Drug Metabolism & Disposition RNA-Seq Quantification of Hepatic

Total Page:16

File Type:pdf, Size:1020Kb

Drug Metabolism & Disposition RNA-Seq Quantification of Hepatic DMD#63545 Drug Metabolism & Disposition RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice Felcy Pavithra Selwyn, Julia Yue Cui and Curtis D. Klaassen Supplement Figure-1 1500 Alcohol dehydrogenase CV M GF M 1000 500 mRNA (FKPM) mRNA CV:2.56 GF:2.55 0 Adh1 Adh4 Adh5 Adh7 Adh6-ps1 Supplement Figure 1. Gene expression of Alcohol dehydrogenase. Total RNA was isolated from livers of adult male conventional (CV) and germ-free (GF) C57BL/6 mice (n = 3 per group). The mRNA quantified by RNA-Seq as described in methods. (* indicates differential expression determined using Cuffdiff (FDR-BH<0.05)). Dark blue and red bars represent CV and GF male mice, respectively. Adh- Alcohol dehydrogenase, FPKM- fragments per kilobase of exon per million reads mapped. DMD#63545 Supplement Table 1. Comparision of gene expression of drug processing genes in different strains of GF mice compared to their respective CV mice Gene Expression In GF mice compared to CV mice (approx.) GF IQI mice GF NMRI mice GF C57BL6 mice Gene name (Toda et al) (Bjorkholm et al) (this study) Cyp1a2 50% decrease 51% increase Cyp2a4 86% decrease 340% increase No change Cyp2b9 99% decrease 2325% increase 7457% increase Cyp2b10 57% decrease Cyp2c38 140% increase 74% increase Cyp3a11 90% decrease 87% decrease Cyp3a13 50% decrease No change Cyp3a16 100% decrease 86% decrease Cyp3a25 20% decrease No change Cyp3a41 99% decrease No change Cyp3a44 98% decrease 87% decrease Sult1b1 75% increase 70% increase Sult1c2 80% increase No change Sult1d1 75% decrease 95% increase 68% increase Gstt3 100% increase 67% increase Gstp1 110% decrease 66% decrease Ugt1a1 75% increase No change Oatp1a4 100% decrease No change Oct1 43% decrease No change Ntcp 50% decrease 46% increase Mrp3 52% decrease No change AhR 52% decrease 50% increase CAR 80% decrease 100% increase 50% increase PXR 33% decrease No change 1 DMD#63545 Supplement Table 2. Gene expression of lesser known Phase-1 and Phase-2 drug processing genes in livers of CV and GF mice CV M GF M Ratio Gene Mean SEM Mean SEM (GF/CV) Significant? Function Phase-1 genes Ache 0.147 0.019 0.125 0.008 0.850 NO Acetylcholine esterase Bche 12.264 0.160 15.633 0.824 1.275 NO Butrylcholine estarase Pon1 340.735 29.639 428.092 10.186 1.256 NO Paraoxonases (Lactonases) Pon2 24.695 0.771 19.653 0.201 0.796 NO Paraoxonases (Lactonases) Pon3 27.250 1.536 24.611 1.631 0.903 NO Paraoxonases (Lactonases) Akp3 0.176 0.130 0.097 0.079 0.551 NO Alkaline phosphatase Alpi 0.192 0.087 0.173 0.092 0.903 NO Alkaline phosphatase Alpl 2.989 0.306 4.574 0.353 1.531 YES Alkaline phosphatase Gusb 8.599 0.304 6.504 0.111 0.756 NO Beta-glucuronidase Short chain Sdr9c7 21.109 3.034 8.293 1.022 0.393 YES Dehydrogenase/Reductase Short chain Sdr39u1 10.391 0.301 10.677 0.499 1.028 NO Dehydrogenase/Reductase Short chain Sdr16c5 0.184 0.053 0.057 0.024 0.313 NO Dehydrogenase/Reductase Short chain Sdr42e1 45.950 1.338 46.411 4.082 1.010 NO Dehydrogenase/Reductase Dhrs7b 10.552 0.552 11.716 0.048 1.110 NO Dehydrogenase/reductase Dhrs13 1.766 0.041 1.592 0.034 0.902 NO Dehydrogenase/reductase Dhrs11 16.860 0.439 16.148 0.383 0.958 NO Dehydrogenase/reductase Dhrs7 11.542 1.805 13.523 0.757 1.172 NO Dehydrogenase/reductase Dhrs4 92.353 6.260 85.462 0.994 0.925 NO Dehydrogenase/reductase Dhrs1 70.274 5.336 60.964 1.140 0.868 NO Dehydrogenase/reductase Dhrs9 2.210 0.862 0.422 0.015 0.191 YES Dehydrogenase/reductase Dhrs3 71.496 6.603 70.140 0.849 0.981 NO Dehydrogenase/reductase Dhrsx 7.821 0.578 7.109 0.330 0.909 NO Dehydrogenase/reductase Dihydropyrimidine Dpyd 87.499 3.218 89.004 1.854 1.017 NO Dehydrogenase Dimeric Dihydrodiol Dhdh 43.573 3.664 51.128 2.768 1.173 NO Dehydrogenase Gsr 28.228 1.651 21.605 0.830 0.765 NO Glutathione reductase Txnrd1 42.385 1.755 31.912 0.514 0.753 NO Thioredoxin reductases Txnrd2 15.008 1.024 13.562 0.247 0.904 NO Thioredoxin reductases Txnrd3 2.392 0.206 2.536 0.157 1.060 NO Thioredoxin reductases Cyb5 1133.472 76.707 1445.710 31.431 1.275 NO Cytochrome b5 reductase Cyb5b 120.160 5.739 115.718 2.922 0.963 NO Cytochrome b5 reductase Cyb5d1 7.050 0.076 7.714 0.114 1.094 NO Cytochrome b5 reductase Cyb5d2 4.888 0.264 5.031 0.046 1.029 NO Cytochrome b5 reductase Cyb5r1 4.842 0.735 4.192 0.163 0.866 NO Cytochrome b5 reductase 2 DMD#63545 Cyb5r2 0.043 0.006 0.030 0.009 0.711 NO Cytochrome b5 reductase Cyb5r3 172.160 10.106 175.521 3.991 1.020 NO Cytochrome b5 reductase Cyb5r3 172.160 10.106 175.521 3.991 1.020 NO Cytochrome b5 reductase Cyb5r4 4.916 0.038 4.627 0.136 0.941 NO Cytochrome b5 reductase Cyb5rl 3.661 0.114 3.194 0.152 0.872 NO Cytochrome b5 reductase Molybdenum Hydroxylases Suox 51.178 1.484 57.263 2.573 1.119 NO (Molybdoenzymes) Molybdenum Hydroxylases Mocs1 39.039 3.768 41.839 2.714 1.072 NO (Molybdoenzymes) Molybdenum Hydroxylases Mocs2 40.675 1.025 40.185 0.867 0.988 NO (Molybdoenzymes) Molybdenum Hydroxylases Mocs3 3.283 0.230 2.554 0.178 0.778 NO (Molybdoenzymes) Synthesis of the active Mocos 22.215 1.453 18.332 1.888 0.825 NO molybdenum cofactor Synthesis of the active Gphn 21.102 1.363 23.906 1.012 1.133 NO molybdenum cofactor Xdh 28.400 1.783 33.174 1.291 1.168 NO Xanthine Oxidoreductase Maoa 1.851 0.124 1.378 0.083 0.744 NO Monoamine oxidase Maob 58.714 3.543 69.367 3.369 1.181 NO Monoamine oxidase Rnls 0.343 0.030 0.316 0.045 0.922 NO Amine Oxidases Abp1 0.155 0.084 0.151 0.031 0.974 NO Amine Oxidases Smox 1.594 0.410 1.398 0.069 0.877 NO Amine Oxidases Paox 9.650 0.526 10.671 0.106 1.106 NO Amine Oxidases Aoc3 0.035 0.003 0.060 0.022 1.715 NO Amine Oxidases Aoc2 0.359 0.093 0.393 0.060 1.094 NO Amine Oxidases Lox 0.067 0.003 0.083 0.009 1.237 NO Amine Oxidases Ptgs1 3.956 0.380 3.459 0.100 0.874 NO Prostaglandin synthases Ptgs2 0.005 0.005 0.005 0.005 0.973 NO Prostaglandin synthases Gpx1 1291.270 73.250 1269.677 23.989 0.983 NO Glutathione peroxidases Gpx2 0.120 0.042 0.155 0.025 1.295 NO Glutathione peroxidases Gpx2-ps1 0.004 0.004 0.016 0.016 4.140 NO Glutathione peroxidases Gpx3 2.161 0.079 2.383 0.116 1.103 NO Glutathione peroxidases Gpx4 100.905 5.206 95.558 0.985 0.947 NO Glutathione peroxidases Gpx5 0.021 0.007 0.019 0.010 0.929 NO Glutathione peroxidases Gpx6 0.676 0.186 3.253 0.297 4.816 YES Glutathione peroxidases Gpx7 1.144 0.101 1.117 0.174 0.977 NO Glutathione peroxidases Gpx8 0.651 0.034 0.562 0.084 0.864 NO Glutathione peroxidases Prdx6 153.877 14.727 187.885 0.697 1.221 NO Peroxiredoxin Prdx5 255.425 9.011 230.322 6.735 0.902 NO Peroxiredoxin Prdx3 65.436 1.743 63.795 1.396 0.975 NO Peroxiredoxin Prdx1 358.607 25.439 315.369 1.091 0.879 NO Peroxiredoxin Prdx2 67.925 1.902 66.511 0.519 0.979 NO Peroxiredoxin 3 DMD#63545 Prdx4 64.448 3.372 65.761 2.390 1.020 NO Peroxiredoxin Pepd 20.097 1.011 17.929 0.306 0.892 NO Peptidase D Lap3 137.093 3.246 125.832 0.933 0.918 NO Leucine aminopeptidase 3 Clpb 6.231 0.432 5.916 0.099 0.949 NO Caseinolytic peptidase B Htra1 0.759 0.035 0.659 0.038 0.868 NO Serine peptidase Htra2 6.447 0.155 5.572 0.237 0.864 NO Serine peptidase Htra3 0.365 0.091 0.483 0.061 1.325 NO Serine peptidase Htra4 0.324 0.112 0.717 0.144 2.210 YES Serine peptidase Aadac 321.432 9.162 348.176 12.606 1.083 NO Arylacetamide deacetylase Esd 84.911 3.785 93.134 2.699 1.097 NO Esterase D Biphenyl hydrolase-like serine Bphl 103.110 7.652 124.667 1.336 1.209 NO hydrolase Kynu 55.781 1.583 58.157 0.934 1.043 NO L-Kynurenine hydrolase Cel 0.059 0.054 0.024 0.015 0.405 NO Carboxyl ester lipase Cela1 15.287 2.875 16.091 1.720 1.053 NO Glycosyl hydrolase Cela3b 0.082 0.082 0.057 0.042 0.693 NO Glycosyl hydrolase Cela2a 0.814 0.202 0.991 0.139 1.218 NO Glycosyl hydrolase Aloxe3 0.006 0.003 0.003 0.003 0.469 NO Arachidonate lipoxygenases Alox8 0.000 0.000 0.003 0.003 18.678 NO Arachidonate lipoxygenases Alox12 0.221 0.038 0.083 0.018 0.376 NO Arachidonate lipoxygenases Alox15 0.022 0.002 0.050 0.008 2.228 NO Arachidonate lipoxygenases Alox5ap 2.293 0.377 2.318 0.437 1.011 NO Arachidonate lipoxygenases Alox5 0.029 0.006 0.032 0.009 1.090 NO Arachidonate lipoxygenases Phase 2 genes Comt 466.513 34.645 339.594 5.000 0.728 NO Catechol-o-methyl transferase As3mt 14.003 1.142 17.516 0.177 1.251 NO Arsenic (iii) methyltransferase Gnmt 1211.730 78.767 1105.270 28.557 0.912 NO Glycine N-methyltransferase Hnmt 10.438 1.251 12.554 0.314 1.203 NO Histamine-N-methyltransferase Indolethylamine N- Inmt 364.275 51.455 608.952 58.712 1.672 YES methyltransferase (INMT) Nicotinamide N- Nnmt 65.877 27.873 47.758 4.165 0.725 NO methyltransferase Tpmt 13.383 1.150 16.026 0.429 1.198 NO Thiopurine methyltransferase Guanidinoacetate N- Gamt 100.898 3.461 120.447 1.332 1.194 NO methyltransferase Tst 147.057 7.615 150.440 2.977 1.023 NO Thiosulfate sulfurtransferase Bile acid-CoA:amino acid N- acyltransferase (Amino acid Baat 122.849 5.715 124.694 2.136 1.015 NO conjugation) Acyl-CoA:amino acid N- acyltransferase (Amino acid Acnat1 23.135 0.921 27.112 1.945 1.172 NO conjugation) 4 DMD#63545 Acyl-CoA:amino acid N- acyltransferase (Amino acid Acnat2 6.543 0.471 7.782 0.881 1.189 NO conjugation) Acsbg1 0.042 0.012 0.039 0.002 0.941 NO Acyl-CoA synthetase Chpt1 85.719 11.674 91.075 3.478 1.062 NO Choline phosphotransferases Hypoxanthine-guanine Hprt 37.422 1.225 38.579 1.070 1.031 NO phosphoribosyltransferase Nme1 48.453 3.765 45.791 0.685 0.945 NO Nucleoside diphosphate kinase Nme2 155.564 4.752 130.674 9.125 0.840 NO Nucleoside diphosphate kinase Nme3 18.241 0.997 18.192 0.714 0.997 NO Nucleoside diphosphate kinase Nme4 1.971 0.171 2.159 0.053 1.095 NO Nucleoside diphosphate kinase Nme5 0.066 0.005 0.033 0.020 0.506 NO Nucleoside diphosphate kinase Nme6 12.440 1.943 11.893 0.710 0.956 NO Nucleoside diphosphate kinase Nme7 3.122 0.065 3.360 0.090 1.076 NO Nucleoside diphosphate kinase 5 .
Recommended publications
  • Sulfite Dehydrogenases in Organotrophic Bacteria : Enzymes
    Sulfite dehydrogenases in organotrophic bacteria: enzymes, genes and regulation. Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich Biologie vorgelegt von Sabine Lehmann Tag der mündlichen Prüfung: 10. April 2013 1. Referent: Prof. Dr. Bernhard Schink 2. Referent: Prof. Dr. Andrew W. B. Johnston So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das möglichste getan hat. (Johann Wolfgang von Goethe, Italienische Reise, 1787) DANKSAGUNG An dieser Stelle möchte ich mich herzlich bei folgenden Personen bedanken: . Prof. Dr. Alasdair M. Cook (Universität Konstanz, Deutschland), der mir dieses Thema und seine Laboratorien zur Verfügung stellte, . Prof. Dr. Bernhard Schink (Universität Konstanz, Deutschland), für seine spontane und engagierte Übernahme der Betreuung, . Prof. Dr. Andrew W. B. Johnston (University of East Anglia, UK), für seine herzliche und bereitwillige Aufnahme in seiner Arbeitsgruppe, seiner engagierten Unter- stützung, sowie für die Übernahme des Koreferates, . Prof. Dr. Frithjof C. Küpper (University of Aberdeen, UK), für seine große Hilfsbereitschaft bei der vorliegenden Arbeit und geplanter Manuskripte, als auch für die mentale Unterstützung während der letzten Jahre! Desweiteren möchte ich herzlichst Dr. David Schleheck für die Übernahme des Koreferates der mündlichen Prüfung sowie Prof. Dr. Alexander Bürkle, für die Übernahme des Prüfungsvorsitzes sowie für seine vielen hilfreichen Ratschläge danken! Ein herzliches Dankeschön geht an alle beteiligten Arbeitsgruppen der Universität Konstanz, der UEA und des SAMS, ganz besonders möchte ich dabei folgenden Personen danken: . Dr. David Schleheck und Karin Denger, für die kritische Durchsicht dieser Arbeit, der durch und durch sehr engagierten Hilfsbereitschaft bei Problemen, den zahlreichen wissenschaftlichen Diskussionen und für die aufbauenden Worte, .
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Effects of Neonatal Stress and Morphine on Murine Hippocampal Gene Expression
    0031-3998/11/6904-0285 Vol. 69, No. 4, 2011 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2011 International Pediatric Research Foundation, Inc. Effects of Neonatal Stress and Morphine on Murine Hippocampal Gene Expression SANDRA E. JUUL, RICHARD P. BEYER, THEO K. BAMMLER, FEDERICO M. FARIN, AND CHRISTINE A. GLEASON Department of Pediatrics [S.E.J., C.A.G.], Department of Environmental and Occupational Health Sciences [R.P.B., T.K.B., F.M.F.], University of Washington, Seattle, Washington 98195 ABSTRACT: Critically ill preterm infants experience multiple to severe impairment occurring in close to 50% of ex- stressors while hospitalized. Morphine is commonly prescribed to tremely LBW infants (4). Autism, attention deficit disorder, ameliorate their pain and stress. We hypothesized that neonatal and school failure also occur more frequently in NICU stress will have a dose-dependent effect on hippocampal gene survivors (5). Although some degree of impairment might expression, and these effects will be altered by morphine treat- ment. Male C57BL/6 mice were exposed to five treatment condi- be inevitable, it is likely that the stress and treatments these tions between postnatal d 5 and 9: 1) control, 2) mild stress ϩ infants undergo impact neurologic outcome. Improved un- saline, 3) mild stress ϩ morphine, 4) severe stress ϩ saline, and derstanding of these factors will provide the basis of better 5) severe stress ϩ morphine. Hippocampal RNA was extracted treatments and subsequent improvement in outcomes. and analyzed using Affymetrix Mouse Gene 1.0 ST Arrays. Single Many preterm infants receive opiates for sedation or gene analysis and gene set analysis were used to compare groups analgesia during their NICU stay.
    [Show full text]
  • Enzyme DHRS7
    Toward the identification of a function of the “orphan” enzyme DHRS7 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Selene Araya, aus Lugano, Tessin Basel, 2018 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt (Fakultätsverantwortlicher) und Prof. Dr. Michael Arand (Korreferent) Basel, den 26.6.2018 ________________________ Dekan Prof. Dr. Martin Spiess I. List of Abbreviations 3α/βAdiol 3α/β-Androstanediol (5α-Androstane-3α/β,17β-diol) 3α/βHSD 3α/β-hydroxysteroid dehydrogenase 17β-HSD 17β-Hydroxysteroid Dehydrogenase 17αOHProg 17α-Hydroxyprogesterone 20α/βOHProg 20α/β-Hydroxyprogesterone 17α,20α/βdiOHProg 20α/βdihydroxyprogesterone ADT Androgen deprivation therapy ANOVA Analysis of variance AR Androgen Receptor AKR Aldo-Keto Reductase ATCC American Type Culture Collection CAM Cell Adhesion Molecule CYP Cytochrome P450 CBR1 Carbonyl reductase 1 CRPC Castration resistant prostate cancer Ct-value Cycle threshold-value DHRS7 (B/C) Dehydrogenase/Reductase Short Chain Dehydrogenase Family Member 7 (B/C) DHEA Dehydroepiandrosterone DHP Dehydroprogesterone DHT 5α-Dihydrotestosterone DMEM Dulbecco's Modified Eagle's Medium DMSO Dimethyl Sulfoxide DTT Dithiothreitol E1 Estrone E2 Estradiol ECM Extracellular Membrane EDTA Ethylenediaminetetraacetic acid EMT Epithelial-mesenchymal transition ER Endoplasmic Reticulum ERα/β Estrogen Receptor α/β FBS Fetal Bovine Serum 3 FDR False discovery rate FGF Fibroblast growth factor HEPES 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid HMDB Human Metabolome Database HPLC High Performance Liquid Chromatography HSD Hydroxysteroid Dehydrogenase IC50 Half-Maximal Inhibitory Concentration LNCaP Lymph node carcinoma of the prostate mRNA Messenger Ribonucleic Acid n.d.
    [Show full text]
  • Molybdenum Cofactor and Sulfite Oxidase Deficiency Jochen Reiss* Institute of Human Genetics, University Medicine Göttingen, Germany
    ics: O om pe ol n b A a c t c e e M s s Reiss, Metabolomics (Los Angel) 2016, 6:3 Metabolomics: Open Access DOI: 10.4172/2153-0769.1000184 ISSN: 2153-0769 Research Article Open Access Molybdenum Cofactor and Sulfite Oxidase Deficiency Jochen Reiss* Institute of Human Genetics, University Medicine Göttingen, Germany Abstract A universal molybdenum-containing cofactor is necessary for the activity of all eukaryotic molybdoenzymes. In humans four such enzymes are known: Sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase and a mitochondrial amidoxime reducing component. Of these, sulfite oxidase is the most important and clinically relevant one. Mutations in the genes MOCS1, MOCS2 or GPHN - all encoding cofactor biosynthesis proteins - lead to molybdenum cofactor deficiency type A, B or C, respectively. All three types plus mutations in the SUOX gene responsible for isolated sulfite oxidase deficiency lead to progressive neurological disease which untreated in most cases leads to death in early childhood. Currently, only for type A of the cofactor deficiency an experimental treatment is available. Introduction combination with SUOX deficiency. Elevated xanthine and lowered uric acid concentrations in the urine are used to differentiate this Isolated sulfite oxidase deficiency (MIM#606887) is an autosomal combined form from the isolated SUOX deficiency. Rarely and only in recessive inherited disease caused by mutations in the sulfite oxidase cases of isolated XOR deficiency xanthine stones have been described (SUOX) gene [1]. Sulfite oxidase is localized in the mitochondrial as a cause of renal failure. Otherwise, isolated XOR deficiency often intermembrane space, where it catalyzes the oxidation of sulfite to goes unnoticed.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Material
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Page 1 / 45 SUPPLEMENTARY MATERIAL Appendix A1: Neuropsychological protocol. Appendix A2: Description of the four cases at the transitional stage. Table A1: Clinical status and center proportion in each batch. Table A2: Complete output from EdgeR. Table A3: List of the putative target genes. Table A4: Complete output from DIANA-miRPath v.3. Table A5: Comparison of studies investigating miRNAs from brain samples. Figure A1: Stratified nested cross-validation. Figure A2: Expression heatmap of miRNA signature. Figure A3: Bootstrapped ROC AUC scores. Figure A4: ROC AUC scores with 100 different fold splits. Figure A5: Presymptomatic subjects probability scores. Figure A6: Heatmap of the level of enrichment in KEGG pathways. Kmetzsch V, et al. J Neurol Neurosurg Psychiatry 2021; 92:485–493. doi: 10.1136/jnnp-2020-324647 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Neurol Neurosurg Psychiatry Appendix A1. Neuropsychological protocol The PREV-DEMALS cognitive evaluation included standardized neuropsychological tests to investigate all cognitive domains, and in particular frontal lobe functions. The scores were provided previously (Bertrand et al., 2018). Briefly, global cognitive efficiency was evaluated by means of Mini-Mental State Examination (MMSE) and Mattis Dementia Rating Scale (MDRS). Frontal executive functions were assessed with Frontal Assessment Battery (FAB), forward and backward digit spans, Trail Making Test part A and B (TMT-A and TMT-B), Wisconsin Card Sorting Test (WCST), and Symbol-Digit Modalities test.
    [Show full text]
  • Download Thesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Optimising the use of Azathioprine in the treatment of Inflammatory Bowel Disease Smith, Melissa Ann Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 Optimising the use of Azathioprine in the treatment of Inflammatory Bowel Disease Dr Melissa Ann Smith MD (Res) 2013 MD thesis Azathioprine in IBD Melissa Ann Smith Table of Contents Table of Contents ...........................................................................................................................
    [Show full text]
  • Supplementary Table 3: Genes Only Influenced By
    Supplementary Table 3: Genes only influenced by X10 Illumina ID Gene ID Entrez Gene Name Fold change compared to vehicle 1810058M03RIK -1.104 2210008F06RIK 1.090 2310005E10RIK -1.175 2610016F04RIK 1.081 2610029K11RIK 1.130 381484 Gm5150 predicted gene 5150 -1.230 4833425P12RIK -1.127 4933412E12RIK -1.333 6030458P06RIK -1.131 6430550H21RIK 1.073 6530401D06RIK 1.229 9030607L17RIK -1.122 A330043C08RIK 1.113 A330043L12 1.054 A530092L01RIK -1.069 A630054D14 1.072 A630097D09RIK -1.102 AA409316 FAM83H family with sequence similarity 83, member H 1.142 AAAS AAAS achalasia, adrenocortical insufficiency, alacrimia 1.144 ACADL ACADL acyl-CoA dehydrogenase, long chain -1.135 ACOT1 ACOT1 acyl-CoA thioesterase 1 -1.191 ADAMTSL5 ADAMTSL5 ADAMTS-like 5 1.210 AFG3L2 AFG3L2 AFG3 ATPase family gene 3-like 2 (S. cerevisiae) 1.212 AI256775 RFESD Rieske (Fe-S) domain containing 1.134 Lipo1 (includes AI747699 others) lipase, member O2 -1.083 AKAP8L AKAP8L A kinase (PRKA) anchor protein 8-like -1.263 AKR7A5 -1.225 AMBP AMBP alpha-1-microglobulin/bikunin precursor 1.074 ANAPC2 ANAPC2 anaphase promoting complex subunit 2 -1.134 ANKRD1 ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 1.314 APOA1 APOA1 apolipoprotein A-I -1.086 ARHGAP26 ARHGAP26 Rho GTPase activating protein 26 -1.083 ARL5A ARL5A ADP-ribosylation factor-like 5A -1.212 ARMC3 ARMC3 armadillo repeat containing 3 -1.077 ARPC5 ARPC5 actin related protein 2/3 complex, subunit 5, 16kDa -1.190 activating transcription factor 4 (tax-responsive enhancer element ATF4 ATF4 B67) 1.481 AU014645 NCBP1 nuclear cap
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]