Complemented Basic Sequences in Frechet Spaces with Finite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Subprojective Banach Spaces
Subprojective Banach spaces T. Oikhberg Dept. of Mathematics, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA E. Spinu Dept. of Mathematical and Statistical Sciences, University of Alberta Edmonton, Alberta T6G 2G1, CANADA Abstract A Banach space X is called subprojective if any of its infinite dimensional sub- spaces contains a further infinite dimensional subspace complemented in X. This paper is devoted to systematic study of subprojectivity. We examine the stability of subprojectivity of Banach spaces under various operations, such us direct or twisted sums, tensor products, and forming spaces of operators. Along the way, we obtain new classes of subprojective spaces. Keywords: Banach space, complemented subspace, tensor product, space of operators. 1. Introduction and main results Throughout this note, all Banach spaces are assumed to be infinite dimen- sional, and subspaces, infinite dimensional and closed, until specified otherwise. A Banach space X is called subprojective if every subspace Y X contains a further subspace Z Y , complemented in X. This notion was introduced in [41], in order to study the (pre)adjoints of strictly singular operators. Recall that an operator T P BpX; Y q is strictly singular (T P SSpX; Y q) if T is not an isomorphism on any subspace of X. In particular, it was shown that, if Y is subprojective, and, for T P BpX; Y q, T ¦ P SSpY ¦;X¦q, then T P SSpX; Y q. Later, connections between subprojectivity and perturbation classes were discovered. More specifically, denote by Φ pX; Y q the set of upper semi-Fredholm operators { that is, operators with closed range, and finite dimensional kernel. -
THE BANACH SPACES C(K) and I/O*)1 My Concern in This Talk Is With
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 5, September 1975 THE BANACH SPACES C(K) AND I/O*)1 BY HASKELL P. ROSENTHAL My concern in this talk is with isomorphic, as opposed to isometric, properties of Banach spaces. I shall present here a limited discussion, from the isomorphic viewpoint, on the vast domain of the Banach spaces C(K) and LP(JLL). The study of these spaces from this viewpoint leads to deep applications of many results in classical analysis and probability theory, and also to the discovery of new results which should be of classical interest. This study also provides a unified manner in which to comprehend a great deal of classical mathematics. These special Banach spaces play a vital role in the study of general Banach spaces. They admit beautiful characterizations singling them out from the general theory. Their particular structure is rich and remarkable. Moreover, invariants for general Banach spaces have resulted from some of those initially established for these special spaces. We take up the structure of quotient spaces and complemented subspaces of C([0,1]) in §1. In §2 we briefly review the results concerning com plemented subspaces of Lp([0,1]) and in §3 we discuss reflexive subspaces of L1. We also include some Banach-space consequences of the Radon- Nikodym property in an Appendix. We do not discuss here one of the powerful general techniques in Banach space theory, that of p-summing operators from a C(K)-space to a given Banach space. This technique was used in [36] for studying quotient spaces of C(K)-spaces; the methods developed there have turned out to hold in considerable generality. -
Closed Ideals of Operators on and Complemented Subspaces of Banach Spaces of Functions with Countable Support
CLOSED IDEALS OF OPERATORS ON AND COMPLEMENTED SUBSPACES OF BANACH SPACES OF FUNCTIONS WITH COUNTABLE SUPPORT WILLIAM B. JOHNSON, TOMASZ KANIA, AND GIDEON SCHECHTMAN c Abstract. Let λ be an infinite cardinal number and let `1(λ) denote the subspace of `1(λ) consisting of all functions which assume at most countably many non zero values. c We classify all infinite dimensional complemented subspaces of `1(λ), proving that they c are isomorphic to `1(κ) for some cardinal number κ. Then we show that the Banach c algebra of all bounded linear operators on `1(λ) or `1(λ) has the unique maximal ideal consisting of operators through which the identity operator does not factor. Using similar techniques, we obtain an alternative to Daws' approach description of the lattice of all closed ideals of B(X), where X = c0(λ) or X = `p(λ) for some p 2 [1; 1), and we classify c the closed ideals of B(`1(λ)) that contain the ideal of weakly compact operators. 1. Introduction and the statements of the main results The aim of this paper is to contribute to two the closely related programs of classifying complemented subspaces of Banach spaces and classifying the maximal ideals of (bounded, linear) operators acting thereon. Our results constitute a natural continuation of the research undertaken by the authors in [7, 14, 15, 16] concerning the maximal ideals of the Banach algebras B(X) for certain classical Banach spaces X. From this perspective, we complement results ([9, 22]) of Gramsch and Luft who classified all closed ideals of operators acting on Hilbert spaces and a result ([4]) of Daws, who classified all closed ideals of operators acting on c0(λ) and `p(λ) for λ uncountable and p 2 [1; 1). -
Functional Analysis 1 Winter Semester 2013-14
Functional analysis 1 Winter semester 2013-14 1. Topological vector spaces Basic notions. Notation. (a) The symbol F stands for the set of all reals or for the set of all complex numbers. (b) Let (X; τ) be a topological space and x 2 X. An open set G containing x is called neigh- borhood of x. We denote τ(x) = fG 2 τ; x 2 Gg. Definition. Suppose that τ is a topology on a vector space X over F such that • (X; τ) is T1, i.e., fxg is a closed set for every x 2 X, and • the vector space operations are continuous with respect to τ, i.e., +: X × X ! X and ·: F × X ! X are continuous. Under these conditions, τ is said to be a vector topology on X and (X; +; ·; τ) is a topological vector space (TVS). Remark. Let X be a TVS. (a) For every a 2 X the mapping x 7! x + a is a homeomorphism of X onto X. (b) For every λ 2 F n f0g the mapping x 7! λx is a homeomorphism of X onto X. Definition. Let X be a vector space over F. We say that A ⊂ X is • balanced if for every α 2 F, jαj ≤ 1, we have αA ⊂ A, • absorbing if for every x 2 X there exists t 2 R; t > 0; such that x 2 tA, • symmetric if A = −A. Definition. Let X be a TVS and A ⊂ X. We say that A is bounded if for every V 2 τ(0) there exists s > 0 such that for every t > s we have A ⊂ tV . -
HYPERCYCLIC SUBSPACES in FRÉCHET SPACES 1. Introduction
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 7, Pages 1955–1961 S 0002-9939(05)08242-0 Article electronically published on December 16, 2005 HYPERCYCLIC SUBSPACES IN FRECHET´ SPACES L. BERNAL-GONZALEZ´ (Communicated by N. Tomczak-Jaegermann) Dedicated to the memory of Professor Miguel de Guzm´an, who died in April 2004 Abstract. In this note, we show that every infinite-dimensional separable Fr´echet space admitting a continuous norm supports an operator for which there is an infinite-dimensional closed subspace consisting, except for zero, of hypercyclic vectors. The family of such operators is even dense in the space of bounded operators when endowed with the strong operator topology. This completes the earlier work of several authors. 1. Introduction and notation Throughout this paper, the following standard notation will be used: N is the set of positive integers, R is the real line, and C is the complex plane. The symbols (mk), (nk) will stand for strictly increasing sequences in N.IfX, Y are (Hausdorff) topological vector spaces (TVSs) over the same field K = R or C,thenL(X, Y ) will denote the space of continuous linear mappings from X into Y , while L(X)isthe class of operators on X,thatis,L(X)=L(X, X). The strong operator topology (SOT) in L(X) is the one where the convergence is defined as pointwise convergence at every x ∈ X. A sequence (Tn) ⊂ L(X, Y )issaidtobeuniversal or hypercyclic provided there exists some vector x0 ∈ X—called hypercyclic for the sequence (Tn)—such that its orbit {Tnx0 : n ∈ N} under (Tn)isdenseinY . -
Arxiv:1702.07867V1 [Math.FA]
TOPOLOGICAL PROPERTIES OF STRICT (LF )-SPACES AND STRONG DUALS OF MONTEL STRICT (LF )-SPACES SAAK GABRIYELYAN Abstract. Following [2], a Tychonoff space X is Ascoli if every compact subset of Ck(X) is equicontinuous. By the classical Ascoli theorem every k- space is Ascoli. We show that a strict (LF )-space E is Ascoli iff E is a Fr´echet ′ space or E = ϕ. We prove that the strong dual Eβ of a Montel strict (LF )- space E is an Ascoli space iff one of the following assertions holds: (i) E is a ′ Fr´echet–Montel space, so Eβ is a sequential non-Fr´echet–Urysohn space, or (ii) ′ ω D E = ϕ, so Eβ = R . Consequently, the space (Ω) of test functions and the space of distributions D′(Ω) are not Ascoli that strengthens results of Shirai [20] and Dudley [5], respectively. 1. Introduction. The class of strict (LF )-spaces was intensively studied in the classic paper of Dieudonn´eand Schwartz [3]. It turns out that many of strict (LF )-spaces, in particular a lot of linear spaces considered in Schwartz’s theory of distributions [18], are not metrizable. Even the simplest ℵ0-dimensional strict (LF )-space ϕ, n the inductive limit of the sequence {R }n∈ω, is not metrizable. Nyikos [16] showed that ϕ is a sequential non-Fr´echet–Urysohn space (all relevant definitions are given in the next section). On the other hand, Shirai [20] proved the space D(Ω) of test functions over an open subset Ω of Rn, which is one of the most famous example of strict (LF )-spaces, is not sequential. -
Complemented Subspaces of Spaces Obtained by Interpolation
Complemented Subspaces of Spaces Obtained by Interpolation D.J.H. Garling St. John's College, Cambridge CB2 1TP, England. S.J. Montgomery-Smith Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A. ABSTRACT: If Z is a quotient of a subspace of a separable Banach space X, and V is any separable Banach space, then there is a Banach couple (A0;A1) such that A0 and A1 are isometric to X V , and any intermediate space obtained using the real ⊕ or complex interpolation method contains a complemented subspace isomorphic to Z. Thus many properties of Banach spaces, including having non-trivial cotype, having the Radon{Nikodym property, and having the analytic unconditional martingale difference sequence property, do not pass to intermediate spaces. There are many Banach space properties that pass to spaces obtained by the complex method of interpolation. For example, it is known that if a couple (A0;A1) is such that A0 and A1 both have the UMD (unconditional martingale difference sequence) property, and if Aθ is the space obtained using the complex interpolation method with parameter θ, then Aθ has the UMD property whenever 0 < θ < 1. Another example is type of Banach spaces: if A0 has type p0 and A1 has type p1, then Aθ has type pθ, where 1=pθ = (1 θ)=p0 +θ=p1. − Similar results are true for the real method of interpolation. If we denote by Aθ;p the space obtained using the real interpolation method from a couple (A0;A1) with parameters θ and p, then Aθ;p has the UMD property whenever A0 and A1 have the UMD property, 0 < θ < 1, and 1 < p < . -
S-Barrelled Topological Vector Spaces*
Canad. Math. Bull. Vol. 21 (2), 1978 S-BARRELLED TOPOLOGICAL VECTOR SPACES* BY RAY F. SNIPES N. Bourbaki [1] was the first to introduce the class of locally convex topological vector spaces called "espaces tonnelés" or "barrelled spaces." These spaces have some of the important properties of Banach spaces and Fréchet spaces. Indeed, a generalized Banach-Steinhaus theorem is valid for them, although barrelled spaces are not necessarily metrizable. Extensive accounts of the properties of barrelled locally convex topological vector spaces are found in [5] and [8]. In the last few years, many new classes of locally convex spaces having various types of barrelledness properties have been defined (see [6] and [7]). In this paper, using simple notions of sequential convergence, we introduce several new classes of topological vector spaces which are similar to Bourbaki's barrelled spaces. The most important of these we call S-barrelled topological vector spaces. A topological vector space (X, 2P) is S-barrelled if every sequen tially closed, convex, balanced, and absorbing subset of X is a sequential neighborhood of the zero vector 0 in X Examples are given of spaces which are S-barrelled but not barrelled. Then some of the properties of S-barrelled spaces are given—including permanence properties, and a form of the Banach- Steinhaus theorem valid for them. S-barrelled spaces are useful in the study of sequentially continuous linear transformations and sequentially continuous bilinear functions. For the most part, we use the notations and definitions of [5]. Proofs which closely follow the standard patterns are omitted. 1. Definitions and Examples. -
L P and Sobolev Spaces
NOTES ON Lp AND SOBOLEV SPACES STEVE SHKOLLER 1. Lp spaces 1.1. Definitions and basic properties. Definition 1.1. Let 0 < p < 1 and let (X; M; µ) denote a measure space. If f : X ! R is a measurable function, then we define 1 Z p p kfkLp(X) := jfj dx and kfkL1(X) := ess supx2X jf(x)j : X Note that kfkLp(X) may take the value 1. Definition 1.2. The space Lp(X) is the set p L (X) = ff : X ! R j kfkLp(X) < 1g : The space Lp(X) satisfies the following vector space properties: (1) For each α 2 R, if f 2 Lp(X) then αf 2 Lp(X); (2) If f; g 2 Lp(X), then jf + gjp ≤ 2p−1(jfjp + jgjp) ; so that f + g 2 Lp(X). (3) The triangle inequality is valid if p ≥ 1. The most interesting cases are p = 1; 2; 1, while all of the Lp arise often in nonlinear estimates. Definition 1.3. The space lp, called \little Lp", will be useful when we introduce Sobolev spaces on the torus and the Fourier series. For 1 ≤ p < 1, we set ( 1 ) p 1 X p l = fxngn=1 j jxnj < 1 : n=1 1.2. Basic inequalities. Lemma 1.4. For λ 2 (0; 1), xλ ≤ (1 − λ) + λx. Proof. Set f(x) = (1 − λ) + λx − xλ; hence, f 0(x) = λ − λxλ−1 = 0 if and only if λ(1 − xλ−1) = 0 so that x = 1 is the critical point of f. In particular, the minimum occurs at x = 1 with value f(1) = 0 ≤ (1 − λ) + λx − xλ : Lemma 1.5. -
Recent Developments in the Theory of Duality in Locally Convex Vector Spaces
[ VOLUME 6 I ISSUE 2 I APRIL– JUNE 2019] E ISSN 2348 –1269, PRINT ISSN 2349-5138 RECENT DEVELOPMENTS IN THE THEORY OF DUALITY IN LOCALLY CONVEX VECTOR SPACES CHETNA KUMARI1 & RABISH KUMAR2* 1Research Scholar, University Department of Mathematics, B. R. A. Bihar University, Muzaffarpur 2*Research Scholar, University Department of Mathematics T. M. B. University, Bhagalpur Received: February 19, 2019 Accepted: April 01, 2019 ABSTRACT: : The present paper concerned with vector spaces over the real field: the passage to complex spaces offers no difficulty. We shall assume that the definition and properties of convex sets are known. A locally convex space is a topological vector space in which there is a fundamental system of neighborhoods of 0 which are convex; these neighborhoods can always be supposed to be symmetric and absorbing. Key Words: LOCALLY CONVEX SPACES We shall be exclusively concerned with vector spaces over the real field: the passage to complex spaces offers no difficulty. We shall assume that the definition and properties of convex sets are known. A convex set A in a vector space E is symmetric if —A=A; then 0ЄA if A is not empty. A convex set A is absorbing if for every X≠0 in E), there exists a number α≠0 such that λxЄA for |λ| ≤ α ; this implies that A generates E. A locally convex space is a topological vector space in which there is a fundamental system of neighborhoods of 0 which are convex; these neighborhoods can always be supposed to be symmetric and absorbing. Conversely, if any filter base is given on a vector space E, and consists of convex, symmetric, and absorbing sets, then it defines one and only one topology on E for which x+y and λx are continuous functions of both their arguments. -
On Nonbornological Barrelled Spaces Annales De L’Institut Fourier, Tome 22, No 2 (1972), P
ANNALES DE L’INSTITUT FOURIER MANUEL VALDIVIA On nonbornological barrelled spaces Annales de l’institut Fourier, tome 22, no 2 (1972), p. 27-30 <http://www.numdam.org/item?id=AIF_1972__22_2_27_0> © Annales de l’institut Fourier, 1972, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 22, 2 (1972), 27-30. ON NONBORNOLOGICAL BARRELLED SPACES 0 by Manuel VALDIVIA L. Nachbin [5] and T. Shirota [6], give an answer to a problem proposed by N. Bourbaki [1] and J. Dieudonne [2], giving an example of a barrelled space, which is not bornological. Posteriorly some examples of nonbornological barrelled spaces have been given, e.g. Y. Komura, [4], has constructed a Montel space which is not bornological. In this paper we prove that if E is the topological product of an uncountable family of barrelled spaces, of nonzero dimension, there exists an infinite number of barrelled subspaces of E, which are not bornological.We obtain also an analogous result replacing « barrelled » by « quasi-barrelled ». We use here nonzero vector spaces on the field K of real or complex number. The topologies on these spaces are sepa- rated. -
Fact Sheet Functional Analysis
Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 1986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen. Springer, 2000. Triebel, H.: H¨ohere Analysis. Harri Deutsch, 1980. Dobrowolski, M.: Angewandte Funktionalanalysis, Springer, 2010. 1. Banach- and Hilbert spaces Let V be a real vector space. Normed space: A norm is a mapping k · k : V ! [0; 1), such that: kuk = 0 , u = 0; (definiteness) kαuk = jαj · kuk; α 2 R; u 2 V; (positive scalability) ku + vk ≤ kuk + kvk; u; v 2 V: (triangle inequality) The pairing (V; k · k) is called a normed space. Seminorm: In contrast to a norm there may be elements u 6= 0 such that kuk = 0. It still holds kuk = 0 if u = 0. Comparison of two norms: Two norms k · k1, k · k2 are called equivalent if there is a constant C such that: −1 C kuk1 ≤ kuk2 ≤ Ckuk1; u 2 V: If only one of these inequalities can be fulfilled, e.g. kuk2 ≤ Ckuk1; u 2 V; the norm k · k1 is called stronger than the norm k · k2. k · k2 is called weaker than k · k1. Topology: In every normed space a canonical topology can be defined. A subset U ⊂ V is called open if for every u 2 U there exists a " > 0 such that B"(u) = fv 2 V : ku − vk < "g ⊂ U: Convergence: A sequence vn converges to v w.r.t. the norm k · k if lim kvn − vk = 0: n!1 1 A sequence vn ⊂ V is called Cauchy sequence, if supfkvn − vmk : n; m ≥ kg ! 0 for k ! 1.