Plasma Cell Dyscrasias and Plasma Cell Leukaemia

Total Page:16

File Type:pdf, Size:1020Kb

Plasma Cell Dyscrasias and Plasma Cell Leukaemia P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, Main Road Bryanston, Johannesburg, South Africa www.thistle.co.za Tel: +27 (011) 463-3260 Fax: +27 (011) 463-3036 OR + 27 (0) 86-557-2232 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-2015/009. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. DIFFERENTIAL SLIDES LEGEND CYCLE 46 SLIDE 2 – MARCH 2015 PLASMA CELL DYSCRASIAS AND PLASMA CELL LEUKAEMIA Plasma Cell Dyscrasias Plasma cell dyscrasias are disorders of the plasma cells. Plasma cell dyscrasias are produced as a result of abnormal proliferation of a monoclonal population of plasma cells that may or may not secrete detectable levels of a monoclonal immunoglobulin or immunoglobulin fragment (paraprotein or M protein). Although the most common plasma cell dyscrasia is monoclonal gammopathy of undetermined significance (MGUS), closely related disorders include multiple myeloma, solitary plasmacytoma of bone, extramedullary plasmacytoma, Waldenström's macroglobulinemia (WM), primary amyloidosis, light chain deposition disease, paraproteinemia, and heavy-chain disease. The spectrum of MGUS, solitary plasmacytoma of bone, and asymptomatic and symptomatic multiple myeloma may actually represent a natural progression of the same disease. Classification of Plasma Cell Disorders Cryoglobulinemia Heavy chain disease Monoclonal gammopathy of undetermined significance Multiple myeloma Plasmacytoma Plasma cell leukemia POEMS syndrome Primary amyloidosis (Immunoglobulin light chain amyloidosis) Waldenström's macroglobulinemia Plasma Cell Leukaemia Plasma cell leukemia (PCL), a lymphoproliferative disorder, is a rare cancer involving plasma cells. Plasma cell leukemia is one of the most aggressive human neoplasms and constitutes 2% to 4% of all cases of plasma cell disorders. The WHO criterion for diagnosis of PCL is that plasma cells constitute more than 20% of cells in the peripheral blood with an absolute plasma cell count of more than 2 × 109/L. The presentation may be primary, de novo, or secondary, evolving from an existing case of multiple myeloma as part of the terminal phase of the disease. Approximately 60 to 70% of cases are primary. Page 1 of 3 P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, Main Road Bryanston, Johannesburg, South Africa www.thistle.co.za Tel: +27 (011) 463-3260 Fax: +27 (011) 463-3036 OR + 27 (0) 86-557-2232 e-mail : [email protected] Laboratory Findings Although there is overlap, the markers of plasma cells from patients with primary PCL is different from those of myeloma patients. PCL plasma cells more frequently express the CD20 antigen than those of multiple myeloma (50% vs. 17%), and they often lack CD56 antigen which is present on the majority of myeloma cells. CD56 is considered important in anchoring plasma cells to bone marrow stroma, and its expression is associated with a poor prognosis. CD28 is more frequently expressed on malignant plasma cells in secondary than in primary PCL, which is consistent with an observation made in myeloma, that is, that acquisition of the CD28 antigen on plasma cells appears to correlate with an increased proliferative rate and disease progression. Peripheral blood smear of Plasma cell leukaemia A: normal serum. B: multiple myeloma showing M component in the gamma region. C: densitometry tracing of A showing the 5 zones of the high resolution agarose electrophoresis .D: densitometry of the M component of B, termed the M Spike The chromosome characteristics or karyotypes of PCL plasma cells is complex. Using fluorescence in situ hybridization techniques, losses in the long arm of chromosome 13 (13q) and deletion of one the homologous chromosomes 13 (monosomy 13) exist in more than 80% of PCL patients. Losses on chromosome 16 also occur in approximately 80% of cases. Gains in long arm of chromosome 1 (1q) are present in approximately one-half of the patients determined by FISH, but in all patients by comparative genomic hybridization. Overexpression of the protein PRAD1/cyclin D1, which plays an important role in control of the cell cycle, has also been observed in PCL. Plasma cell leukemia is more frequent in light-chain (Bence Jones protein) or IgD myeloma. It is seen less frequently in IgA or IgG myeloma. Clinical Course The clinical presentation of primary PCL is more aggressive than that of multiple myeloma, and the clinical features found in PCL involves combination of those found in acute leukemia and those found in myeloma. PCL patients have a higher presenting tumor burden; higher frequencies of involvement of organs other than the bone marrow by disease, thrombocytopenia, anemia, hypercalcemia and renal impairment, increased levels of serum lactate dehydrogenase (LDH), β-2 microglobulin and plasma cell proliferative activity. The incidence of lytic bone lesions is slightly lower than that usually observed in multiple myeloma. PCL is extremely aggressive associated with short survival (median survival of 6–8 months). Therapy and Prognosis Treatment of plasma cell leukemia is by supportive care and systemic chemotherapy. Combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (or dexamethasone) can be used. A second combination is the use of cyclophosphamide, dexamethasone, and thalidomide as for myeloma. Another regimen termed VMCP/VBAP uses alternating vincristine, melphalan (M), cyclophosphamide, prednisone/vincristine, carmustine, doxorubicin, and prednisone poly- chemotherapy. In general, combination chemotherapy has resulted in median survivals of 18 to 20 months compared to 2 to 6 months when single agent therapy is used. There are anecdotal reports of excellent responses and 2 to 3 year disease-free survivals after autologous stem Page 2 of 3 P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, Main Road Bryanston, Johannesburg, South Africa www.thistle.co.za Tel: +27 (011) 463-3260 Fax: +27 (011) 463-3036 OR + 27 (0) 86-557-2232 e-mail : [email protected] cell transplantation. Autologous transplantation may increase benefit from conventional therapy and high dose melphalan may prolong progression free and overall survival. Although the clinical and laboratory features of primary and secondary PCL are similar, the response to therapy and overall survival in primary and secondary PCL go from poor to worse. Patients with secondary PCL are usually refractory to chemotherapy and have a poor survival compared with duration (median <2 months). Novel agents like thalidomide, lenalidomide and bortezomib have been recently used, alone or in combination with conventional chemotherapeutics like melphalan or cyclophosphamide. Two cases had encouraging results with bortezomib. Recent studies demonstrate that velcade (bortezomib) based regimens offer a significant profit in patients suffering from PCL. More aggressive therapeutic regimens like DT-PACE or protocols used in ALL offer a significant response rate, but with short remission interval. References 1. http://en.wikipedia.org/wiki/Plasma_cell_leukemia 2. http://en.wikipedia.org/wiki/Plasma_cell_dyscrasia 3. https://online.epocrates.com/u/2931179/Multiple+myeloma Questions 1. Differentiate between Plasma Cell Dyscrasias and Plasma Cell Leukemia. 2. Discuss the lab finding in PCL. 3. Discuss 3 other plasma cell disorders with regards to lab findings. Page 3 of 3 .
Recommended publications
  • The Lymphoma and Multiple Myeloma Center
    The Lymphoma and Multiple Myeloma Center What Sets Us Apart We provide multidisciplinary • Experienced, nationally and internationally recognized physicians dedicated exclusively to treating patients with lymphoid treatment for optimal survival or plasma cell malignancies and quality of life for patients • Cellular therapies such as Chimeric Antigen T-Cell (CAR T) therapy for relapsed/refractory disease with all types and stages of • Specialized diagnostic laboratories—flow cytometry, cytogenetics, and molecular diagnostic facilities—focusing on the latest testing lymphoma, chronic lymphocytic that identifies patients with high-risk lymphoid malignancies or plasma cell dyscrasias, which require more aggresive treatment leukemia, multiple myeloma and • Novel targeted therapies or intensified regimens based on the other plasma cell disorders. cancer’s genetic and molecular profile • Transplant & Cellular Therapy program ranked among the top 10% nationally in patient outcomes for allogeneic transplant • Clinical trials that offer tomorrow’s treatments today www.roswellpark.org/partners-in-practice Partners In Practice medical information for physicians by physicians We want to give every patient their very best chance for cure, and that means choosing Roswell Park Pathology—Taking the best and Diagnosis to a New Level “ optimal front-line Lymphoma and myeloma are a diverse and heterogeneous group of treatment.” malignancies. Lymphoid malignancy classification currently includes nearly 60 different variants, each with distinct pathophysiology, clinical behavior, response to treatment and prognosis. Our diagnostic approach in hematopathology includes the comprehensive examination of lymph node, bone marrow, blood and other extranodal and extramedullary tissue samples, and integrates clinical and diagnostic information, using a complex array of diagnostics from the following support laboratories: • Bone marrow laboratory — Francisco J.
    [Show full text]
  • MYD88 L265P Is a Marker Highly Characteristic Of, but Not Restricted To, Waldenstro¨M’S Macroglobulinemia
    Leukemia (2013) 27, 1722–1728 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstro¨m’s macroglobulinemia C Jime´ nez1, E Sebastia´n1, MC Chillo´n1,2, P Giraldo3, J Mariano Herna´ndez4, F Escalante5, TJ Gonza´lez-Lo´ pez6, C Aguilera7, AG de Coca8, I Murillo3, M Alcoceba1, A Balanzategui1, ME Sarasquete1,2, R Corral1, LA Marı´n1, B Paiva1,2, EM Ocio1,2, NC Gutie´ rrez1,2, M Gonza´lez1,2, JF San Miguel1,2 and R Garcı´a-Sanz1,2 We evaluated the MYD88 L265P mutation in Waldenstro¨m’s macroglobulinemia (WM) and B-cell lymphoproliferative disorders by specific polymerase chain reaction (PCR) (sensitivity B10 À 3). No mutation was seen in normal donors, while it was present in 101/117 (86%) WM patients, 27/31 (87%) IgM monoclonal gammapathies of uncertain significance (MGUS), 3/14 (21%) splenic marginal zone lymphomas and 9/48 (19%) non-germinal center (GC) diffuse large B-cell lymphomas (DLBCLs). The mutation was absent in all 28 GC-DLBCLs, 13 DLBCLs not subclassified, 35 hairy cell leukemias, 39 chronic lymphocyticleukemias(16withM-component), 25 IgA or IgG-MGUS, 24 multiple myeloma (3 with an IgM isotype), 6 amyloidosis, 9 lymphoplasmacytic lymphomas and 1 IgM-related neuropathy. Among WM and IgM- MGUS, MYD88 L265P mutation was associated with some differences in clinical and biological characteristics, although usually minor; wild-type MYD88 cases had smaller M-component (1.77 vs 2.72 g/dl, P ¼ 0.022), more lymphocytosis (24 vs 5%, P ¼ 0.006), higher lactate dehydrogenase level (371 vs 265 UI/L, P ¼ 0.002), atypical immunophenotype (CD23 À CD27 þþFMC7 þþ), less Immunoglobulin Heavy Chain Variable gene (IGHV) somatic hypermutation (57 vs 97%, P ¼ 0.012) and less IGHV3–23 gene selection (9 vs 27%, P ¼ 0.014).
    [Show full text]
  • Spotlight on Ixazomib: Potential in the Treatment of Multiple Myeloma Barbara Muz Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2016 Spotlight on ixazomib: Potential in the treatment of multiple myeloma Barbara Muz Washington University School of Medicine in St. Louis Rachel N. Ghazarian Washington University School of Medicine in St. Louis Monica Ou Washington University School of Medicine in St. Louis Micha J. Luderer Washington University School of Medicine in St. Louis Hubert D. Kusdono Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Muz, Barbara; Ghazarian, Rachel N.; Ou, Monica; Luderer, Micha J.; Kusdono, Hubert D.; and Azab, Abdel K., ,"Spotlight on ixazomib: Potential in the treatment of multiple myeloma." Drug Design, Development and Therapy.2016,10. 217-226. (2016). https://digitalcommons.wustl.edu/open_access_pubs/5207 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Barbara Muz, Rachel N. Ghazarian, Monica Ou, Micha J. Luderer, Hubert D. Kusdono, and Abdel K. Azab This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/5207 Journal name: Drug Design, Development and Therapy Article Designation: Review Year: 2016 Volume:
    [Show full text]
  • Plasma Cells Leukemia Masquerading As Lymphocyte-Monocyte Peak on Automated Cell Analyzer Dr
    Saudi Journal of Pathology and Microbiology Abbreviated Key Title: Saudi J Pathol Microbiol ISSN 2518-3362 (Print) |ISSN 2518-3370 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com Case Report Plasma Cells Leukemia Masquerading as Lymphocyte-Monocyte Peak on Automated Cell Analyzer Dr. Akshita Rattan1*, Dr. Anita Tahlan2, Dr. Swathi C Prabhu2, Dr. Sanjay D'Cruz3 1Junior Resident, Department of Pathology, Government Medical College Sector-32, Chandigarh, India 2Department of Pathology, Government Medical College Sector-32, Chandigarh, India 3Department of Dermatology, Government Medical College Sector-32, Chandigarh, India DOI: 10.36348/sjpm.2021.v06i02.006 | Received: 03.02.2021 | Accepted: 14.02.2021 | Published: 16.02.2021 *Corresponding author: Dr. Akshita Rattan Abstract Background: Peripheral blood plasmacytosis can be seen in plasma cell leukemia (PCL) or plasma cell myeloma (PCM). As plasma cells show dysplasia or lymphocytoid morphology, they masquerade as monocytes or high fluorescent lymphocytes (HFL) on automated cell analyzer. The early suspicion and detection are of clinical importance for diagnostic and prognostic reasons. Methods: Automated cell analyzer was used for routine CBC examination. Peripheral blood smear examination was performed for enumeration and characterization of cells in peripheral blood followed by bone marrow examination and ancillary techniques. Conclusion: Lymphocyte-Monocyte peak with increased high HFL count on CBC should prompt a smear
    [Show full text]
  • POEMS Syndrome and Small Lymphocytic Lymphoma Co-Existing in the Same Patient: a Case Report and Review of the Literature
    Open Access Annals of Hematology & Oncology Special Article - Hematology POEMS Syndrome and Small Lymphocytic Lymphoma Co-Existing in the Same Patient: A Case Report and Review of the Literature Kasi Loknath Kumar A1,2*, Mathur SC3 and Kambhampati S1,2* Abstract 1Department of Hematology and Oncology, Veterans The coexistence of B-cell Chronic Lymphocytic Leukemia/Small Affairs Medical Center, Kansas City, Missouri, USA Lymphocytic Lymphoma (CLL/SLL) and Plasma Cell Dyscrasias (PCD) has 2Department of Internal Medicine, Division of rarely been reported. The patient described herein presented with a clinical Hematology and Oncology, University of Kansas Medical course resembling POEMS syndrome. The histopathological evaluation Center, Kansas City, Kansas, USA of the bone marrow biopsy established the presence of an osteosclerotic 3Department of Pathology and Laboratory Medicine, plasmacytoma despite the absence of monoclonal protein in the peripheral Veterans Affairs Medical Center, Kansas City, Missouri, blood. Cytochemical analysis of the plasmacytoma demonstrated monotypic USA expression of lambda (λ) light chains, a typical finding associated with POEMS *Corresponding authors: Kambhampati S and Kasi syndrome. A subsequent lymph node biopsy performed to rule out Castleman’s Loknath Kumar A, Department of Internal Medicine, disease led to an incidental finding of B-CLL/SLL predominantly involving the Division of Hematology and Oncology, University of B-zone of the lymph node. The B-CLL population expressed CD19, CD20, CD23, Kansas Medical Center, Kansas City, 2330 Shawnee CD5, HLA-DR, and kappa (κ) surface light chains. To the best of our knowledge, Mission Parkway, MS 5003, Suite 210, Westwood, KS, a simultaneous manifestation of CLL/SLL and POEMS has not been previously 66205, Kansas, USA, Tel: 9135886029; Fax: 9135884085; reported in the literature.
    [Show full text]
  • Solitary Plasmacytoma: a Review of Diagnosis and Management
    Current Hematologic Malignancy Reports (2019) 14:63–69 https://doi.org/10.1007/s11899-019-00499-8 MULTIPLE MYELOMA (P KAPOOR, SECTION EDITOR) Solitary Plasmacytoma: a Review of Diagnosis and Management Andrew Pham1 & Anuj Mahindra1 Published online: 20 February 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review Solitary plasmacytoma is a rare plasma cell dyscrasia, classified as solitary bone plasmacytoma or solitary extramedullary plasmacytoma. These entities are diagnosed by demonstrating infiltration of a monoclonal plasma cell population in a single bone lesion or presence of plasma cells involving a soft tissue mass, respectively. Both diseases represent a single localized process without significant plasma cell infiltration into the bone marrow or evidence of end organ damage. Clinically, it is important to classify plasmacytoma as having completely undetectable bone marrow involvement versus minimal marrow involvement. Here, we discuss the diagnosis, management, and prognosis of solitary plasmacytoma. Recent Findings There have been numerous therapeutic advances in the treatment of multiple myeloma over the last few years. While the treatment paradigm for solitary plasmacytoma has not changed significantly over the years, progress has been made with regard to diagnostic tools available that can risk stratify disease, offer prognostic value, and discern solitary plasmacytoma from quiescent or asymptomatic myeloma at the time of diagnosis. Summary Despite various studies investigating the use of systemic therapy or combined modality therapy for the treatment of plasmacytoma, radiation therapy remains the mainstay of therapy. Much of the recent advancement in the management of solitary plasmacytoma has been through the development of improved diagnostic techniques.
    [Show full text]
  • Primary Plasma Cell Leukemia: a Practical Approach to Diagnosis and Clinical Management
    PRIMARY PLASMA CELL LEUKEMIA: A PRACTICAL APPROACH TO DIAGNOSIS AND CLINICAL MANAGEMENT Primary Plasma Cell Leukemia: A Practical Approach to Diagnosis and Clinical Management Wilson I. Gonsalves, MD Abstract clonal plasma cells. Although Gluzinski and Reichenstein were the 1 Primary plasma cell leukemia (pPCL) represents a rare first to describe a case of PCL back in 1906, it was Kyle and Noel but most aggressive form of multiple myeloma. Its who went on to define it as the presence of plasma cells consisting leukemic clinical characteristics, as seen by the presence of more than 20% of the differential white count in the peripheral of circulating clonal plasma cells, its unique molecular blood, or an absolute plasma cell peripheral blood count of greater 9 2 and cytogenetic aberrations, and its exceedingly poor than 2.0 x 10 cells/L. If PCL is detected at diagnosis de novo survival outcomes set it apart from traditional multiple without a prior history of MM, it is considered primary plasma cell myeloma. Recent advances in the utilization of novel leukemia (pPCL). HoWever, if PCL arises in a patient with a known agents and high-dose chemotherapy in the upfront man- history of MM, it is considered secondary PCL (sPCL). The con- agement of patients with pPCL is finally bearing fruit in dition occurs as a progressive event of the disease in 1% to 4% of 3 terms of improving survival outcomes, albeit modestly. patients with MM. With the improvement in survival experienced 4 Early recognition of pPCL in a newly diagnosed multiple by patients with MM, many are living long enough to have their myeloma patient is crucial for providing the optimal MM transform into sPCL.
    [Show full text]
  • Progression of a Solitary, Malignant Cutaneous Plasma-Cell Tumour to Multiple Myeloma in a Cat
    Case Report Progression of a solitary, malignant cutaneous plasma-cell tumour to multiple myeloma in a cat A. Radhakrishnan1, R. E. Risbon1, R. T. Patel1, B. Ruiz2 and C. A. Clifford3 1 Mathew J. Ryan Veterinary Hospital of the University of Pennsylvania, Philadelphia, PA, USA 2 Antech Diagnostics, Farmingdale, NY, USA 3 Red Bank Veterinary Hospital, Red Bank, NJ, USA Abstract An 11-year-old male domestic shorthair cat was examined because of a soft-tissue mass on the left tarsus previously diagnosed as a malignant extramedullary plasmacytoma. Findings of further diagnostic tests carried out to evaluate the patient for multiple myeloma were negative. Five Keywords hyperproteinaemia, months later, the cat developed clinical evidence of multiple myeloma based on positive Bence monoclonal gammopathy, Jones proteinuria, monoclonal gammopathy and circulating atypical plasma cells. This case multiple myeloma, pancytopenia, represents an unusual presentation for this disease and documents progression of an plasmacytoma extramedullary plasmacytoma to multiple myeloma in the cat. Introduction naemia, although it also can occur with IgG or IgA Plasma-cell neoplasms are rare in companion ani- hypersecretion (Matus & Leifer, 1985; Dorfman & mals. They represent less than 1% of all tumours in Dimski, 1992). Clinical signs of hyperviscosity dogs and are even less common in cats (Weber & include coagulopathy, neurologic signs (dementia Tebeau, 1998). Diseases represented in this category and ataxia), dilated retinal vessels, retinal haemor- of neoplasia include multiple myeloma (MM), rhage or detachment, and cardiomyopathy immunoglobulin M (IgM) macroglobulinaemia (Dorfman & Dimski, 1992; Forrester et al., 1992). and solitary plasmacytoma (Vail, 2001). These con- Coagulopathy can result from the M-component ditions can result in an excess secretion of Igs interfering with the normal function of platelets or (paraproteins or M-component) which produce a clotting factors.
    [Show full text]
  • A Case of Rare Subtype of Multiple Myeloma: Secondary Plasma Cell Leukemia Author Affiliations Are Listed at the End of This Article
    Sanwal et al. HCA Healthcare Journal of Medicine (2021) 2:1 https://doi.org/10.36518/2689-0216.1114 Case Report A Case of Rare Subtype of Multiple Myeloma: Secondary Plasma Cell Leukemia Author affiliations are listed at the end of this article. Chandra Sanwal, DO,1 Aftab Mahmood, MD,1 Michael Bailey, MD,2 Krutika Patel, MD,1 Antonio Guzman, MD1 Correspondence to: Chandra Sanwal, DO Abstract Corpus Christi Medical Description Center Plasma cell leukemia is a rare, aggressive form of multiple myeloma with the presence of 7101 S Padre Island Dr circulating plasma cells in the peripheral blood. There are two types of plasma cell leukemia, Corpus Christi, TX 78412 primary and secondary, depending on if there was previous evidence of multiple myeloma. The diagnostic criterion of plasma cell leukemia is based on a percentage (>20%) or an abso- (chandrasanwal7@gmail. lute number of (≥2 x 109/L) plasma cells in the peripheral circulation. We present the clinical com) course of a rare case of secondary plasma cell leukemia in a patient from the time of initial diagnosis of multiple myeloma, its remission period of about 5 years, and its final progres- sion into refractory secondary plasma cell leukemia. This case report details the patient’s presenting symptoms, pertinent laboratory and diagnostic imaging findings, and histopa- thology of peripheral blood and bone marrow. This case report presents a chronological comparison of key laboratory findings that manifest the progression of multiple myeloma into secondary plasma cell leukemia. It also offers a brief review of the literature for the diagnosis and treatment of plasma cell leukemia.
    [Show full text]
  • Plasma Cell Leukemia – Facts and Controversies: More Questions Than Answers?
    Clinical Hematology International Vol. 2(4); December (2020), pp. 133–142 DOI: https://doi.org/10.2991/chi.k.200706.002; eISSN 2590-0048 https://www.atlantis-press.com/journals/chi/ Review Plasma Cell Leukemia – Facts and Controversies: More Questions than Answers? Anna Suska1, David H. Vesole2, Jorge J. Castillo3, Shaji K. Kumar4, Hari Parameswaran5, Maria V. Mateos6, Thierry Facon7, Alessandro Gozzetti8, Gabor Mikala9, Marta Szostek1, Joseph Mikhael10, Roman Hajek11, Evangelos Terpos12, Artur Jurczyszyn1,* 1Department of Hematology, Jagiellonian University Medical College, Kopernika 17, Krakow 31-501, Poland 2The John Theurer Cancer Center at Hackensack UMC, Hackensack, NJ, USA 3Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA 4Division of Hematology, Mayo Clinic, Rochester, MN, USA 5Medical College of Wisconsin, Milwaukee, WI, USA 6Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (CAUSA/IBSAL), Salamanca, Spain 7Service des Maladies du Sang, Hôpital Claude Huriez, Lille, France 8Division of Hematology and Transplants, University of Siena, Siena, Italy 9Department of Hematology and Stem Cell Transplantation, South-Pest Central Hospital, Natl. Inst. Hematol. Infectol, Budapest, Hungary 10Translational Genomics Research Institute, City of Hope Cancer Center, Phoenix, Arizona, USA 11University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic 12Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece ARTICLE INFO ABSTRACT Article History Plasma cell leukemia (PCL) is an aggressive hematological malignancy characterized by an uncontrolled clonal proliferation of Received 07 April 2020 plasma cells (PCs) in the bone marrow and peripheral blood. PCL has been defined by an absolute number of circulating PCs Accepted 01 June 2020 exceeding 2.0 × 109/L and/or >20% PCs in the total leucocyte count.
    [Show full text]
  • Ninlaro® (Ixazomib)
    Ninlaro® (ixazomib) (Oral) Document Number: IC-0261 Last Review Date: 10/26/2020 Date of Origin: 12/04/2015 Dates Reviewed: 12/04/2015, 10/2016, 10/2017, 10/2018, 11/2019, 11/2020 I. Length of Authorization 6,7 Coverage will be provided for six months and may be renewed unless otherwise specified. Waldenström Macroglobulinemia: Initial coverage will be provided for 6 months consisting of six 4-week cycles (6 doses) and may be renewed up to a maximum of six 8-week cycles (6 doses) Systemic Light Amyloidosis: Coverage may be renewed up to a maximum of twelve 4-week cycles (12 doses) II. Dosing Limits A. Quantity Limit (max daily dose) [NDC Unit]: 2.3 mg capsule: 3 capsules per 28 days 3 mg capsule: 3 capsules per 28 days 4 mg capsule: 3 capsules per 28 days B. Max Units (per dose and over time) [HCPCS Unit]: 12 mg per 28 days III. Initial Approval Criteria 1 Coverage is provided in the following conditions: Patient is at least 18 years of age; AND Universal Criteria 1 Patient will avoid concomitant use with strong CYP3A inducers (e.g., rifampin, phenytoin, carbamazepine, St. John’s Wort, etc.); AND Multiple Myeloma† Ф 1-3 Used as initial therapy; AND Proprietary & Confidential © 2020 Magellan Health, Inc. o Used in combination with lenalidomide and dexamethasone in patients who are not transplant candidates; OR o Used in combination with cyclophosphamide and dexamethasone in patients who are transplant candidates; OR Used as maintenance therapy; AND o Used as single agent therapy in patients who are transplant candidates; AND .
    [Show full text]
  • An Unfortunate Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal Gammopathy, and Skin Change (POEMS)
    Open Access Case Report DOI: 10.7759/cureus.1086 An Unfortunate Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal Gammopathy, and Skin Change (POEMS) Faraz Afridi 1 , Jorge Otoya 2 , Samantha F. Bunting 3 , Gerard Chaaya 1 1. Internal Medicine, University of Central Florida College of Medicine 2. Hematology and Medical Oncology, Osceola Regional Medical Center 3. University of Central Florida College of Medicine Corresponding author: Faraz Afridi, [email protected] Abstract POEMS syndrome is an acronym for polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy and skin changes, which is a rare paraneoplastic disease of monoclonal plasma cells. A mandatory criterion to diagnose POEMS syndrome is the presence of a monoclonal plasma cell dyscrasia in which plasma cell leukemia is the most aggressive form. Early identification of the features of the POEMS syndrome is critical for patients to identify an underlying plasma cell dyscrasias and to reduce the morbidity and mortality of the disease by providing early therapy. We present a case of a 64-year-old male who presented with non-specific symptoms and was found to have primary plasma cell leukemia, which was part of his unfortunate POEMS syndrome. Categories: Endocrinology/Diabetes/Metabolism, Internal Medicine, Oncology Keywords: poems syndrome, plasma cell leukemia Introduction Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome, also known as Crow-Fukase syndrome is a rare paraneoplastic disease of monoclonal plasma cells which was first reported in 1956 [1]. The acronym of “POEMS” was derived in 1980 by Bardwick and colleagues on the basis of the five unique characteristic features [2]. The POEMS syndrome can present with plasma cell dyscrasias and therefore early identification of this syndrome may aid in the clinical course of plasma cell leukemias and other plasma cell proliferative disorders.
    [Show full text]