Using Word Embedding and Ensemble Learning for Highly Imbalanced Data Sentiment Analysis in Short Arabic Text Sadam Al-Azani, El-Sayed M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Malware Classification with BERT
San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-25-2021 Malware Classification with BERT Joel Lawrence Alvares Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons Malware Classification with Word Embeddings Generated by BERT and Word2Vec Malware Classification with BERT Presented to Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree By Joel Alvares May 2021 Malware Classification with Word Embeddings Generated by BERT and Word2Vec The Designated Project Committee Approves the Project Titled Malware Classification with BERT by Joel Lawrence Alvares APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE San Jose State University May 2021 Prof. Fabio Di Troia Department of Computer Science Prof. William Andreopoulos Department of Computer Science Prof. Katerina Potika Department of Computer Science 1 Malware Classification with Word Embeddings Generated by BERT and Word2Vec ABSTRACT Malware Classification is used to distinguish unique types of malware from each other. This project aims to carry out malware classification using word embeddings which are used in Natural Language Processing (NLP) to identify and evaluate the relationship between words of a sentence. Word embeddings generated by BERT and Word2Vec for malware samples to carry out multi-class classification. BERT is a transformer based pre- trained natural language processing (NLP) model which can be used for a wide range of tasks such as question answering, paraphrase generation and next sentence prediction. However, the attention mechanism of a pre-trained BERT model can also be used in malware classification by capturing information about relation between each opcode and every other opcode belonging to a malware family. -
Kitsune: an Ensemble of Autoencoders for Online Network Intrusion Detection
Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection Yisroel Mirsky, Tomer Doitshman, Yuval Elovici and Asaf Shabtai Ben-Gurion University of the Negev yisroel, tomerdoi @post.bgu.ac.il, elovici, shabtaia @bgu.ac.il { } { } Abstract—Neural networks have become an increasingly popu- Over the last decade many machine learning techniques lar solution for network intrusion detection systems (NIDS). Their have been proposed to improve detection performance [2], [3], capability of learning complex patterns and behaviors make them [4]. One popular approach is to use an artificial neural network a suitable solution for differentiating between normal traffic and (ANN) to perform the network traffic inspection. The benefit network attacks. However, a drawback of neural networks is of using an ANN is that ANNs are good at learning complex the amount of resources needed to train them. Many network non-linear concepts in the input data. This gives ANNs a gateways and routers devices, which could potentially host an NIDS, simply do not have the memory or processing power to great advantage in detection performance with respect to other train and sometimes even execute such models. More importantly, machine learning algorithms [5], [2]. the existing neural network solutions are trained in a supervised The prevalent approach to using an ANN as an NIDS is manner. Meaning that an expert must label the network traffic to train it to classify network traffic as being either normal and update the model manually from time to time. or some class of attack [6], [7], [8]. The following shows the In this paper, we present Kitsune: a plug and play NIDS typical approach to using an ANN-based classifier in a point which can learn to detect attacks on the local network, without deployment strategy: supervision, and in an efficient online manner. -
Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection
Technological University Dublin ARROW@TU Dublin Articles School of Science and Computing 2018-7 Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection Iftikhar Ahmad King Abdulaziz University, Saudi Arabia, [email protected] MUHAMMAD JAVED IQBAL UET Taxila MOHAMMAD BASHERI King Abdulaziz University, Saudi Arabia See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/ittsciart Part of the Computer Sciences Commons Recommended Citation Ahmad, I. et al. (2018) Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection, IEEE Access, vol. 6, pp. 33789-33795, 2018. DOI :10.1109/ACCESS.2018.2841987 This Article is brought to you for free and open access by the School of Science and Computing at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Authors Iftikhar Ahmad, MUHAMMAD JAVED IQBAL, MOHAMMAD BASHERI, and Aneel Rahim This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/ittsciart/44 SPECIAL SECTION ON SURVIVABILITY STRATEGIES FOR EMERGING WIRELESS NETWORKS Received April 15, 2018, accepted May 18, 2018, date of publication May 30, 2018, date of current version July 6, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2841987 -
Machine Learning Methods for Classification of the Green
International Journal of Geo-Information Article Machine Learning Methods for Classification of the Green Infrastructure in City Areas Nikola Kranjˇci´c 1,* , Damir Medak 2, Robert Župan 2 and Milan Rezo 1 1 Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000 Varaždin, Croatia; [email protected] 2 Faculty of Geodesy, University of Zagreb, Kaˇci´ceva26, 10000 Zagreb, Croatia; [email protected] (D.M.); [email protected] (R.Ž.) * Correspondence: [email protected]; Tel.: +385-95-505-8336 Received: 23 August 2019; Accepted: 21 October 2019; Published: 22 October 2019 Abstract: Rapid urbanization in cities can result in a decrease in green urban areas. Reductions in green urban infrastructure pose a threat to the sustainability of cities. Up-to-date maps are important for the effective planning of urban development and the maintenance of green urban infrastructure. There are many possible ways to map vegetation; however, the most effective way is to apply machine learning methods to satellite imagery. In this study, we analyze four machine learning methods (support vector machine, random forest, artificial neural network, and the naïve Bayes classifier) for mapping green urban areas using satellite imagery from the Sentinel-2 multispectral instrument. The methods are tested on two cities in Croatia (Varaždin and Osijek). Support vector machines outperform random forest, artificial neural networks, and the naïve Bayes classifier in terms of classification accuracy (a Kappa value of 0.87 for Varaždin and 0.89 for Osijek) and performance time. Keywords: green urban infrastructure; support vector machines; artificial neural networks; naïve Bayes classifier; random forest; Sentinel 2-MSI 1. -
Random Forest Regression of Markov Chains for Accessible Music Generation
Random Forest Regression of Markov Chains for Accessible Music Generation Vivian Chen Jackson DeVico Arianna Reischer [email protected] [email protected] [email protected] Leo Stepanewk Ananya Vasireddy Nicholas Zhang [email protected] [email protected] [email protected] Sabar Dasgupta* [email protected] New Jersey’s Governor’s School of Engineering and Technology July 24, 2020 *Corresponding Author Abstract—With the advent of machine learning, new generative algorithms have expanded the ability of computers to compose creative and meaningful music. These advances allow for a greater balance between human input and autonomy when creating original compositions. This project proposes a method of melody generation using random forest regression, which in- creases the accessibility of generative music models by addressing the downsides of previous approaches. The solution generalizes the concept of Markov chains while avoiding the excessive computational costs and dataset requirements associated with past models. To improve the musical quality of the outputs, the model utilizes post-processing based on various scoring metrics. A user interface combines these modules into an application that achieves the ultimate goal of creating an accessible generative music model. Fig. 1. A screenshot of the user interface developed for this project. I. INTRODUCTION One of the greatest challenges in making generative music is emulating human artistic expression. DeepMind’s generative II. BACKGROUND audio model, WaveNet, attempts this challenge, but requires A. History of Generative Music large datasets and extensive training time to produce qual- ity musical outputs [1]. Similarly, other music generation The term “generative music,” first popularized by English algorithms such as MelodyRNN, while effective, are also musician Brian Eno in the late 20th century, describes the resource intensive and time-consuming. -
Evaluating the Combination of Word Embeddings with Mixture of Experts and Cascading Gcforest in Identifying Sentiment Polarity
Evaluating the Combination of Word Embeddings with Mixture of Experts and Cascading gcForest In Identifying Sentiment Polarity by Mounika Marreddy, Subba Reddy Oota, Radha Agarwal, Radhika Mamidi in 25TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (SIGKDD-2019) Anchorage, Alaska, USA Report No: IIIT/TR/2019/-1 Centre for Language Technologies Research Centre International Institute of Information Technology Hyderabad - 500 032, INDIA August 2019 Evaluating the Combination of Word Embeddings with Mixture of Experts and Cascading gcForest In Identifying Sentiment Polarity Mounika Marreddy Subba Reddy Oota [email protected] IIIT-Hyderabad IIIT-Hyderabad Hyderabad, India Hyderabad, India [email protected] [email protected] Radha Agarwal Radhika Mamidi IIIT-Hyderabad IIIT-Hyderabad Hyderabad, India Hyderabad, India [email protected] [email protected] ABSTRACT an effective neural networks to generate low dimensional contex- Neural word embeddings have been able to deliver impressive re- tual representations and yields promising results on the sentiment sults in many Natural Language Processing tasks. The quality of analysis [7, 14, 21]. the word embedding determines the performance of a supervised Since the work of [2], NLP community is focusing on improving model. However, choosing the right set of word embeddings for a the feature representation of sentence/document with continuous given dataset is a major challenging task for enhancing the results. development in neural word embedding. Word2Vec embedding In this paper, we have evaluated neural word embeddings with was the first powerful technique to achieve semantic similarity (i) a mixture of classification experts (MoCE) model for sentiment between words but fail to capture the meaning of a word based classification task, (ii) to compare and improve the classification on context [17]. -
Ensemble Learning
Ensemble Learning Martin Sewell Department of Computer Science University College London April 2007 (revised August 2008) 1 Introduction The idea of ensemble learning is to employ multiple learners and combine their predictions. There is no definitive taxonomy. Jain, Duin and Mao (2000) list eighteen classifier combination schemes; Witten and Frank (2000) detail four methods of combining multiple models: bagging, boosting, stacking and error- correcting output codes whilst Alpaydin (2004) covers seven methods of combin- ing multiple learners: voting, error-correcting output codes, bagging, boosting, mixtures of experts, stacked generalization and cascading. Here, the litera- ture in general is reviewed, with, where possible, an emphasis on both theory and practical advice, then the taxonomy from Jain, Duin and Mao (2000) is provided, and finally four ensemble methods are focussed on: bagging, boosting (including AdaBoost), stacked generalization and the random subspace method. 2 Literature Review Wittner and Denker (1988) discussed strategies for teaching layered neural net- works classification tasks. Schapire (1990) introduced boosting (see Section 5 (page 9)). A theoretical paper by Kleinberg (1990) introduced a general method for separating points in multidimensional spaces through the use of stochastic processes called stochastic discrimination (SD). The method basically takes poor solutions as an input and creates good solutions. Stochastic discrimination looks promising, and later led to the random subspace method (Ho 1998). Hansen and Salamon (1990) showed the benefits of invoking ensembles of similar neural networks. Wolpert (1992) introduced stacked generalization, a scheme for minimiz- ing the generalization error rate of one or more generalizers (see Section 6 (page 10)).Xu, Krzy˙zakand Suen (1992) considered methods of combining mul- tiple classifiers and their applications to handwriting recognition. -
Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions
Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Synthesis Lectures on Data Mining and Knowledge Discovery Editor Robert Grossman, University of Illinois, Chicago Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Giovanni Seni and John F. Elder 2010 Modeling and Data Mining in Blogosphere Nitin Agarwal and Huan Liu 2009 Copyright © 2010 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher. Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Giovanni Seni and John F. Elder www.morganclaypool.com ISBN: 9781608452842 paperback ISBN: 9781608452859 ebook DOI 10.2200/S00240ED1V01Y200912DMK002 A Publication in the Morgan & Claypool Publishers series SYNTHESIS LECTURES ON DATA MINING AND KNOWLEDGE DISCOVERY Lecture #2 Series Editor: Robert Grossman, University of Illinois, Chicago Series ISSN Synthesis Lectures on Data Mining and Knowledge Discovery Print 2151-0067 Electronic 2151-0075 Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Giovanni Seni Elder Research, Inc. and Santa Clara University John F. Elder Elder Research, Inc. and University of Virginia SYNTHESIS LECTURES ON DATA MINING AND KNOWLEDGE DISCOVERY #2 M &C Morgan& cLaypool publishers ABSTRACT Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges – from investment timing to drug discovery, and fraud detection to recommendation systems – where predictive accuracy is more vital than model interpretability. -
(Machine) Learning
A Practical Tour of Ensemble (Machine) Learning Nima Hejazi 1 Evan Muzzall 2 1Division of Biostatistics, University of California, Berkeley 2D-Lab, University of California, Berkeley slides: https://goo.gl/wWa9QC These are slides from a presentation on practical ensemble learning with the Super Learner and h2oEnsemble packages for the R language, most recently presented at a meeting of The Hacker Within, at the Berkeley Institute for Data Science at UC Berkeley, on 6 December 2016. source: https://github.com/nhejazi/talk-h2oSL-THW-2016 slides: https://goo.gl/CXC2FF with notes: http://goo.gl/wWa9QC Ensemble Learning – What? In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. - Wikipedia, November 2016 2 This rather elementary definition of “ensemble learning” encapsulates quite well the core notions necessary to understand why we might be interested in optimizing such procedures. In particular, we will see that a weighted collection of individual learning algorithms can not only outperform other algorithms in practice but also has been shown to be theoretically optimal. Ensemble Learning – Why? ▶ Ensemble methods outperform individual (base) learning algorithms. ▶ By combining a set of individual learning algorithms using a metalearning algorithm, ensemble methods can approximate complex functional relationships. ▶ When the true functional relationship is not in the set of base learning algorithms, ensemble methods approximate the true function well. ▶ n.b., ensemble methods can, even asymptotically, perform only as well as the best weighted combination of the candidate learners. 3 A variety of techniques exist for ensemble learning, ranging from the classic “random forest” (of Leo Breiman) to “xgboost” to “Super Learner” (van der Laan et al.). -
10-601 Machine Learning, Project Phase1 Report Random Forest
10-601 Machine Learning, Project Phase1 Report Group Name: DEADLINE Team Member: Zhitao Pei (zhitaop), Sean Hao (xinhao) Random Forest Environment: Weka 3.6.11 Data: Full dataset Parameters: 200 trees 400 features 1 seed Unlimited max depth of trees Accuracy: The training takes about half an hour and achieve an accuracy of 39.886%. Explanation: The reason we choose it is that random forest learner will usually give good performance compared to other classifiers. Decision tree is one of the best classifiers as the ranking showed in the class. Random forest is an ensemble of decision trees which is able to reduce the variance and give a better and unbiased result compared to other decision tree. The error mostly occurs when the images are hard to tell the difference simply based on the grid. Multilayer Perceptron Environment: Weka 3.6.11 Parameters: Hidden Layer: 3 Learning Rate: 0.3 Momentum: 0.2 Training Time: 500 Validation Threshold: 20 Accuracy: 27.448% Explanation: I chose Neural Network because I consider the features are independent since they are pixels of picture. To get the relationships between those pixels, a good way is weight different features and combine them to get a result. Multilayer perceptron is perfectly match with my imagination. However, training Multilayer perceptrons consumes huge time once there are many nodes in hidden layer. So I indicates that the node in hidden layer only could be 3. It is bad but that's a sort of trade off. In next phase, I will try to construct different Neural Network structure to reduce the training time and improve model accuracy. -
Ensemble Learning of Named Entity Recognition Algorithms Using Multilayer Perceptron for the Multilingual Web of Data
Ensemble Learning of Named Entity Recognition Algorithms using Multilayer Perceptron for the Multilingual Web of Data René Speck Axel-Cyrille Ngonga Ngomo Data Science Group, University of Leipzig Data Science Group, University of Paderborn Augustusplatz 10 Pohlweg 51 Leipzig, Germany 04109 Paderborn, Germany 33098 [email protected] [email protected] ABSTRACT FOX’s inner workings. In Section 4, we compare the results achieved Implementing the multilingual Semantic Web vision requires trans- by our evaluation on the silver and gold standard datasets. Finally, forming unstructured data in multiple languages from the Docu- we discuss the insights provided by our evaluation and possible ment Web into structured data for the multilingual Web of Data. We extensions of our approach in Section 5. present the multilingual version of FOX, a knowledge extraction suite which supports this migration by providing named entity 2 RELATED WORK recognition based on ensemble learning for five languages. Our NER tools and frameworks implement a broad spectrum of ap- evaluation results show that our approach goes beyond the per- proaches, which can be subdivided into three main categories: formance of existing named entity recognition systems on all five dictionary-based, rule-based and machine learning approaches languages. In our best run, we outperform the state of the art by a [20]. The first systems for NER implemented dictionary-based ap- gain of 32.38% F1-Score points on a Dutch dataset. More informa- proaches, which relied on a list of named entities (NEs) and tried tion and a demo can be found at http://fox.aksw.org as well as an to identify these in text [1, 38]. -
Chapter 7: Ensemble Learning and Random Forest
Chapter 7: Ensemble Learning and Random Forest Dr. Xudong Liu Assistant Professor School of Computing University of North Florida Monday, 9/23/2019 1 / 23 Notations 1 Voting classifiers: hard and soft 2 Bagging and pasting Random Forests 3 Boosting: AdaBoost, GradientBoost, Stacking Overview 2 / 23 Hard Voting Classifiers In the setting of binary classification, hard voting is a simple way for an ensemble of classifiers to make predictions, that is, to output the majority winner between the two classes. If multi-classes, output the Plurality winner instead, or the winner according another voting rule. Even if each classifier is a weak learner, the ensemble can be a strong learner under hard voting, provided sufficiently many weak yet diverse learners. Voting Classifiers 3 / 23 Training Diverse Classifiers Voting Classifiers 4 / 23 Hard Voting Predictions Voting Classifiers 5 / 23 Ensemble of Weak is Strong? Think of a slightly biased coin with 51% chance of heads and 49% of tails. Law of large numbers: as you keep tossing the coin, assuming every toss is independent of others, the ratio of heads gets closer and closer to the probability of heads 51%. Voting Classifiers 6 / 23 Ensemble of Weak is Strong? Eventually, all 10 series end up consistently above 50%. As a result, the 10,000 tosses as a whole will output heads with close to 100% chance! Even for an ensemble of 1000 classifiers, each correct 51% of the time, using hard voting it can be of up to 75% accuracy. Scikit-Learn: from sklearn.ensemble import VotingClassifier Voting Classifiers 7 / 23 Soft Voting Predictions If the classifiers in the ensemble have class probabilities, we may use soft voting to aggregate.