THE EXTENDED RELATIVITY THEORY IN CLIFFORD SPACES C. Castroa and M. Pav·si·cb May 21, 2004 aCenter for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta bJo·zef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Email:
[email protected] Abstract A brief review of some of the most important features of the Extended Rela- tivity theory in Cli®ord-spaces (C-spaces) is presented whose " point" coordinates are noncommuting Cli®ord-valued quantities and which incorporate the lines, ar- eas, volumes,.... degrees of freedom associated with the collective particle, string, membrane,... dynamics of p-loops (closed p-branes) living in target D-dimensional spacetime backgrounds. C-space Relativity naturally incorporates the ideas of an invariant length (Planck scale), maximal acceleration, noncommuting coordinates, supersymmetry, holography, higher derivative gravity with torsion and variable di- mensions/signatures that allows to study the dynamics of all (closed) p-branes, for all values of p, on a uni¯ed footing. It resolves the ordering ambiguities in QFT and the problem of time in Cosmology. A discussion of the maximal-acceleration Rela- tivity principle in phase-spaces follows along with the study of the invariance group of symmetry transformations in phase-space that allows to show why Planck areas are invariant under acceleration-boosts transformations and which seems to suggest that a maximal-string tension principle may be operating in Nature. We continue by pointing out how the relativity of signatures of the underlying n-dimensional spacetime results from taking di®erent n-dimensional slices through C-space. The conformal group emerges as a natural subgroup of the Cli®ord group and Relativity in C-spaces involves natural scale changes in the sizes of physical objects without the introduction of forces nor Weyl's gauge ¯eld of dilations.