Prevalence of Flying Squirrels Recorded from Selected Areas of AJK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on the Rodents of Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1935 Studies on the rodents of Montana Harry E. Sawyer The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sawyer, Harry E., "Studies on the rodents of Montana" (1935). Graduate Student Theses, Dissertations, & Professional Papers. 6542. https://scholarworks.umt.edu/etd/6542 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. STUDIES on the RODEÎTTS OF MONTAÎTA by HARRY E. SAWYER B.A., Intermountain Union, 1925 Presented in partial fulfillment of the requirement for the degree of Master of Arts. State University of Montana 1935 Approved: Chairman of Examining Committee Chairman of Graduate Committee Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37343 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI OisMttation Publishing UMI EP37343 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. -
New Distribution Information on Woolly Flying Squirrel (Eupetaurus Cinereus Thomas, 1888) in Neelum Valley of Azad Jammu and Kashmir, Pakistan
Pakistan J. Zool., vol. 44(5), pp. 1333-1342, 2012. New Distribution Information on Woolly Flying Squirrel (Eupetaurus cinereus Thomas, 1888) in Neelum Valley of Azad Jammu and Kashmir, Pakistan Qamar Zaman Qamar,1 Usman Ali,2 Riaz Aziz Minhas,3 Naeem Iftikhar Dar4 and Maqsood Anwar5 * 1Department of Secondary Education, Muzaffarabad, Azad Jammu and Kashmir. 2 Department of Zoology, Mirpur University of Science and Technology, Mirpur, Azad Jammu and Kashmir. 3Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad. 4Department of Wildlife and Fisheries, Muzaffarabad, Azad Jammu and Kashmir. 5Department of Wildlife Management, PMAS- Arid Agriculture University, Rawalpindi, Pakistan. Abstract.- Woolly flying squirrel (Eupetaurus cinereus) is among the least recorded mammals of the world. Most records come from Pakistan’s northern mountainous regions. Presence of this species has not been reported in Azad Jammu and Kashmir in the existing literature. Present study investigated the presence of this species in Shounthar Valley of district Neelum, Azad Jammu and Kashmir. Local residents, hunters and Salaajeet collectors were consulted to identify the probable habitat of woolly flying squirrel in the study area. After preliminary consultation, nine sites were selected in Shounthar Valley for further field investigation through attempts at direct observation of the animal in its natural habitat as well as indirect evidence. Evidence suggesting the presence of woolly flying squirrel was found in all nine sites; these lay between 3270m and 3660m elevation. A live animal captured from the study area was confirmed by measurements and photographs to be a woolly flying squirrel, and presence at the other sites is provisionally recorded based on calls, collection of hairs, faecal material, etc. -
Symposium on the Gray Squirrel
SYMPOSIUM ON THE GRAY SQUIRREL INTRODUCTION This symposium is an innovation in the regional meetings of professional game and fish personnel. When I was asked to serve as chairman of the Technical Game Sessions of the 13th Annual Conference of the Southeastern Association of Game and Fish Commissioners this seemed to be an excellent opportunity to collect most of the people who have done some research on the gray squirrel to exchange information and ideas and to summarize some of this work for the benefit of game managers and other biologists. Many of these people were not from the southeast and surprisingly not one of the panel mem bers is presenting a general resume of one aspect of squirrel biology with which he is most familiar. The gray squirrel is also important in Great Britain but because it causes extensive damage to forests. Much work has been done over there by Monica Shorten (Mrs. Vizoso) and a symposium on the gray squirrel would not be complete without her presence. A grant from the National Science Foundation through the American Institute of Biological Sciences made it possible to bring Mrs. Vizoso here. It is hoped that this symposium will set a precedent for other symposia at future wildlife conferences. VAGN FLYGER. THE RELATIONSHIPS OF THE GRAY SQUIRREL, SCIURUS CAROLINENSIS, TO ITS NEAREST RELATIVES By DR. ]. C. MOORE INTRODUCTION It seems at least slightly more probable at this point in our knowledge of the living Sciuridae, that the northeastern American gray squirrel's oldest known ancestors came from the Old \Vorld rather than evolved in the New. -
Gliding Behavior of Japanese Giant Flying Squirrels (Petaurista Leucogenys)
Journal of Mammalogy, 83(2):553-562, 2002 GLIDING BEHAVIOR OF JAPANESE GIANT FLYING SQUIRRELS (PETAURISTA LEUCOGENYS) BRIAN J. STAFFORD,* RICHARD W. THORINGTON, JR., AND TAKEO KAWAMICHI Department of Anatomy, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059 (BJS) Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0108 (BJS, RWT) Department of Biology, Osaka City University, Sugimoto, Osaka, Sumiyoshi-ku 558•8585, Japan (TK) Gliding behavior of Japanese giant flying squirrels, Petaurista leucogenys, was studied at Nara Park, Japan. We observed 150 glides. We were able to calculate glide ratios on 57 glides and airspeeds on 29 glides. Glide ratios (distance/faltitude lost]) averaged 1.87, and a glide ratio of 3•3.5 seems to represent an upper performance limit for P. leucogenys. Airspeeds (4.39•9.47 m/s) were substantially lower than reported in other studies, and glide angles were higher (17.74•34.99°). Aspect ratios of the animals in mid-glide averaged 1.42. Key words: aerodynamics, flying squirrels, gliding, locomotion, musasabi, Petaurista, Pteromyinae Gliding is a common adaptation in mam- 1990; Jackson 2000; Russell and Dijkstra mals. It has evolved independently in at 2001; Scholey 1986; Stafford 1999; Thor- least 6 extant taxa: Volitantia (the dermop- ington et al. 1996 and references therein). terans and bats), Pteromyinae (true gliding Morphological studies of flying squirrels in- squirrels), Anomaluridae (scaly-tail "flying clude examinations of skeletal proportions squirrels"), Acrobates (feather-tail gliders), (Stafford 1999; Thorington and Heaney Petaurus (lesser gliding possums), and Pe- 1981), myology (Endo et al. -
The Impact of Locomotion on the Brain Evolution of Squirrels and Close Relatives ✉ Ornella C
ARTICLE https://doi.org/10.1038/s42003-021-01887-8 OPEN The impact of locomotion on the brain evolution of squirrels and close relatives ✉ Ornella C. Bertrand 1 , Hans P. Püschel 1, Julia A. Schwab 1, Mary T. Silcox 2 & Stephen L. Brusatte1 How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in 1234567890():,; trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene- Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains. 1 School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK. 2 Department of Anthropology, University of Toronto Scarborough, ✉ Toronto, ON, Canada. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:460 | https://doi.org/10.1038/s42003-021-01887-8 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01887-8 hat ecological and evolutionary factors affect brain size striking differences between living sciurids and aplodontiids raise in mammals? Studies have assessed the impact of the question of how this modern rodent assemblage emerged. -
107 Rare Mammals Recorded in Borneo – Malaysia
TAPROBANICA , ISSN 1800-427X. October, 2011. Vol. 03, No. 02: pp. 107-109. © Taprobanica Private Limited, Jl. Kuricang 18 Gd.9 No.47, Ciputat 15412, Tangerang, Indonesia. Rare mammals recorded in Borneo – Order: Erinaceomorpha Malaysia Short-tailed Gymnure, Hylomys suillus dorsalis (endemic subspecies): Mesilau Resort, Kinabalu National Park, 1900 m (Fig. 2). While on a wildlife-watching trip to Sabah, Borneo, May 21 to June 5, 2011, Jeffrey Harding and I saw several rare and endangered mammal species whose distributions are not well known. Following is a list of the rarest ones with notes on location, elevation, and conservation status. Elevations were taken with a Barigo altimeter. Conservation status notes are based on IUCN (2011). Taxonomy follows Wilson & Reeder (2005). Evidence included field notes and photographs for most species mentioned below. I offer these notes in case they may be of use in future conservation efforts or distribution studies. Order: Carnivora Fig. 2: Short-tailed Gymnure Small-toothed Palm Civet, Arctogalidia trivirgata stigmaticus: not listed as endangered, but Order: Primates population decreasing and range poorly known. I Besides the common and widespread Long-tailed photographed (Fig. 1) one at night on the middle Macaques (M. fascicularis) and Silvered Lutungs Kinabatangan River feeding on figs. Unlike the (Trachypithecus cristatus), we saw the following illustrations in Payne et al. (1985) and Francis endangered species in the wild: (2008), this individual has thin, dark lateral bars on its sides and stripes on the side of its neck, in Southern Pig-tailed Macaque, Macaca addition to the usual dark longitudinal stripes on the nemestrina (vulnerable, population decreasing). -
Phylogenies of Flying Squirrels (Pteromyinae)
Journal of Mammalian Evolution, Vol. 9, No. 1/2, June 2002 (© 2002) Phylogenies of Flying Squirrels (Pteromyinae) Richard W. Thorington, Jr.,'''* Diane Pitassy,^ and Sharon A. Jansa^ The phylogeny of flying squirrels was assessed, based on analyses of 80 morphological characters. Three published hypotheses were tested with constraint trees and compared with trees based on heuristic searches, all using PAUP*. Analyses were conducted on unordered data, on ordered data (Wagner), and on ordered data using Dollo parsimony. Compared with trees based on heuristic searches, the McKenna (1962) constraint trees were consistently the longsst, requiring 8-11 more steps. The Mein (1970) constraint trees were shorter, requiring five to seven steps more than the unconstrained trees, and the Thorington and Darrow (20(X)) constraint trees were shorter yet, zero to one step longer than the corresponding unconstrained tree. In each of the constraint trees, some of the constrained nodes had poor character support. The heuristic trees provided best character support for three groups, but they did not resolve the basal trichotomy between a Glaucomys group of six genera, a Petaurista group of four genera, and a Trogopterus group of four genera. The inclusion of the small northern Eurasian flying squirrel, Pteminys, in the Peiaiiiisia group of giant South Asian flying squirrels is an unexpected hypothesis. Another novel hypothesis is the inclusion of the genus Aemmys, large animals from the Sunda Shelf, with the Trogopterus group of smaller "complex-toothed flying squirrels" from mainland Malaysia and southeast Asia. We explore the implications of this study for future analysis of molecular data and for past and future interpretations of the fossil record. -
Phylogenetic Relationships Among Six Flying Squirrel Gener,A Inferred from Mitochondrial Cytochrome B Gene Sequences
Phylogenetic Relationships among Six Flying Squirrel Gener,a Inferred from Mitochondrial Cytochrome b Gene Sequences 著者(英) Oshida Tatsuo, Lin Liang-Kong, Yanagisawa Hisashi, Endo Hideki, Masuda Ryuichi journal or Zoological Science publication title volume 17 number 4 page range 485-489 year 2000-05 URL http://id.nii.ac.jp/1588/00004215/ ZOOLOGICAL SCIENCE 17: 485–489 (2000) © 2000 Zoological Society of Japan Phylogenetic Relationships among Six Flying Squirrel Genera, Inferred from Mitochondrial Cytochrome b Gene Sequences Tatsuo Oshida1*, Liang-Kong Lin2, Hisashi Yanagawa3, Hideki Endo4 and Ryuichi Masuda1 1Chromosome Research Unit, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan 2Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung 407, Taiwan 3Laboratory of Wildlife Ecology, Obihiro University and Veterinary Medicine, Obihiro 080-0843, Japan 4Department of Zoology, National Science Museum, Shinjuku-ku, Tokyo, 169-0073, Japan ABSTRACT—Petauristinae (flying squirrels) consists of 44 extant species in 14 recent genera, and their phylogenetic relationships and taxonomy are unsettled questions. We analyzed partial mitochondrial cyto- chrome b gene sequences (1,068 base pairs) to investigate the phylogenetic relationships among six flying squirrel genera (Belomys, Hylopetes, Petaurista, Petinomys, and Pteromys from Asia and Glaucomys from North America). Molecular phylogenetic trees, constructed by neighbor-joining and maximum likelihood methods, strongly indicated the closer relationship between Hylopetes and Petinomys with 100% bootstrap values. Belomys early split from other flying squirrels. Petaurista was closely related to Pteromys, and Glaucomys was most closely related to the cluster consisting of Hylopetes and Petinomys. The bootstrap values supporting branching at the deeper nodes were not always so high, suggesting the early radiation in the evolution of flying squirrels. -
A Checklist of the Mammals of South-East Asia
A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east -
Nest Box Utility for Arboreal Small Mammals in Vietnam's Tropical Forest Использование Дуплянок Для И
Russian J. Theriol. 10(2): 5964 © RUSSIAN JOURNAL OF THERIOLOGY, 2011 Nest box utility for arboreal small mammals in Vietnams tropical forest Ami Kato, Tatsuo Oshida, Son Truong Nguyen, Nghia Xuan Nguyen, Hao Van Luon, Tue Van Ha, Bich Quang Truong, Hideki Endo & Dang Xuan Nguyen ABSTRACT. To test nest box utility in a Southeast Asian tropical forest, we set 30 wooden nest boxes on trees in the Cuc Phuong National Park, Vietnam for a year. During the rainy season, we checked each nest box each month in the daytime. We expected that arboreal rodents might be more likely to use the nest boxes as shelter from the heavy rain. During dry season, we additionally checked each nest box every two months. We expected that nest boxes would be used as a shelter from the rain by small arboreal mammals, such as rats and flying squirrels in the rainy season more than in the dry season. During the rainy season, we found ants, bees, and birds mainly nested the nest boxes for reproduction: bees in April; ants from May to August; and birds from April to June. From the late rainy season to the dry season, arboreal small mammals mainly used nest boxes: rats from August to February and flying squirrel in December. Nest resource competition between birds and rodents may be minimal since they use cavities in different seasons. Also, unlike our expectation, it was preliminary suggested that arboreal small rodents would use more frequently nest box in the dry season than in the rainy season. KEY WORDS: flying squirrel, rat, rainy season, dry season, competition, nest resource, nest material. -
Body Size and Diet Mediate Evolution of Jaw Shape in Squirrels (Sciuridae)
Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae) *Miriam Leah Zelditch; Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109; [email protected] Ji Ye; Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109; [email protected] Jonathan S. Mitchell; Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; [email protected] Donald L. Swiderski, Kresge Hearing Research Institute and Museum of Zoology, University of Michigan. [email protected] *Corresponding Author Running head: Convergence on a complex adaptive landscape Key Words: Convergence, diet evolution, jaw morphology, shape evolution, macroevolutionary adaptive landscape, geometric morphometrics Data archival information: doi: 10.5061/dryad.kq1g6. This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/evo.13168. This article is protected by copyright. All rights reserved. Abstract Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. -
Mammals of Vermont Vermont Natural Heritage Inventory Vermont Fish & Wildlife Department 22 March 2017
Mammals of Vermont Vermont Natural Heritage Inventory Vermont Fish & Wildlife Department 22 March 2017 The following is a list of mammal species known to regularly occur in Vermont. Historic species (not documented in Vermont in the last 25 years) are included if there is a reasonable expectation of their return. Not included are species that are extinct or extirpated from the state. The list is organized taxonomically to genus, then alphabetically within genus. Species not native to Vermont are indicated with an asterisk (*). Questions can be directed to the Vermont Natural Heritage Inventory, Vermont Fish & Wildlife Department, 1 National Life Drive, Montpelier, VT 05620-3702. (802) 241-3700. [email protected] State Global State Federal Scientific Name Common Name Rank Rank Status Status SGCN Didelphis virginiana Virginia Opossum S5 G5 Glaucomys sabrinus Northern Flying Squirrel S4 G5 SGCN Glaucomys volans Southern Flying Squirrel S5 G5 SGCN Marmota monax Woodchuck S5 G5 Sciurus carolinensis Eastern Gray Squirrel S5 G5 Tamias striatus Eastern Chipmunk S5 G5 Tamiasciurus hudsonicus Red Squirrel S5 G5 Castor canadensis American Beaver S5 G5 Napaeozapus insignis Woodland Jumping Mouse S5 G5 Zapus hudsonius Meadow Jumping Mouse S5 G5 Microtus chrotorrhinus Rock Vole S2 G4 SC SGCN Microtus pennsylvanicus Meadow Vole S5 G5 Microtus pinetorum Woodland Vole S3 G5 SGCN Myodes gapperi Southern Red-backed Vole S5 G5 Ondatra zibethicus Common Muskrat S5 G5 SGCN Peromyscus leucopus White-footed Deermouse S5 G5 Peromyscus maniculatus North