 20 populations of varying size (7–30,000 individuals) and density (1–12.8 individuals/m2). In the largest popula- tion, we also examined how local density affects the occurrence of self-pollination with a pollen staining experiment. 3. The majority of populations expressed strong inbreeding depression at the seed stage (mean δID: min–max = 0.26: −0.53 to 0.51), consistent with a mainly out- crossing mating system and substantial genetic load. The effect of between- population crosses varied from strong outbreeding depression to heterosis (mean δOD: min–max = 0.05: −0.22 to 0.92), indicating varying influence of drift and selection among populations. 4. Census population size did not significantly predict the strength of inbreeding depression, heterosis or population mean fitness. However, inbreeding depression was positively and heterosis negatively correlated with population density. The proportion of self-massulae deposition was three times higher in sparse patches compared to dense ones (41% vs. 14%). 5. Combined effects of density-dependent pollinator behaviour and limited seed dispersal may cause stronger genetic sub-structuring in sparse populations and reduce the strength of the correlation between census and effective population size. The results point to the importance of considering population density in addi- tion to size when evaluating the distribution of recessive deleterious alleles across populations. 6. Synthesis and applications. Management plans for threatened species often involve crosses between populations to restore genetic variation, a process termed genetic This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society J Appl Ecol. 2020;57:1459–1468. wileyonlinelibrary.com/journal/jpe | 1459 1460 | Journal of Applied Ecology SÖDERQUIST et AL. rescue. This study indicates that such conservation efforts should be more successful if designed on the basis of population density in addition to population size, because we found population density predicted both the strength of hetero- sis and inbreeding depression across populations of Gymnadenia conopsea. KEYWORDS density-dependent mating, genetic rescue, Gymnadenia conopsea, heterosis, inbreeding depression, population density, population size, selfing rate 1 | INTRODUCTION selection decreases (Lynch & Gabriel, 1990). Beneficial alleles may be lost via random drift, and inbreeding can lead to exposure of During the last century, many species have experienced significant recessive deleterious alleles that cause inbreeding depression reductions in abundance and local population sizes due to habitat (i.e. inbreeding load; Husband & Schemske, 1996). The strength of degradation and fragmentation (Ceballos, Ehrlich, & Dirzo, 2017; inbreeding depression should be weaker in small relative to large Sánchez-Bayo & Wyckhuys, 2019). A reduction in population size is populations because the inbreeding load should be reduced by ge- expected to lead to increased extinction risk and lowered adaptation netic drift (Hedrick & García-Dorado, 2016). Drift is expected to potential (Leimu & Fischer, 2008). Hence, the census size of a pop- randomly fix mildly deleterious alleles (and lose strongly deleterious ulation is regularly used as a measure of its viability, and it is an im- ones), reducing the difference in expression of recessive deleterious portant determinant of a species' conservation value in management alleles between progeny resulting from selfing versus outcrossing. decisions (IUCN, 2012). How suitable census size is as a measure of Closer kinship due to biparental inbreeding in small populations will a species' conservation value will depend on its correspondence to also contribute to diminished differences between outcrossing and effective population size, determined by the number of individuals selfing. Additionally, inbreeding load can be reduced by selection that actually contribute offspring to the next generation, and the against alleles when expressed as homozygotes (Keller & Waller, equality of their contributions (Wright, 1938). 2002). However, the removal of deleterious alleles through selection In most natural populations, census population size will be (i.e. purging) requires a relatively large population size to be effec- larger than effective population size, as not all adult individuals tive, and should mainly act on strongly deleterious alleles (García- breed. More interesting from a conservation viewpoint is that pop- Dorado, 2015; Winn et al., 2011). Fixation of deleterious alleles via ulations of equal census size can differ in several ways influencing drift and inbreeding can ultimately reduce population fitness and effective population size. One factor that may strongly affect the lead to a decrease in adaptation potential (Ellstrand & Elam, 1993; mating structure and thereby the effective size is population den- Young, Boyle, & Brown, 1996), increasing the extinction probability sity (Levin, 1988). In flowering plants, several studies have docu- of small populations (Whitlock, 2000). mented density-dependent pollinator behaviour, where pollinators Besides reducing population size, habitat fragmentation typ- visit fewer plants (Kunin, 1997) and more flowers per plant at low ically also leads to increased isolation. The combination of re- density relative to high (Grindeland, Sletvold, & Ims, 2005; Karron, duced gene flow and increased inbreeding and genetic drift will Thumser, Tucker, & Hessenauer, 1995). Density-dependent be- lead to stronger genetic differentiation between populations haviour should lead to shorter pollen dispersal distances, more (Templeton, Shaw, Routman, & Davis, 1990). As deleterious al- geitonogamy and lower outcrossing rates (Karron et al., 1995; Peter leles are fixed at random by genetic drift, different populations & Johnson, 2009), and stronger fine-scale genetic structure in can, by chance, fix different alleles (Keller & Waller, 2002). sparse populations (or patches) compared to dense ones (reviewed in In such cases, between-population crosses can restore het- Loveless & Hamrick, 1984; Vekemans & Hardy, 2004). For example, erozygosity and lead to increased fitness, that is, heterosis spatial aggregation was found to increase the magnitude of genetic (Crow, 1948; Whitlock, Ingvarsson, & Hatfield, 2000). Heterosis structuring within natural populations of Silene ciliata (Lara-Romero is expected to be strongest in small populations, where random et al., 2016). Knowledge of density-dependent mating patterns is fixation of mildly deleterious alleles should be common (Oakley important for understanding the correspondence between census & Winn, 2012; Spigler, Theodorou, & Chang, 2017). Crosses and effective population size, and ultimately for guiding the design between small populations can thus be used as a conservation of conservation plans. effort, that is, genetic rescue (Ingvarsson, 2001, reviewed in Effective population size influences many ecological and genetic Frankham, 2015). However, populations can also be adapted to processes. Small populations typically have low levels of genetic differing local conditions, where between-population crosses variation (Leimu, Mutikainen, Koricheva, & Fischer, 2006). The in- would lead to outbreeding depression, that is, lowered fitness fluence of genetic drift and inbreeding also increases in small pop- as compared to within-population outcrossing (Oakley, Ågren, & ulations (Ellstrand & Elam, 1993), whereas the efficiency of natural Schemske, 2015; Templeton et al., 1986). As small populations SÖDERQUIST et AL. Journal of Applied Ecolog y | 1461 are expected to show low potential for local adaptation (Leimu & Fischer, 2008), the strength of outbreeding depression is pre- dicted to increase with population size. To separate the inbreed- ing and drift load across populations, it is important to combine knowledge on the strength of inbreeding depression versus het- erosis (Keller & Waller, 2002). Low inbreeding depression and no heterosis indicate a history of purging of deleterious alleles, whereas low inbreeding depression and high heterosis imply that drift is the dominating process determining
Recommended publications
  • Priority Actions to Improve Provenance Decision-Making
    Forum Priority Actions to Improve Provenance Decision-Making MARTIN F. BREED, PETER A. HARRISON, ARMIN BISCHOFF, PAULA DURRUTY, NICK J. C. GELLIE, EMILY K. GONZALES, KAYRI HAVENS, MARION KARMANN, FRANCIS F. KILKENNY, SIEGFRIED L. KRAUSS, ANDREW J. LOWE, PEDRO MARQUES, PAUL G. NEVILL, PATI L. VITT, AND ANNA BUCHAROVA Selecting the geographic origin—the provenance—of seed is a key decision in restoration. The last decade has seen a vigorous debate on whether to use local or nonlocal seed. The use of local seed has been the preferred approach because it is expected to maintain local adaptation and avoid deleterious population effects (e.g., maladaptation and outbreeding depression). However, the impacts of habitat fragmentation and climate change on plant populations have driven the debate on whether the local-is-best standard needs changing. This debate has largely been theoretical in nature, which hampers provenance decision-making. Here, we detail cross-sector priority actions to improve provenance decision-making, including embedding provenance trials into restoration projects; developing dynamic, evidence-based provenance policies; and establishing stronger research–practitioner collaborations to facilitate the adoption of research outcomes. We discuss how to tackle these priority actions in order to help satisfy the restoration sector’s requirement for appropriately provenanced seed. Keywords: assisted migration, ecological restoration, local adaptation, restoration genetics he restoration sector’s demand for seed is Williams et al. 2014, Havens et al. 2015, Prober et al. 2015, Tenormous and is rapidly increasing with the growth Breed et al. 2016b, Christmas et al. 2016b). in the global restoration effort (Verdone and Seidl 2017).
    [Show full text]
  • Genetic and Demographic Dynamics of Small Populations of Silene Latifolia
    Heredity (2003) 90, 181–186 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic and demographic dynamics of small populations of Silene latifolia CM Richards, SN Emery and DE McCauley Department of Biological Sciences, Vanderbilt University, PO Box 1812, Station B, Nashville, TN 37235, USA Small local populations of Silene alba, a short-lived herbac- populations doubled in size between samples, while others eous plant, were sampled in 1994 and again in 1999. shrank by more than 75%. Similarly, expected heterozygosity Sampling included estimates of population size and genetic and allele number increased by more than two-fold in diversity, as measured at six polymorphic allozyme loci. individual populations and decreased by more than three- When averaged across populations, there was very little fold in others. When population-specific change in number change between samples (about three generations) in and change in measures of genetic diversity were considered population size, measures of within-population genetic together, significant positive correlations were found be- diversity such as number of alleles or expected hetero- tween the demographic and genetic variables. It is specu- zygosity, or in the apportionment of genetic diversity within lated that some populations were released from the and among populations as measured by Fst. However, demographic consequences of inbreeding depression by individual populations changed considerably, both in terms gene flow. of numbers of individuals and genetic composition. Some Heredity (2003) 90, 181–186. doi:10.1038/sj.hdy.6800214 Keywords: genetic diversity; demography; inbreeding depression; gene flow Introduction 1986; Lynch et al, 1995), the interaction of genetics and demography could also influence population persistence How genetics and demography interact to influence in common species, because it is generally accepted that population viability has been a long-standing question in even many abundant species are not uniformly distrib- conservation biology.
    [Show full text]
  • Modeling Factors Affecting the Severity of Outbreeding Depression
    Modeling Factors Affecting the Severity of Outbreeding Depression SUZANNE EDMANDS* AND CHARLES C. TIMMERMAN† *Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, U.S.A., email [email protected] †997 West 30th Street, Los Angeles CA 90007, U.S.A. Abstract: Hybridization between populations may cause either increased fitness (“hybrid vigor”) or de- creased fitness (“outbreeding depression”). Translocation between populations may therefore in some cases be a successful means of combating genetic erosion and preserving evolutionary potential, whereas in other cases it may make the situation worse by inducing outbreeding depression. Because genetic distance alone is a poor predictor of the success or failure of hybridization, we developed a computer model (ELAB) to explore other factors affecting the consequences of hybridization. Our model simulates diploid, unisexual popula- tions following Mendelian rules, and in this study we used it to test the effect of a variety of parameters on both the magnitude and duration of outbreeding depression. We focused our simulations on the effects of (1) divergence between populations, (2) the genetic basis of outbreeding depression (disruption of local adap- tation vs. intrinsic coadaptation), (3) population parameters such as mutation rate and recombination rate, and (4) alternative management schemes (50:50 mixture vs. one migrant per generation). The magnitude of outbreeding depression increased linearly with genetic distance, whereas the duration of outbreeding de- pression showed a more complex curvilinear relationship. With genetic distance held constant, magnitude in- creased with larger population size, lower mutation rate, cross-fertilization, and higher recombination rate, whereas duration increased with larger population size and partial self-fertilization.
    [Show full text]
  • Examining Genetic Diversity, Outbreeding Depression, and Local Adaptation in a Native Fish Reintroduction Program a DISSERTATION
    Examining genetic diversity, outbreeding depression, and local adaptation in a native fish reintroduction program A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY DAVID DERLAND HUFF IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BRUCE VONDRACEK AND RAYMOND M. NEWMAN, CO-ADVISORS May 2010 © David Derland Huff, 2010 Acknowledgements I am grateful to so many people for their contributions to my work and well-being during my time at the University of Minnesota that is difficult for me to know where to begin. I will start with Bruce Vondracek, who was very involved in this research and went out of his way to make himself available, even on short notice. He was instrumental in helping me obtain resources and funding for research and somehow scrounged funds for travel on every occasion that I asked for it. We also enjoyed many fishing trips in which we cumulatively landed thousands of trout. He always out-fished me no matter how hard I tried, except once, thanks to one ugly little green fly. Austen Cargill II provided me with a fellowship (and the aforementioned green fly) for the duration of my time in Minnesota and was also present on most of our fishing trips. I would like to thank him for this funding and for his generous hospitality, interesting conversations, and valuable fly-fishing advice. Funding was also provided by a doctoral dissertation fellowship from the Graduate School of the University of Minnesota. The Minnesota Department of Natural Resources, U.S.
    [Show full text]
  • Revegetation Priorities D
    Revegetation Priorities D. Terrance Booth and Kenneth P. Vogel Introduction A cultivar is a variety, strain, or population of known genetic Revegetation is a needed means of mitigating man-made and origin, produced under cultivation in a way to ensure its natural disturbance. Our current ability to address environ- genetic integrity is maintained. mental insults contrasts sharply with that existing when John Muir fi rst sowed the roots of environmental awareness or Aldo Leopold and Hugh H. Bennett inspired a land ethic and a sense of stewardship. We now have considerable revegeta- There is agreement among land managers, Federal and tion science and experience and—equally important—viable state agencies, conservation groups, and scientists that the native-seed and revegetation industries expert in repairing decisions should be based on research and science. There are environmental damage. Through the National Plant Mate- hundreds of species on the rangelands of North America and rials program, related and usually cooperative work within rigorous genetic and adaptation studies have been conducted state universities and other entities, and the development of on only a few, so the scientifi c information base is small in ecological service industries, our society has heeded Leop- comparison to that of cultivated crops. Our intent here is to old’s call to take pride in the “husbandry” of wild plants.1 Yet, summarize key aspects of this problem, suggest some potential wild-plant husbandry is now being questioned, as is the wis- approaches and solutions, and encourage further research. dom of much of the knowledge, experience, and use of plant materials developed over the past 3 to 5 decades.
    [Show full text]
  • Evaluating the Relative Risks of Inbreeding and Outbreeding for Conservation and Management
    Molecular Ecology (2007) 16, 463–475 doi: 10.1111/j.1365-294X.2006.03148.x INVITEDBlackwell Publishing Ltd REVIEW Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management SUZANNE EDMANDS Department of Biological Sciences, AHF 107, University of Southern California, Los Angeles, CA 90089-0371, USA Abstract As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by vari- ation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible. Keywords: fitness, hybridization, inbreeding depression, outbreeding depression Received 21 May 2006; revision accepted 1 September 2006 times more fit than the resident lineages (Ebert et al.
    [Show full text]
  • Translocations and the 'Genetic Rescue' of Bottlenecked Populations
    Translocations and the ‘genetic rescue’ of bottlenecked populations ATHESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN WILDLIFE CONSERVATION AT THE UNIVERSITY OF CANTERBURY SOL HEBER SEPTEMBER 2012 Abstract Many species around the world have passed through severe population bottlenecks due to an- thropogenic influences such as habitat loss or fragmentation, the introduction of exotic predators, pollution and excessive hunting. Severe bottlenecks are expected to lead to increased inbreed- ing depression and the loss of genetic diversity, and hence reduce the long-term viability of post- bottlenecked populations. The objective of this thesis was to examine both the consequences of severe bottlenecks and the use of translocations to ameliorate the effects of inbreeding due to bot- tlenecks. Given the predicted increase in probability of inbreeding in smaller populations, one would expect inbreeding depression to increase as the size of a population bottleneck decreases. Deter- mining the generality of such a relationship is critical to conservation efforts aimed at minimising inbreeding depression among threatened species. I therefore investigated the relationship between bottleneck size and population viability using hatching failure as a fitness measure in a sample of threatened bird species worldwide. Bottleneck size had a significant negative effect on hatch- ing failure, and this relationship held when controlling for confounding effects of phylogeny, body size, clutch size, time since bottleneck, and latitude. All species passing through bottlenecks of ∼100–150 individuals exhibited increased hatching failure. My results confirm that the negative consequences of bottlenecks on hatching success are widespread, and highlight the need for conser- vation managers to prevent severe bottlenecks.
    [Show full text]
  • The Alluring Simplicity and Complex Reality of Genetic Rescue
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 9-2004 The alluring simplicity and complex reality of genetic rescue David A. Tallmon University of Alaska Southeast, [email protected] Gordon Luikart University of Montana, [email protected] Robin Waples NOAA, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Tallmon, David A.; Luikart, Gordon; and Waples, Robin, "The alluring simplicity and complex reality of genetic rescue" (2004). Publications, Agencies and Staff of the U.S. Department of Commerce. 480. https://digitalcommons.unl.edu/usdeptcommercepub/480 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Review TRENDS in Ecology and Evolution Vol.19 No.9 September 2004 The alluring simplicity and complex reality of genetic rescue David A. Tallmon1, Gordon Luikart1 and Robin S. Waples2 aLaboratoire d’Ecologie Alpine, Ge´nomique des Populations et Biodiversite´, CNRS UMR 5553, Universite´Joseph Fourier, BP 53, 38041 Grenoble, Cedex 09, France bNational Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA A series of important new theoretical, experimental and yet crucial role in the evolution of small natural observational studies demonstrate that just a few populations and can, under some circumstances, be an immigrants can have positive immediate impacts on effective conservation tool.
    [Show full text]
  • Mixed-Source Reintroductions Lead to Outbreeding Depression in Second-Generation Descendents of a Native North American Fish
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications Unit 2011 Mixed-source reintroductions lead to outbreeding depression in second-generation descendents of a native North American fish David D. Huff University of Minnesota, [email protected] Loren M. Miller University of Minnesota Christopher J. Chizinski University of Minnesota, [email protected] Bruce Vondracek University of Minnesota, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Huff, David D.; Miller, Loren M.; Chizinski, Christopher J.; and Vondracek, Bruce, "Mixed-source reintroductions lead to outbreeding depression in second-generation descendents of a native North American fish" (2011). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 194. https://digitalcommons.unl.edu/ncfwrustaff/194 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized administrator of DigitalCommons@University
    [Show full text]
  • Genetic Mixing for Population Management: from Genetic Rescue to Provenancing
    Received: 20 August 2020 | Revised: 10 October 2020 | Accepted: 14 October 2020 DOI: 10.1111/eva.13154 REVIEWS AND SYNTHESES Genetic mixing for population management: From genetic rescue to provenancing Ary A. Hoffmann1 | Adam D. Miller2,3 | Andrew R. Weeks1,4 1School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Vic., Abstract Australia Animal and plant species around the world are being challenged by the deleterious 2 School of Life and Environmental Sciences, effects of inbreeding, loss of genetic diversity, and maladaptation due to widespread Centre for Integrative Ecology, Deakin University, Warrnambool, Vic., Australia habitat destruction and rapid climate change. In many cases, interventions will likely 3Deakin Genomics Centre, Deakin be needed to safeguard populations and species and to maintain functioning eco- University, Geelong, Vic., Australia systems. Strategies aimed at initiating, reinstating, or enhancing patterns of gene 4cesar Pty Ltd, Parkville, Vic., Australia flow via the deliberate movement of genotypes around the environment are gen- Correspondence erating growing interest with broad applications in conservation and environmental Ary A. Hoffmann, School of BioSciences, Bio21 Institute, The University of management. These diverse strategies go by various names ranging from genetic or Melbourne, Parkville, Vic., Australia. evolutionary rescue to provenancing and genetic resurrection. Our aim here is to Email: [email protected] provide some clarification around terminology and to how these strategies are con- nected and linked to underlying genetic processes. We draw on case studies from the literature and outline mechanisms that underlie how the various strategies aim to increase species fitness and impact the wider community. We argue that under- standing mechanisms leading to species decline and community impact is a key to successful implementation of these strategies.
    [Show full text]
  • Preserving Evolutionary Potential: the Role of Genetic Rescue Jill Hamilton North Dakota State University Genetic Consequences of Rarity
    Preserving evolutionary potential: the role of genetic rescue Jill Hamilton North Dakota State University Genetic consequences of rarity Genetic Demographic variation variation Inbreeding depression Population growth rate Outbreeding depression Reproductive rates Ne Evolutionary Potential? Environmental variation Fluctuations Disease Stress How might genetic rescue impact a species evolutionary potential? Natural or facilitated introduction of genetic variation from unrelated individuals with an aim to increase population fitness Environmental change Extinction threshold (Hamilton and Miller 2016, Conservation Biology) Maladaptation to changing conditions could lead to extinction Environmental change Extinction threshold Maladaptation Extinction (Hamilton and Miller 2016, Conservation Biology) Evolutionary rescue from standing genetic variation Environmental change Rescue via standing variation Extinction threshold Maladaptation Extinction (Hamilton and Miller 2016, Conservation Biology) Gene flow reduces demographic consequences of maladaptation Environmental change Introduction Rescue via gene flow * of variation Rescue via standing variation Extinction threshold Maladaptation Extinction (Hamilton and Miller 2016, Conservation Biology) One of the rarest pine species in the world, Torrey pine is restricted to one mainland and one island population Santa Rosa Island an expanding population Torrey Pines State Reserve abiotic and biotic challenges Genetics: exceptionally low levels of genetic diversity in a conifer • 59 allozyme gene
    [Show full text]
  • Outbreeding Depression As a Selective Force on Mixed Mating in the Mangrove Rivulus Fish, Kryptolebias Marmoratus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432322; this version posted February 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Outbreeding depression as a selective force on mixed mating in the mangrove rivulus fish, Kryptolebias marmoratus bioRxiv preprint doi: https://doi.org/10.1101/2021.02.22.432322; this version posted February 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Mixed mating, a reproduction strategy utilized by many plants and invertebrates, optimizes the cost to benefit ratio of a labile mating system. One type of mixed mating includes outcrossing with conspecifics and self-fertilizing one’s own eggs. The mangrove rivulus fish (Kryptolebias marmoratus) is one of two vertebrates known to employ both self-fertilization (selfing) and outcrossing. Variation in rates of outcrossing and selfing within and among populations produces individuals with diverse levels of heterozygosity. I designed an experiment to explore the consequences of variable heterozygosity across four ecologically relevant conditions of salinity and water availability (10‰, 25‰, and 40‰ salinity, and twice daily tide changes). I report a significant increase in mortality in the high salinity (40‰) treatment. I also report significant effects on fecundity measures with increasing heterozygosity. The odds of laying eggs decreased with increasing heterozygosity across all treatments, and the number of eggs laid decreased with increasing heterozygosity in the 10‰ and 25‰ treatments.
    [Show full text]