Naturalness Versus Stringy Naturalness with Implications for Collider and Dark Matter Searches

Total Page:16

File Type:pdf, Size:1020Kb

Naturalness Versus Stringy Naturalness with Implications for Collider and Dark Matter Searches PHYSICAL REVIEW RESEARCH 1, 023001 (2019) Naturalness versus stringy naturalness with implications for collider and dark matter searches Howard Baer ,1,* Vernon Barger,2,† and Shadman Salam1,‡ 1Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, USA 2Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA (Received 21 June 2019; published 3 September 2019) The notion of stringy naturalness—that an observable O2 is more natural than O1 if more (phenomenologically acceptable) vacua solutions lead to O2 rather than O1—is examined within the context of the Standard model (SM) and various supersymmetric models (SUSY) extensions: Constrained minimal supersymmetric standard model (CMSSM)/minimal supergravity model (mSUGRA), high-scale SUSY, and radiatively driven natural SUSY (RNS). Rather general arguments from string theory suggest a (possibly mild) statistical draw towards vacua with large soft SUSY breaking terms. These vacua must be tempered by an anthropic veto of nonstandard vacua or vacua with too large a value of the weak scale mweak. We argue that the SM, the CMSSM and various high-scale SUSY models are all expected to be relatively rare occurrences within the string theory landscape of vacua. In contrast, models with TeV-scale soft terms but with mweak ∼ 100 GeV and consequent light higgsinos (SUSY with radiatively driven naturalness) should be much more common on the landscape. These latter models have a statistical preference for mh 125 GeV and strongly interacting sparticles beyond current LHC reach. Thus, while conventional naturalness favors sparticles close to the weak scale, stringy naturalness favors sparticles so heavy that electroweak symmetry is barely broken and one is living dangerously close to vacua with charge-or-color breaking minima, no electroweak breaking or pocket universe weak-scale values too far from our measured value. Expectations for how landscape SUSY would manifest itself at collider and dark matter search experiments are then modified compared to usual notions. DOI: 10.1103/PhysRevResearch.1.023001 I. INTRODUCTION up a Little hierarchy problem (LHP) [12]: why does the weak scale not blow up to the energy scale associated with soft Naturalness. The gauge hierarchy problem (GHP) [1]— SUSY breaking, i.e., why is m m ? what stabilizes the weak scale so that it does not blow up to weak soft Early upper bounds on sparticle masses derived from the GUT/Planck scale—is one of the central conundrums of naturalness were usually computed using the EENZ/BG particle physics. Indeed, it provides crucial motivation for the logarithmic-derivative measure [7,8]: for an observable O, premise that new physics should be lurking in or around the then weak scale. Supersymmetric models (SUSY) with weak-scale soft SUSY breaking terms provide an elegant solution to ∂ O ∂O O ≡ ln = pi , the GHP [2,3] but so far weak-scale sparticles have failed BG( ) maxi maxi (1) ∂ ln pi O ∂ pi to appear at the CERN Large Hadron Collider (LHC) and WIMPs have failed to appear in direct detection experiments where the pi are fundamental parameters of the underly- [4]. The latest search limits from LHC Run 2 require gluinos ing theory. For an observable depending linearly on model . . O = +···+ ∂O/∂ = with mg˜ 2 25 TeV [5] and top squarks mt˜1 1 1TeV parameters, a1 p1 an pn, then pi ai and [6]. These lower bound search limits stand in sharp contrast BG(O) just picks off the maximal right-hand-side contri- to early sparticle mass upper bounds from naturalness that bution to O and compares it to O. In the case where one . 1 O seemingly required mg˜,t˜1 0 4TeV[7–10]. Thus LHC limits contribution ai pi , then some other contribution(s) will seem to imply the soft SUSY breaking scale msoft lies in the have to be finetuned to large opposite-sign values such as multi-TeV rather than the weak-scale range. This then opens to maintain O at its measured value. Such finetuning of fundamental parameters seems highly implausible in nature absent some symmetry or parameter selection mechanism. * Thus the logarithmic derivative is a measure of [13] practical [email protected] O †[email protected] naturalness. An observable is natural if all independent O O ‡[email protected] contributions to are comparable to or less than . For the case of the LHP, the observable O is traditionally 2 μ Published by the American Physical Society under the terms of the take to be mZ and the pi are taken to be the MSSM term and Creative Commons Attribution 4.0 International license. Further soft SUSY breaking terms so that naturalness then requires 2 2 distribution of this work must maintain attribution to the author(s) all contributions to mZ to be comparable to mZ : this is the and the published article’s title, journal citation, and DOI. basis for expecting sparticles to occur around the 100-GeV 1 For a recent analysis in the context of EENZ/BG, see, e.g., scale. A fundamental issue in computing BG is [14–17]: Ref. [11]. what is the correct choice to be made for the pi? If soft terms 2643-1564/2019/1(2)/023001(13) 023001-1 Published by the American Physical Society HOWARD BAER, VERNON BARGER, AND SHADMAN SALAM PHYSICAL REVIEW RESEARCH 1, 023001 (2019) 2 / are correlated with one another, as expected in fundamental is then low provided all weak-scale contributions to mZ 2are supergravity/superstring theories, then one gets a very 2 / u d comparable to or less than mZ 2. The u and d contain different answer than if one assumes some effective 4 − d over 40 radiative corrections which are listed in Appendix of SUSY theory with many independent soft parameters which Ref. [23]. The conditions for natural SUSY (for, e.g., EW < are introduced to parametrize one’s ignorance of their origin.2 30)4 can then be read off from Eq. (6). Alternatively, even if the parameters pi are independent, it is (1) The superpotential μ parameter has magnitude not too possible that some selection mechanism is responsible for the far from the weak scale, |μ| 300 GeV. This implies the values towards which they tend. χ0 χ± χ0 , χ± ∼ existence of light higgsinos 1,2 and 1 with m( 1,2 1 ) It is also common in the literature to apply practical natu- 100–300 GeV. ralness to the Higgs mass: (2) m2 is radiatively driven from large high-scale values Hu to small negative values at the weak scale (SUSY with radia- m2 m2 (weak) + μ2(weak) + mixing + rad. corr., (2) h Hu tively driven naturalness or RNS [22]). u where the mixing and radiative corrections are both compa- (3) Large cancellations occur in the u (t˜1,2 )termsfor 2 2 = 2 + δ 2 ∼ rable to m .Also,m (weak) m ( ) m where it is large At parameters which then allow for mt˜1 1–3 TeV for h Hu Hu Hu < common to estimate δm2 using its renormalization group EW 30. The large At term also lifts the Higgs mass mh into Hu equation (RGE) by setting several terms in dm2 /dt (with the vicinity of 125 GeV. The gluino contributes to the weak Hu scale at two-loop order so its mass can range up to m 6TeV t = ln Q2) to zero so as to integrate in a single step: g˜ with little cost to naturalness [23–25]. 3 f 2 (4) Since first/second generation squarks and sleptons δm2 ∼− t m2 + m2 + A2 ln 2/m2 . (3) Hu 8π 2 Q3 U3 t soft contribute to the weak scale through (mainly canceling) D terms, they can range up to 10–30 TeV at little cost to ∼ Taking mGUT and requiring the high-scale measure naturalness (thus helping to alleviate the SUSY flavor and CP ≡ δm2 /m2. (4) problems) [26]. HS Hu h By combining dependent soft terms in BG or by combin- 2 2 HS 1 then requires three third generation squarks lighter ing the dependent terms m () and δm in , then these Hu Hu HS than 500 GeV [18,19] (now highly excluded by LHC top- measures roughly reduce to EW (aside from the radiative squark searches) and small A terms (whereas m 125 GeV u,d t h contributions u,d ). Since EW is determined by the weak- typically requires large mixing and thus multi-TeV values scale SUSY parameters, then different models which give rise of A0 [20,21]). The simplifications made in this calculation to exactly the same sparticle mass spectrum will have the same ignore the fact that δm2 is highly dependent on m2 () Hu Hu finetuning value (model independence). Using the naturalness (which is set to zero in the simplification) [14,16,17]. In fact, measure EW, then it has been shown that plenty of SUSY the larger one makes m2 (), then the larger becomes the can- Hu parameter space remains natural even in the face of LHC Run celing correction δm2 . Thus these terms are not independent: 2 Higgs mass measurements and sparticle mass limits [23]. Hu one cannot tune m2 () against a large contribution δm2 . String theory landscape. Weinberg’s anthropic solution to Hu Hu Thus weak-scale top squarks and small At are not required the cosmological constant (CC) [27], along with the emer- by naturalness. gence of the string theory landscape of vacua [28,29], have To ameliorate the above naturalness calculational quan- presented a challenge to the usual notion of naturalness. daries, a more model independent measure EW was intro- In Weinberg’s view, in the presence of a vast assortment duced [22,23].3 By minimizing the weak-scale SUSY Higgs (10120) of pocket universes which are part of an eternally potential, including radiative corrections, one may relate the inflating multiverse, it may not be so surprising to find our- ∼ −120 4 measured value of the Z-boson mass to the various SUSY selves in one with cc 10 mP since if it were much contributions: larger, then the expansion rate would be so large that galaxies would not be able to condense, and life as we know it would be m2 + d − m2 + u tan2 β m2 /2 = Hd d Hu u − μ2 unable to emerge.
Recommended publications
  • Naturalness and New Approaches to the Hierarchy Problem
    Naturalness and New Approaches to the Hierarchy Problem PiTP 2017 Nathaniel Craig Department of Physics, University of California, Santa Barbara, CA 93106 No warranty expressed or implied. This will eventually grow into a more polished public document, so please don't disseminate beyond the PiTP community, but please do enjoy. Suggestions, clarifications, and comments are welcome. Contents 1 Introduction 2 1.0.1 The proton mass . .3 1.0.2 Flavor hierarchies . .4 2 The Electroweak Hierarchy Problem 5 2.1 A toy model . .8 2.2 The naturalness strategy . 13 3 Old Hierarchy Solutions 16 3.1 Lowered cutoff . 16 3.2 Symmetries . 17 3.2.1 Supersymmetry . 17 3.2.2 Global symmetry . 22 3.3 Vacuum selection . 26 4 New Hierarchy Solutions 28 4.1 Twin Higgs / Neutral naturalness . 28 4.2 Relaxion . 31 4.2.1 QCD/QCD0 Relaxion . 31 4.2.2 Interactive Relaxion . 37 4.3 NNaturalness . 39 5 Rampant Speculation 42 5.1 UV/IR mixing . 42 6 Conclusion 45 1 1 Introduction What are the natural sizes of parameters in a quantum field theory? The original notion is the result of an aggregation of different ideas, starting with Dirac's Large Numbers Hypothesis (\Any two of the very large dimensionless numbers occurring in Nature are connected by a simple mathematical relation, in which the coefficients are of the order of magnitude unity" [1]), which was not quantum in nature, to Gell- Mann's Totalitarian Principle (\Anything that is not compulsory is forbidden." [2]), to refinements by Wilson and 't Hooft in more modern language.
    [Show full text]
  • Solving the Hierarchy Problem
    solving the hierarchy problem Joseph Lykken Fermilab/U. Chicago puzzle of the day: why is gravity so weak? answer: because there are large or warped extra dimensions about to be discovered at colliders puzzle of the day: why is gravity so weak? real answer: don’t know many possibilities may not even be a well-posed question outline of this lecture • what is the hierarchy problem of the Standard Model • is it really a problem? • what are the ways to solve it? • how is this related to gravity? what is the hierarchy problem of the Standard Model? • discuss concepts of naturalness and UV sensitivity in field theory • discuss Higgs naturalness problem in SM • discuss extra assumptions that lead to the hierarchy problem of SM UV sensitivity • Ken Wilson taught us how to think about field theory: “UV completion” = high energy effective field theory matching scale, Λ low energy effective field theory, e.g. SM energy UV sensitivity • how much do physical parameters of the low energy theory depend on details of the UV matching (i.e. short distance physics)? • if you know both the low and high energy theories, can answer this question precisely • if you don’t know the high energy theory, use a crude estimate: how much do the low energy observables change if, e.g. you let Λ → 2 Λ ? degrees of UV sensitivity parameter UV sensitivity “finite” quantities none -- UV insensitive dimensionless couplings logarithmic -- UV insensitive e.g. gauge or Yukawa couplings dimension-full coefs of higher dimension inverse power of cutoff -- “irrelevant” operators e.g.
    [Show full text]
  • A Modified Naturalness Principle and Its Experimental Tests
    A modified naturalness principle and its experimental tests Marco Farinaa, Duccio Pappadopulob;c and Alessandro Strumiad;e (a) Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA (b) Department of Physics, University of California, Berkeley, CA 94720, USA (c) Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, USA (d) Dipartimento di Fisica dell’Universita` di Pisa and INFN, Italia (e) National Institute of Chemical Physics and Biophysics, Tallinn, Estonia Abstract Motivated by LHC results, we modify the usual criterion for naturalness by ig- noring the uncomputable power divergences. The Standard Model satisfies the modified criterion (‘finite naturalness’) for the measured values of its parameters. Extensions of the SM motivated by observations (Dark Matter, neutrino masses, the strong CP problem, vacuum instability, inflation) satisfy finite naturalness in special ranges of their parameter spaces which often imply new particles below a few TeV. Finite naturalness bounds are weaker than usual naturalness bounds because any new particle with SM gauge interactions gives a finite contribution to the Higgs mass at two loop order. Contents 1 Introduction2 2 The Standard Model3 3 Finite naturalness, neutrino masses and leptogenesis4 3.1 Type-I see saw . .5 3.2 Type-III see saw . .6 3.3 Type-II see saw . .6 arXiv:1303.7244v3 [hep-ph] 29 Apr 2014 4 Finite naturalness and Dark Matter7 4.1 Minimal Dark Matter . .7 4.2 The scalar singlet DM model . 10 4.3 The fermion singlet model . 10 5 Finite naturalness and axions 13 5.1 KSVZ axions . 13 5.2 DFSZ axions . 14 6 Finite naturalness, vacuum decay and inflation 14 7 Conclusions 15 1 1 Introduction The naturalness principle strongly influenced high-energy physics in the past decades [1], leading to the belief that physics beyond the Standard Model (SM) must exist at a scale ΛNP such that quadratically divergent quantum corrections to the Higgs squared mass are made finite (presumably up to a log divergence) and not much larger than the Higgs mass Mh itself.
    [Show full text]
  • Hep-Ph] 19 Nov 2018
    The discreet charm of higgsino dark matter { a pocket review Kamila Kowalska∗ and Enrico Maria Sessoloy National Centre for Nuclear Research, Ho_za69, 00-681 Warsaw, Poland Abstract We give a brief review of the current constraints and prospects for detection of higgsino dark matter in low-scale supersymmetry. In the first part we argue, after per- forming a survey of all potential dark matter particles in the MSSM, that the (nearly) pure higgsino is the only candidate emerging virtually unscathed from the wealth of observational data of recent years. In doing so by virtue of its gauge quantum numbers and electroweak symmetry breaking only, it maintains at the same time a relatively high degree of model-independence. In the second part we properly review the prospects for detection of a higgsino-like neutralino in direct underground dark matter searches, col- lider searches, and indirect astrophysical signals. We provide estimates for the typical scale of the superpartners and fine tuning in the context of traditional scenarios where the breaking of supersymmetry is mediated at about the scale of Grand Unification and where strong expectations for a timely detection of higgsinos in underground detectors are closely related to the measured 125 GeV mass of the Higgs boson at the LHC. arXiv:1802.04097v3 [hep-ph] 19 Nov 2018 ∗[email protected] [email protected] 1 Contents 1 Introduction2 2 Dark matter in the MSSM4 2.1 SU(2) singlets . .5 2.2 SU(2) doublets . .7 2.3 SU(2) adjoint triplet . .9 2.4 Mixed cases . .9 3 Phenomenology of higgsino dark matter 12 3.1 Prospects for detection in direct and indirect searches .
    [Show full text]
  • A Natural Introduction to Fine-Tuning
    A Natural Introduction to Fine-Tuning Julian De Vuyst ∗ Department of Physics & Astronomy, Ghent University, Krijgslaan, S9, 9000 Ghent, Belgium Abstract A well-known topic within the philosophy of physics is the problem of fine-tuning: the fact that the universal constants seem to take non-arbitrary values in order for live to thrive in our Universe. In this paper we will talk about this problem in general, giving some examples from physics. We will review some solutions like the design argument, logical probability, cosmological natural selection, etc. Moreover, we will also discuss why it's dangerous to uphold the Principle of Naturalness as a scientific principle. After going through this paper, the reader should have a general idea what this problem exactly entails whenever it is mentioned in other sources and we recommend the reader to think critically about these concepts. arXiv:2012.05617v1 [physics.hist-ph] 10 Dec 2020 ∗[email protected] 1 Contents 1 Introduction3 2 A Take on Constants3 2.I The Role of Units . .4 2.II Derived vs Fundamental Constants . .5 3 The Concept of Naturalness6 3.I Technical Naturalness . .6 3.I.a A Wilsonian Perspective . .6 3.I.b A Brief History . .8 3.II Numerical/General Naturalness . .9 4 The Fine-Tuning Problem9 5 Some Examples from Physics 10 5.I The Cosmological Constant Problem . 10 5.II The Flatness Problem . 11 5.III The Higgs Mass . 12 5.IV The Strong CP Problem . 13 6 Resolutions to Fine-Tuning 14 6.I We are here, full stop . 14 6.II Designed like Clockwork .
    [Show full text]
  • SUSY Phenomenology Circa 2020
    SUSY phenomenology circa 2020 Howie Baer (baer at ou dot edu), Pheno2020 University of Oklahoma May 4, 2020 m(higgs) finetuned in SM for cuto↵ m(weak) • 120 cosmological constant 10− expected • 10 ✓¯ 10− (strong CP/QCD) • ⇠ ``The appearance of fine- tuning in a scientific theory is like a cry of distress from nature, complaining that something needs to be better explained’’ virtual Pitt PACC meeting 1 SUSY phenomenology of 20th century mediation: gravity (mSUGRA/CMSSM), gauge, anomaly • naturalness: sparticles 100 GeV scale • ⇠ dark matter: WIMP/neutralino via stau-co, A-funnel or FP • 2 21 century experiments meet 20th century theory m = 125.18 0.16 GeV • h ± m > 2.1 TeV • g˜ m˜ > 1.1 TeV • t1 no sign of WIMPs (via DD) • These values/limits lead to impression that Weak Scale SUSY largely excluded except for few remote regions of p-space 3 21 century physics 1. discrete R-symmetries: mu-problem,p-decay, R-parity, gravity-safe global PQ symmetry 2. naturalness: BG, HS, EW 3. DM: need axion for strong CP, SUSY mu-problem: mainly DFSZ axion plus higgsino-like WIMP 4. string landscape: solves CC problem, role in hierarchy problem? Yes 4 SUSY mu problem: The SUSY preserving mu-parameter is usually tuned within spectrum calculator computer codes and otherwise ignored. But more basically, it should be ~m(Planck), or else in string theory=0 (no arbitrary mass scales) But: phenomenologically, need mu~m(weak)~100-300 GeV (practical naturalness: independent contributions to observables should be of order of or less than the measured value).
    [Show full text]
  • Naturalness and Mixed Axion-Higgsino Dark Matter Howard Baer University of Oklahoma UCLA DM Meeting, Feb
    Naturalness and mixed axion-higgsino dark matter Howard Baer University of Oklahoma UCLA DM meeting, Feb. 18, 2016 ADMX LZ What is the connection? The naturalness issue: Naturalness= no large unnatural tuning in W, Z, h masses up-Higgs soft term radiative corrections superpotential mu term well-mixed TeV-scale stops suppress Sigma while lifting m(h)~125 GeV What about other measures: 2 @ log mZ ∆EENZ/BG = maxi where pi are parameters EENZ/BG: | @ log pi | * in past, applied to multi-param. effective theories; * in fundamental theory, param’s dependent * e.g. in gravity-mediation, apply to mu,m_3/2 * then agrees with Delta_EW what about large logs and light stops? * overzealous use of ~ symbol * combine dependent terms * cancellations possible * then agrees with Delta_EW SUSY mu problem: mu term is SUSY, not SUSY breaking: expect mu~M(Pl) but phenomenology requires mu~m(Z) • NMSSM: mu~m(3/2); beware singlets! • Giudice-Masiero: mu forbidden by some symmetry: generate via Higgs coupling to hidden sector • Kim-Nilles!: invoke SUSY version of DFSZ axion solution to strong CP: KN: PQ symmetry forbids mu term, but then it is generated via PQ breaking 2 m3/2 mhid/MP Little Hierarchy due to mismatch between ⇠ f m PQ breaking and SUSY breaking scales? a ⌧ hid Higgs mass tells us where 1012 GeV ma 6.2µeV to look for axion! ⇠ f ✓ a ◆ Simple mechanism to suppress up-Higgs soft term: radiative EWSB => radiatively-driven naturalness But what about SUSY mu term? There is a Little Hierarchy, but it is no problem µ m ⌧ 3/2 Mainly higgsino-like WIMPs thermally
    [Show full text]
  • Exploring Supersymmetry and Naturalness in Light of New Experimental Data
    Exploring supersymmetry and naturalness in light of new experimental data by Kevin Earl A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Department of Physics Carleton University Ottawa-Carleton Institute for Physics Ottawa, Canada August 27, 2019 Copyright ⃝c 2019 Kevin Earl Abstract This thesis investigates extensions of the Standard Model (SM) that are based on either supersymmetry or the Twin Higgs model. New experimental data, primar- ily collected at the Large Hadron Collider (LHC), play an important role in these investigations. Specifically, we examine the following five cases. We first consider Mini-Split models of supersymmetry. These types ofmod- els can be generated by both anomaly and gauge mediation and we examine both cases. LHC searches are used to constrain the relevant parameter spaces, and future prospects at LHC 14 and a 100 TeV proton proton collider are investigated. Next, we study a scenario where Higgsino neutralinos and charginos are pair produced at the LHC and promptly decay due to the baryonic R-parity violating superpotential operator λ00U cDcDc. More precisely, we examine this phenomenology 00 in the case of a single non-zero λ3jk coupling. By recasting an experimental search, we derive novel constraints on this scenario. We then introduce an R-symmetric model of supersymmetry where the R- symmetry can be identified with baryon number. This allows the operator λ00U cDcDc in the superpotential without breaking baryon number. However, the R-symmetry will be broken by at least anomaly mediation and this reintroduces baryon number violation.
    [Show full text]
  • Supersymmetric Dark Matter Candidates in Light of Constraints from Collider and Astroparticle Observables
    THESE` Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Specialit´ e´ : Physique Theorique´ Arretˆ e´ ministeriel´ : 7 aoutˆ 2006 Present´ ee´ par Jonathan DA SILVA These` dirigee´ par Genevieve` BELANGER´ prepar´ ee´ au sein du Laboratoire d’Annecy-le-Vieux de Physique Theorique´ (LAPTh) et de l’Ecole´ Doctorale de Physique de Grenoble Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables These` soutenue publiquement le 3 juillet 2013, devant le jury compose´ de : arXiv:1312.0257v1 [hep-ph] 1 Dec 2013 Dr. Rohini GODBOLE Professeur, CHEP Bangalore, Inde, Presidente´ Dr. Farvah Nazila MAHMOUDI Maˆıtre de Conferences,´ LPC Clermont, Rapporteur Dr. Ulrich ELLWANGER Professeur, LPT Orsay, Rapporteur Dr. Celine´ BŒHM Charge´ de recherche, Durham University, Royaume-Uni, Examinatrice Dr. Anupam MAZUMDAR Professeur, Lancaster University, Royaume-Uni, Examinateur Dr. Genevieve` BELANGER´ Directeur de Recherche, LAPTh, Directeur de these` A meus av´os. Contents Acknowledgements - Remerciements vii List of Figures xi List of Tables xvii List of Abbreviations xix List of Publications xxiii Introduction1 I Status of particle physics and cosmology ... and beyond5 1 From the infinitely small : the Standard Model of particle physics ...7 1.1 Building of the model : gauge sector . .8 1.2 Matter sector . 10 1.2.1 Leptons . 10 1.2.2 Quarks . 12 1.3 The Higgs mechanism . 13 1.4 Full standard picture . 16 1.5 Successes of the SM . 18 1.6 SM issues . 19 1.6.1 Theoretical problems . 19 1.6.2 Experimental discrepancies . 20 1.6.3 Cosmological connexion . 22 2 ... To the infinitely large : the Lambda Cold Dark Matter model 23 2.1 Theoretical framework .
    [Show full text]
  • Arxiv:1812.08975V1 [Physics.Hist-Ph] 21 Dec 2018 LHC, and Many Particle Physicists Expected BSM Physics to Be Detected
    Two Notions of Naturalness Porter Williams ∗ Abstract My aim in this paper is twofold: (i) to distinguish two notions of natu- ralness employed in Beyond the Standard Model (BSM) physics and (ii) to argue that recognizing this distinction has methodological consequences. One notion of naturalness is an \autonomy of scales" requirement: it prohibits sensitive dependence of an effective field theory's low-energy ob- servables on precise specification of the theory's description of cutoff-scale physics. I will argue that considerations from the general structure of effective field theory provide justification for the role this notion of natu- ralness has played in BSM model construction. A second, distinct notion construes naturalness as a statistical principle requiring that the values of the parameters in an effective field theory be \likely" given some ap- propriately chosen measure on some appropriately circumscribed space of models. I argue that these two notions are historically and conceptually related but are motivated by distinct theoretical considerations and admit of distinct kinds of solution. 1 Introduction Since the late 1970s, attempting to satisfy a principle of \naturalness" has been an influential guide for particle physicists engaged in constructing speculative models of Beyond the Standard Model (BSM) physics. This principle has both been used as a constraint on the properties that models of BSM physics must possess and shaped expectations about the energy scales at which BSM physics will be detected by experiments. The most pressing problem of naturalness in the Standard Model is the Hierarchy Problem: the problem of maintaining a scale of electroweak symmetry breaking (EWSB) many orders of magnitude lower than the scale at which physics not included in the Standard Model be- comes important.1 Models that provided natural solutions to the Hierarchy Problem predicted BSM physics at energy scales that would be probed by the arXiv:1812.08975v1 [physics.hist-ph] 21 Dec 2018 LHC, and many particle physicists expected BSM physics to be detected.
    [Show full text]
  • A Brief Naturalness Primer
    A brief naturalness primer Howard Baer University of Oklahoma EF08 meeting Sept. 17, 2020 twin pillars of guidance: naturalness & simplicity ``The appearance of fine-tuning ``Everything should be in a scientific theory is like a made as simple as cry of distress from nature, possible, but not complaining that something simpler’’ needs to be better explained’’ A. Einstein S. Weinberg Where are the sparticles? BG naturalness: m(gluino,stop)<~400 GeV mg˜ > 2.25 TeV mt˜1 > 1.1 TeV Is SUSY a failed enterprise (as is often claimed in popular press)? Putting Dirac and ’t Hooft naturalness aside, what we usually refer to as natural is practical naturalness An observable o1 + + on is natural if all independentOcontributions⌘ ··· o to are comparable to or less then i O O 2 2 d 2 u 2 m mH +⌃d (mH +⌃u)tan β Z = d − u µ2 m2 ⌃u(t˜ ) µ2) 2 tan2 β 1 Hu u 1,2 − − ' − − HB, Barger, Huang, Mustafayev, Tata, arXiv:1207.3343 The bigger the soft term, the more natural is its weak scale value, until EW symmetry no longer broken: living dangerously! EENZ/BG naturalness 2 @ log mZ ∆EENZ/BG maxi ⌘ | @ log pi | • depends on input parameters of model • different answers for same inputs assuming different models parameters introduced to parametrize our ignorance of SUSY breaking; not expected to be fundamental e.g. SUSY with dilaton-dominated breaking: m2 = m2 with m = A = p3m 0 3/2 1/2 − 0 3/2 (doesn’t make sense to use independent m0, mhf, A0) while ∆ BG tells us about fine-tuning in our computer codes, what we really want to know is: is nature fine-tuned or natural? For correlated soft terms, then ∆ ∆ BG ! EW Alternatively, only place independent soft terms makes sense is in multiverse: but then selection effects in action High scale (HS, stop mass) measure m2 µ2 + m2 (weak)=µ2 + m2 (⇤)+δm2 h ' Hu Hu Hu Implies 3 3rd generation squarks <500 GeV: δm2 SUSY ruled out under Hu ∆HS m2 ⌘ h BUT! too many terms ignored! NOT VALID! The bigger m2 (⇤) is, the bigger is the cancelling correction- Hu these terms are not independent.
    [Show full text]
  • Naturalness As a Reasonable Scientific Principle in Fundamental Physics
    Candidate: Casper Dani¨elDijkstra. Student Number: s2026104. Master's thesis for Philosophy of a Specific Discipline. Specialization: Natural Sciences. Naturalness as a reasonable scientific principle in fundamental physics Supervisor: Prof. Dr. Simon Friederich. Second examiner: Prof. Dr. Leah Henderson Third examiner: Prof. Dr. Frank Hindriks arXiv:1906.03036v1 [physics.hist-ph] 19 Apr 2019 Academic year: 2017/2018. Abstract Underdetermination by data hinders experimental physicists to test legions of fundamental theories in high energy physics, since these theories predict modifications of well-entrenched theories in the deep UV and these high energies cannot be probed in the near future. Several heuristics haven proven successful in order to assess models non-emperically and \naturalness" has become an oft-used heuristic since the late 1970s. The utility of naturalness is becoming pro- gressively more contested, for several reasons. The fact that many notions of the principle have been put forward in the literature (some of which are discordant) has obscured the physical content of the principle, causing confusion as to what naturalness actually imposes. Additionally, naturalness has been criticized to be a \sociological instrument" (Grinbaum 2007, p.18), an ill-defined dogma (e.g. by Hossenfelder (2018a, p.15)) and have an \aesthetic character" which is fundamentally different from other scientific principles (e.g. by Donoghue (2008, p.1)). I aim to clarify the physical content and significance of naturalness. Physicists' earliest understanding of natural- ness, as an autonomy of scales (AoS) requirement provides the most cogent definition of naturalness and I will assert that i) this provides a uniform notion which undergirds a myriad prominent naturalness conditions, ii) this is a reason- able criterion to impose on EFTs and iii) the successes and violations of naturalness are best understood when adhering to this notion of naturalness.
    [Show full text]