Yale ICF Working Paper No. 0706 Collateralized Debt Obligations And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The TIPS-Treasury Bond Puzzle
The TIPS-Treasury Bond Puzzle Matthias Fleckenstein, Francis A. Longstaff and Hanno Lustig The Journal of Finance, October 2014 Presented By: Rafael A. Porsani The TIPS-Treasury Bond Puzzle 1 / 55 Introduction The TIPS-Treasury Bond Puzzle 2 / 55 Introduction (1) Treasury bond and the Treasury Inflation-Protected Securities (TIPS) markets: two of the largest and most actively traded fixed-income markets in the world. Find that there is persistent mispricing on a massive scale across them. Treasury bonds are consistently overpriced relative to TIPS. Price of a Treasury bond can exceed that of an inflation-swapped TIPS issue exactly matching the cash flows of the Treasury bond by more than $20 per $100 notional amount. One of the largest examples of arbitrage ever documented. The TIPS-Treasury Bond Puzzle 3 / 55 Introduction (2) Use TIPS plus inflation swaps to create synthetic Treasury bond. Price differences between the synthetic Treasury bond and the nominal Treasury bond: arbitrage opportunities. Average size of the mispricing: 54.5 basis points, but can exceed 200 basis points for some pairs. I The average size of this mispricing is orders of magnitude larger than transaction costs. The TIPS-Treasury Bond Puzzle 4 / 55 Introduction (3) What drives the mispricing? Slow-moving capital may help explain why mispricing persists. Is TIPS-Treasury mispricing related to changes in capital available to hedge funds? Answer: Yes. Mispricing gets smaller as more capital gets to the hedge fund sector. The TIPS-Treasury Bond Puzzle 5 / 55 Introduction (4) Also find that: Correlation in arbitrage strategies: size of TIPS-Treasury arbitrage is correlated with arbitrage mispricing in other markets. -
A Collateral Theory of Endogenous Debt Maturity
Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C. A Collateral Theory of Endogenous Debt Maturity R. Matthew Darst and Ehraz Refayet 2017-057 Please cite this paper as: Darst, R. Matthew, and Ehraz Refayet (2017). \A Collateral Theory of Endogenous Debt Maturity," Finance and Economics Discussion Series 2017-057. Washington: Board of Gov- ernors of the Federal Reserve System, https://doi.org/10.17016/FEDS.2017.057. NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers. A Collateral Theory of Endogenous Debt Maturity∗ R. Matthew Darsty Ehraz Refayetz May 16, 2017 Abstract This paper studies optimal debt maturity when firms cannot issue state contingent claims and must back promises with collateral. We establish a trade- off between long-term borrowing costs and short-term rollover costs. Issuing both long- and short-term debt balances financing costs because different debt maturities allow firms to cater risky promises across time to investors most willing to hold risk. Contrary to existing theories predicated on information frictions or liquidity risk, we show that collateral is sufficient to explain the joint issuance of different types of debt: safe “money-like” debt, risky short- and long- term debt. -
Collateralized Debt Obligations – an Overview by Matthieu Royer, PRMIA NY Steering Committee Member Vice President – Portfolio Coordination, CALYON in the Americas
Collateralized Debt Obligations – an overview By Matthieu Royer, PRMIA NY Steering Committee Member Vice President – Portfolio Coordination, CALYON in the Americas What commonly is referred to as “Collateralized debt obligations” or CDOs are securitization of a pool of asset (generally non-mortgage), in other words a securitized interest. The underlying assets (a.k.a. collateral) usually comprise loans or other debt instruments. A CDO may be called a collateralized loan obligation (CLO) or collateralized bond obligation (CBO) if it holds only loans or bonds, respectively. Investors bear the “structured” credit risk of the collateral. Typically, multiple tranches (or notes) of securities are issued by the CDO, offering investors various composite of maturity and credit risk characteristics. Tranches are categorized as senior, mezzanine, and subordinated/equity, according to their degree of credit risk. If there are defaults or the CDO's collateral otherwise underperforms/migrates/early amortize, scheduled payments to senior tranches take precedence over those of mezzanine tranches, and scheduled payments to mezzanine tranches take precedence over those to subordinated/equity tranches. This is referred to as the “Cash Flow Waterfall”. Senior and mezzanine tranches are typically rated by one or more of the rating agencies, with the former receiving ratings equivalent of “A” to “AAA” and the latter receiving ratings of “B” to “BBB”. The ratings reflect both the expected credit quality of the underlying pool of collateral as well as how much protection a given tranch is afforded by tranches that are subordinate to it (i.e. acting as credit enhancement). The sponsoring organization of the CDO establishes a special purpose vehicle to hold collateral and issue securities. -
Up to EUR 3,500,000.00 7% Fixed Rate Bonds Due 6 April 2026 ISIN
Up to EUR 3,500,000.00 7% Fixed Rate Bonds due 6 April 2026 ISIN IT0005440976 Terms and Conditions Executed by EPizza S.p.A. 4126-6190-7500.7 This Terms and Conditions are dated 6 April 2021. EPizza S.p.A., a company limited by shares incorporated in Italy as a società per azioni, whose registered office is at Piazza Castello n. 19, 20123 Milan, Italy, enrolled with the companies’ register of Milan-Monza-Brianza- Lodi under No. and fiscal code No. 08950850969, VAT No. 08950850969 (the “Issuer”). *** The issue of up to EUR 3,500,000.00 (three million and five hundred thousand /00) 7% (seven per cent.) fixed rate bonds due 6 April 2026 (the “Bonds”) was authorised by the Board of Directors of the Issuer, by exercising the powers conferred to it by the Articles (as defined below), through a resolution passed on 26 March 2021. The Bonds shall be issued and held subject to and with the benefit of the provisions of this Terms and Conditions. All such provisions shall be binding on the Issuer, the Bondholders (and their successors in title) and all Persons claiming through or under them and shall endure for the benefit of the Bondholders (and their successors in title). The Bondholders (and their successors in title) are deemed to have notice of all the provisions of this Terms and Conditions and the Articles. Copies of each of the Articles and this Terms and Conditions are available for inspection during normal business hours at the registered office for the time being of the Issuer being, as at the date of this Terms and Conditions, at Piazza Castello n. -
Interest Rate Options
Interest Rate Options Saurav Sen April 2001 Contents 1. Caps and Floors 2 1.1. Defintions . 2 1.2. Plain Vanilla Caps . 2 1.2.1. Caplets . 3 1.2.2. Caps . 4 1.2.3. Bootstrapping the Forward Volatility Curve . 4 1.2.4. Caplet as a Put Option on a Zero-Coupon Bond . 5 1.2.5. Hedging Caps . 6 1.3. Floors . 7 1.3.1. Pricing and Hedging . 7 1.3.2. Put-Call Parity . 7 1.3.3. At-the-money (ATM) Caps and Floors . 7 1.4. Digital Caps . 8 1.4.1. Pricing . 8 1.4.2. Hedging . 8 1.5. Other Exotic Caps and Floors . 9 1.5.1. Knock-In Caps . 9 1.5.2. LIBOR Reset Caps . 9 1.5.3. Auto Caps . 9 1.5.4. Chooser Caps . 9 1.5.5. CMS Caps and Floors . 9 2. Swap Options 10 2.1. Swaps: A Brief Review of Essentials . 10 2.2. Swaptions . 11 2.2.1. Definitions . 11 2.2.2. Payoff Structure . 11 2.2.3. Pricing . 12 2.2.4. Put-Call Parity and Moneyness for Swaptions . 13 2.2.5. Hedging . 13 2.3. Constant Maturity Swaps . 13 2.3.1. Definition . 13 2.3.2. Pricing . 14 1 2.3.3. Approximate CMS Convexity Correction . 14 2.3.4. Pricing (continued) . 15 2.3.5. CMS Summary . 15 2.4. Other Swap Options . 16 2.4.1. LIBOR in Arrears Swaps . 16 2.4.2. Bermudan Swaptions . 16 2.4.3. Hybrid Structures . 17 Appendix: The Black Model 17 A.1. -
How Much Do Banks Use Credit Derivatives to Reduce Risk?
How much do banks use credit derivatives to reduce risk? Bernadette A. Minton, René Stulz, and Rohan Williamson* June 2006 This paper examines the use of credit derivatives by US bank holding companies from 1999 to 2003 with assets in excess of one billion dollars. Using the Federal Reserve Bank of Chicago Bank Holding Company Database, we find that in 2003 only 19 large banks out of 345 use credit derivatives. Though few banks use credit derivatives, the assets of these banks represent on average two thirds of the assets of bank holding companies with assets in excess of $1 billion. To the extent that banks have positions in credit derivatives, they tend to be used more for dealer activities than for hedging activities. Nevertheless, a majority of the banks that use credit derivative are net buyers of credit protection. Banks are more likely to be net protection buyers if they engage in asset securitization, originate foreign loans, and have lower capital ratios. The likelihood of a bank being a net protection buyer is positively related to the percentage of commercial and industrial loans in a bank’s loan portfolio and negatively or not related to other types of bank loans. The use of credit derivatives by banks is limited because adverse selection and moral hazard problems make the market for credit derivatives illiquid for the typical credit exposures of banks. *Respectively, Associate Professor, The Ohio State University; Everett D. Reese Chair of Banking and Monetary Economics, The Ohio State University and NBER; and Associate Professor, Georgetown University. We are grateful to Jim O’Brien and Mark Carey for discussions. -
Credit-Market Sentiment and the Business Cycle
Credit-Market Sentiment and the Business Cycle David L´opez-Salido∗ Jeremy C. Stein† Egon Zakrajˇsek‡ First draft: April 2015 This draft: December 2016 Abstract Using U.S. data from 1929 to 2015, we show that elevated credit-market sentiment in year t−2 is associated with a decline in economic activity in years t and t + 1. Underlying this result is the existence of predictable mean reversion in credit-market conditions. When credit risk is aggressively priced, spreads subsequently widen. The timing of this widening is, in turn, closely tied to the onset of a contraction in economic activity. Exploring the mechanism, we find that buoyant credit-market sentiment in year t−2 also forecasts a change in the composition of exter- nal finance: Net debt issuance falls in year t, while net equity issuance increases, consistent with the reversal in credit-market conditions leading to an inward shift in credit supply. Unlike much of the current literature on the role of financial frictions in macroeconomics, this paper suggests that investor sentiment in credit markets can be an important driver of economic fluctuations. JEL Classification: E32, E44, G12 Keywords: credit-market sentiment; financial stability; business cycles We are grateful to Olivier Blanchard, Claudia Buch, Bill English, Robin Greenwood, Sam Hanson, Oscar` Jord`a, Larry Katz, Arvind Krishnamurthy, H´el`ene Rey, Andrei Shleifer, the referees, and seminar participants at numerous institutions for helpful comments. Miguel Acosta, Ibraheem Catovic, Gregory Cohen, George Gu, Shaily Patel, and Rebecca Zhang provided outstanding research assistance. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System. -
Finance: a Quantitative Introduction Chapter 9 Real Options Analysis
Investment opportunities as options The option to defer More real options Some extensions Finance: A Quantitative Introduction Chapter 9 Real Options Analysis Nico van der Wijst 1 Finance: A Quantitative Introduction c Cambridge University Press Investment opportunities as options The option to defer More real options Some extensions 1 Investment opportunities as options 2 The option to defer 3 More real options 4 Some extensions 2 Finance: A Quantitative Introduction c Cambridge University Press Investment opportunities as options Option analogy The option to defer Sources of option value More real options Limitations of option analogy Some extensions The essential economic characteristic of options is: the flexibility to exercise or not possibility to choose best alternative walk away from bad outcomes Stocks and bonds are passively held, no flexibility Investments in real assets also have flexibility, projects can be: delayed or speeded up made bigger or smaller abandoned early or extended beyond original life-time, etc. 3 Finance: A Quantitative Introduction c Cambridge University Press Investment opportunities as options Option analogy The option to defer Sources of option value More real options Limitations of option analogy Some extensions Real Options Analysis Studies and values this flexibility Real options are options where underlying value is a real asset not a financial asset as stock, bond, currency Flexibility in real investments means: changing cash flows along the way: profiting from opportunities, cutting off losses Discounted -
34-66489; File No
SECURITIES AND EXCHANGE COMMISSION (Release No. 34-66489; File No. SR-NASDAQ-2012-004) February 29, 2012 Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Granting Approval of Proposed Rule Change Relating to the Listing and Trading of Shares of the Emerging Markets Corporate Bond Fund of the WisdomTree Trust I. Introduction On January 4, 2012, The NASDAQ Stock Market LLC (“Nasdaq” or “Exchange”) filed with the Securities and Exchange Commission (“Commission”), pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (“Act”)1 and Rule 19b-4 thereunder,2 a proposed rule change to list and trade the shares (“Shares”) of the WisdomTree Emerging Markets Corporate Bond Fund (“Fund”) of the WisdomTree Trust (“Trust”) under Nasdaq Rule 5735. The proposed rule change was published for comment in the Federal Register on January 24, 2012.3 The Commission received no comments on the proposal. This order grants approval of the proposed rule change. II. Description of the Proposed Rule Change The Exchange proposes to list and trade the Shares of the Fund under Nasdaq Rule 5735, which governs the listing and trading of Managed Fund Shares on the Exchange. The Fund will be an actively managed exchange-traded fund. The Shares will be offered by the Trust, which was established as a Delaware statutory trust on December 15, 2005. The Fund is registered with the Commission as an investment company and has filed a registration statement on Form N-1A 1 15 U.S.C. 78s(b)(1). 2 17 CFR 240.19b-4. 3 See Securities Exchange Act Release No. -
Implied Volatility Modeling
Implied Volatility Modeling Sarves Verma, Gunhan Mehmet Ertosun, Wei Wang, Benjamin Ambruster, Kay Giesecke I Introduction Although Black-Scholes formula is very popular among market practitioners, when applied to call and put options, it often reduces to a means of quoting options in terms of another parameter, the implied volatility. Further, the function σ BS TK ),(: ⎯⎯→ σ BS TK ),( t t ………………………………(1) is called the implied volatility surface. Two significant features of the surface is worth mentioning”: a) the non-flat profile of the surface which is often called the ‘smile’or the ‘skew’ suggests that the Black-Scholes formula is inefficient to price options b) the level of implied volatilities changes with time thus deforming it continuously. Since, the black- scholes model fails to model volatility, modeling implied volatility has become an active area of research. At present, volatility is modeled in primarily four different ways which are : a) The stochastic volatility model which assumes a stochastic nature of volatility [1]. The problem with this approach often lies in finding the market price of volatility risk which can’t be observed in the market. b) The deterministic volatility function (DVF) which assumes that volatility is a function of time alone and is completely deterministic [2,3]. This fails because as mentioned before the implied volatility surface changes with time continuously and is unpredictable at a given point of time. Ergo, the lattice model [2] & the Dupire approach [3] often fail[4] c) a factor based approach which assumes that implied volatility can be constructed by forming basis vectors. Further, one can use implied volatility as a mean reverting Ornstein-Ulhenbeck process for estimating implied volatility[5]. -
307439 Ferdig Master Thesis
Master's Thesis Using Derivatives And Structured Products To Enhance Investment Performance In A Low-Yielding Environment - COPENHAGEN BUSINESS SCHOOL - MSc Finance And Investments Maria Gjelsvik Berg P˚al-AndreasIversen Supervisor: Søren Plesner Date Of Submission: 28.04.2017 Characters (Ink. Space): 189.349 Pages: 114 ABSTRACT This paper provides an investigation of retail investors' possibility to enhance their investment performance in a low-yielding environment by using derivatives. The current low-yielding financial market makes safe investments in traditional vehicles, such as money market funds and safe bonds, close to zero- or even negative-yielding. Some retail investors are therefore in need of alternative investment vehicles that can enhance their performance. By conducting Monte Carlo simulations and difference in mean testing, we test for enhancement in performance for investors using option strategies, relative to investors investing in the S&P 500 index. This paper contributes to previous papers by emphasizing the downside risk and asymmetry in return distributions to a larger extent. We find several option strategies to outperform the benchmark, implying that performance enhancement is achievable by trading derivatives. The result is however strongly dependent on the investors' ability to choose the right option strategy, both in terms of correctly anticipated market movements and the net premium received or paid to enter the strategy. 1 Contents Chapter 1 - Introduction4 Problem Statement................................6 Methodology...................................7 Limitations....................................7 Literature Review.................................8 Structure..................................... 12 Chapter 2 - Theory 14 Low-Yielding Environment............................ 14 How Are People Affected By A Low-Yield Environment?........ 16 Low-Yield Environment's Impact On The Stock Market........ -
Mortgage-Backed Securities & Collateralized Mortgage Obligations
Mortgage-backed Securities & Collateralized Mortgage Obligations: Prudent CRA INVESTMENT Opportunities by Andrew Kelman,Director, National Business Development M Securities Sales and Trading Group, Freddie Mac Mortgage-backed securities (MBS) have Here is how MBSs work. Lenders because of their stronger guarantees, become a popular vehicle for finan- originate mortgages and provide better liquidity and more favorable cial institutions looking for investment groups of similar mortgage loans to capital treatment. Accordingly, this opportunities in their communities. organizations like Freddie Mac and article will focus on agency MBSs. CRA officers and bank investment of- Fannie Mae, which then securitize The agency MBS issuer or servicer ficers appreciate the return and safety them. Originators use the cash they collects monthly payments from that MBSs provide and they are widely receive to provide additional mort- homeowners and “passes through” the available compared to other qualified gages in their communities. The re- principal and interest to investors. investments. sulting MBSs carry a guarantee of Thus, these pools are known as mort- Mortgage securities play a crucial timely payment of principal and inter- gage pass-throughs or participation role in housing finance in the U.S., est to the investor and are further certificates (PCs). Most MBSs are making financing available to home backed by the mortgaged properties backed by 30-year fixed-rate mort- buyers at lower costs and ensuring that themselves. Ginnie Mae securities are gages, but they can also be backed by funds are available throughout the backed by the full faith and credit of shorter-term fixed-rate mortgages or country. The MBS market is enormous the U.S.