Hotspot Concept: the French Polynesia Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Hotspot Concept: the French Polynesia Complexity 6 Hotspot Concept: The French Polynesia Complexity Claudia Adam CGE/Univ. Evora Portugal 1. Introduction At the surface of the Earth, volcanism is found in several tectonic contexts. It is largely concentrated at the plate margins: at divergent plate boundaries, mid-oceanic ridges, where new tectonic plates are created, and at convergent margins, subduction zones, where the lithospheric plates dive into the mantle. In the interior of the oceanic plates, we find however linear volcanic chains, composed of several volcanoes aligned along the direction of the plate motion. Their origin has been attributed to the drifting of the lithospheric plates over a fixed, hot mantle upwelling, deeply rooted in the mantle. Since several years, this concept is debated and the existence of the plumes themselves is questioned. Here we focus on French Polynesia, a region characterized by a great concentration of volcanism and situated on the South Pacific Superswell, a wide area associated with numerous geophysical anomalies, including anomalously shallow seafloor considering its age, a dip in the geoid, and a mantle characterized by slow seismic velocities. 14% of the active volcanism is concentrated in an area covering less than 5% of the globe. A wide range of volcanic features should be noted: en echelon ridges, isolated seamounts and chains of midplate volcanoes. The characteristics of these chains often depart from the classical definition of hotspots. In particular, the broad depth anomalies surrounding the chains, called swells, display peculiar morphologies. These characteristics are however well recovered by a numerical model based on highly resolved seismic tomography model, describing the first 240 km of the upper mantle. This demonstrates that a direct link exists between the surface observations and mantle flows. However, even if the dynamics of the shallowest part of the mantle is sufficient to explain the surface observations, the existence of the secondary plumes at the origin of the hotspot chains, cannot be accounted for without involving a deeper component: the South Pacific superplume. This latter displays a complex signature in tomography models where it appears as broad low velocity anomalies throughout the lower mantle up to 1000 km, depth at which they split into narrower and more localized anomalies, a few hundred kilometers in diameter. Two of these narrow upwelling are associated with hotspots - the Society and Macdonald ones -, whereas the upwellings at the origin of the other chains seem to be restricted to the upper mantle. The pattern pointed out by the tomography is well retried by analogical experiments where two layers of miscible fluids are superimposed in a tank heated from below and cooled from above. In some conditions, long-lived thermochemical domes that oscillates vertically are produced. Experimentally, secondary plumes are observed at the top of the rising domes. www.intechopen.com 126 Updates in Volcanology – A Comprehensive Approach to Volcanological Problems 2. Hotspot concept Hotspot chains are chains of midplate volcanoes, surrounded by wide shallow regions, called swells. The chains are composed of several volcanoes, aligned along the direction of the tectonic plate motion. The age of volcanism increases linearly along the chain, and active volcanism is often found at one extremity of the chain. One of the most classical example of such chains is Hawaii. This pattern, partially observed hundreds of years ago, has fascinated people and several explanations for its origin have been proposed. 2.1 First hypothesis on the origin of linear volcanic chains: ancient legends The notion of volcanism migration is even older than the plate tectonics theory. According to Hawaiian legends, the fuming Pele goddess get angry with her sister after a terrible quarrel and went south-east, building in her way Diamond head on the Oahu island, Haleakala on the Maui island and the Kilauea on Hawaii, where she is living now - the actual active extremity of the chain. Another explanation, points out to the Namazu giant carp, leaving beneath Japan, which would be responsible for the Mount Fuji eruption when it shifts position. An extrapolation of this Japanese legend, (Holden and Vogt, 1977), makes Namazu swimming in the mantle, leaving behind it a buoyant trail of tholeiitic bubbles, rising ponderously, and creating chains of midplate volcanoes (Fig. 1). Fig. 1. Alternative to mantle plume theory (based on ancient Japanese legend), from Holden and Vogt (1977). 2.2 The hotpot concept: Mantle plumes and plate tectonics More recently, the hotspot concept emerged at the same time that the plate tectonics theory (Wilson, 1963). As hotspot chains (Fig. 2) are linear volcanic alignments, parallel to the www.intechopen.com Hotspot Concept: The French Polynesia Complexity 127 direction of the plate motion, and displaying regular volcanism age progression, with active volcanism emplaced at one extremity of the chain, Morgan (1971, 1972) proposes that the origin of these tracks may be due to deep mantle plumes. He imagines the plumes as vertical conduits through which hot mantle flows upward. The hotspot tracks are then due to the drifting of a plate over a stationary mantle source. The plate displacement pushes the old volcanoes away from the source as young volcanoes are formed above the source (Fig. 2). Fig. 2. The hotspot concept: the hotspot tracks are due to the drifting of a plate over a stationary mantle source. The plate displacement pushes the old volcanoes away from the source as young volcanoes are formed above the source- from Clouard (2001) The plume itself would be characterized by a mushroom-shaped head and a thin, long stem. When the head of the plume reaches the lithosphere, it produces a massive volcanic event, and creates traps (or oceanic plateaus) at the surface. This episode is followed by the interaction of the stem with the lithosphere, which produces the linear volcanic chain. 2.3 The plume debate The simple model of the interaction of a hot mantle upwelling, deeply rooted in the mantle, and the overriding lithosphere has since then been challenged, and the existence of plume is now questioned. The characteristics which fuels the more energetically the 'plume debate' is the depth at which they initiate (Clouard & Bonneville, 2001; Sleep, 1990; Anderson, 2000). From the fluid dynamics point of view, a plume can only initiate from instabilities out of a thermal boundary layer. Morgan (1971, 1972) proposes first that plumes initiate in the lower mantle, but later has an idea of a second type of hotspot (Morgan et al. 1978). Other authors invokes superficial sources which use the weakness zones of the lithosphere to express themselves at the surface (Turcotte & Oxburgh, 1973; Anderson, 1975; Foulger et al., 2005; Foulger, 2010; Anderson, 2010). This last hypothesis, also called theory of Plate Tectonics Processes (PTP), points to a passive mantle. The volcanism emplacement would then be controlled by the stress field in the plate, and the magnitude of volcanism by the fertility of the underlying shallow mantle (Foulger et al., 2005; Foulger, 2010; Anderson, 2010). Higher mantle temperatures are not required in this case, and only the shallow part of the mantle is involved in the volcanism emplacement. Geochemist have tried to answer this open question. Rocks from hotspot volcanoes (OIB: Ocean Island Basalts) appear indeed enriched in noble gazes when compared to Mid Oceanic Ridge Basalts (MORB). As mid-oceanic ridges sample a shallow part of the mantle, plumes must tap deep reservoirs, enriched in noble gazes, which remained isolated from www.intechopen.com 128 Updates in Volcanology – A Comprehensive Approach to Volcanological Problems intermixing. However, recent studies indicate that there is no need to invoke deep isolated reservoirs to account for the geochemical signatures of OIB (Anderson, 1998; Allègre, 2002). In then appears that "geochemistry will not deliver the silver bullet for proving or disproving plumes" (Hofmann & Hart, 2007), neither discriminate the depth at which mantle upwellings initiate. If the plumes at the origin of hotspots are hot mantle upwellings, they mantle beneath midplate chains should be characterized by anomalously low shear velocities (Vs). However, most of the available tomography models lack resolution at the scale of the plume, and therefore stems are not easily identifiable. Moreover, a low velocity anomaly does not unswervingly imply a hotter region, but could also be interpreted in terms of a chemical anomaly (Karato, 2008). The morphology of the volcanic chain itself bring information about the plume dynamics. According to the classical definition, first proposed by Morgan (1971, 1972), there must be a flood basalt near the oldest extremity of the chain, and the linear chain should display a long and monotonous age progression. The swell surrounding the chain is a direct consequence of the buoyant plume upwelling, and therefore, is also commonly used as the parameter to quantify the hotspot strength (Sleep, 1990; Courtillot et al., 2003; Vidal & Bonneville, 2004, Adam et al., 2005). By analyzing the previously described criteria, Courtillot et al. (2003) show that three kind of plumes may coexist, each of them corresponding to a boundary between the CMB and the seafloor: those which initiate at the CMB (primary plumes or Wilson-Morgan), the secondary plumes initiating at the transition zone (also called secondary hot spots) and the "Andersonian" plumes that may be due to a passive response to forms of lithospheric breakup (Anderson, 2010; Foulger et al., 2005). According to their analysis, the primary (or Wilson-Morgan) hotspots in the Pacific may be Hawaii, Louisville and Eastern, and the secondary ones Caroline, Macdonald, Pitcairn, Samoa and Tahiti (see Fig. 3.) Let us now see in a more practical way which are the characteristics of hotspot chains, by considering what is happening in French Polynesia. 3. French polynesia region 3.1 Description of the french polynesia volcanism This study focuses on the French Polynesia (Fig.
Recommended publications
  • Hot Spots and Plate Movement Exercise
    Name(s) Hot Spots and Plate Movement exercise Two good examples of present-day hot spot volcanism, as derived from mantle plumes beneath crustal plates, are Kilauea, Hawaii (on the Pacific oceanic plate) and Yellowstone (on the continental North American plate). These hot spots have produced a chain of inactive volcanic islands or seamounts on the Pacific plate (Fig. 1) and volcanic calderas or fields on the North American plate (Fig. 2) – see the figures below. Figure 1. Chain of islands and seamounts produced by the Hawaiian hot spot. Figure 2. Chain of volcanic fields produced by the Yellowstone hot spot. The purposes of this exercise are to use locations, ages, and displacements for each of these hot spot chains to determine 1. Absolute movement directions, and 2. Movement rates for both the Pacific and western North American plates, and then to use this information to determine 3. Whether the rates and directions of the movement of these two plates have been the same or different over the past 16 million years. This exercise uses the Pangaea Breakup animation, which is a KML file that runs in the standalone Google Earth application. To download the Pangaea Breakup KML file, go here: http://csmgeo.csm.jmu.edu/Geollab/Whitmeyer/geode/pangaeaBreakup /PangaeaBreakup.kml To download Google Earth for your computer, go here: https://www.google.com/earth/download/ge/agree.html Part 1. Hawaiian Island Chain Load the PangaeaBreakup.kml file in Google Earth. Make sure the time period in the upper right of the screen says “0 Ma” and then select “Hot Spot Volcanos” under “Features” in the Places menu on the left of the screen.
    [Show full text]
  • Cenozoic Changes in Pacific Absolute Plate Motion A
    CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations .
    [Show full text]
  • S41467-020-18361-4.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18361-4 OPEN Seafloor evidence for pre-shield volcanism above the Tristan da Cunha mantle plume ✉ Wolfram H. Geissler 1 , Paul Wintersteller 2,3, Marcia Maia4, Anne Strack3, Janina Kammann5, Graeme Eagles 1, Marion Jegen6, Antje Schloemer1,7 & Wilfried Jokat 1,2 Tristan da Cunha is assumed to be the youngest subaerial expression of the Walvis Ridge hot spot. Based on new hydroacoustic data, we propose that the most recent hot spot volcanic 1234567890():,; activity occurs west of the island. We surveyed relatively young intraplate volcanic fields and scattered, probably monogenetic, submarine volcanoes with multibeam echosounders and sub-bottom profilers. Structural and zonal GIS analysis of bathymetric and backscatter results, based on habitat mapping algorithms to discriminate seafloor features, revealed numerous previously-unknown volcanic structures. South of Tristan da Cunha, we discovered two large seamounts. One of them, Isolde Seamount, is most likely the source of a 2004 submarine eruption known from a pumice stranding event and seismological analysis. An oceanic core complex, identified at the intersection of the Tristan da Cunha Transform and Fracture Zone System with the Mid-Atlantic Ridge, might indicate reduced magma supply and, therefore, weak plume-ridge interaction at present times. 1 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany. 2 Faculty of Geosciences, University of Bremen, Klagenfurter Str. 4, 28359 Bremen, Germany. 3 MARUM—Center of Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany. 4 CNRS-UBO Laboratoire Domaines Océaniques, Institut Universitaire Européen de la Mer, 29280 Plouzané, France.
    [Show full text]
  • Ancient Helium and Tungsten Isotopic Signatures Preserved in Mantle Domains Least Modified by Crustal Recycling
    Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling Matthew G. Jacksona,1, Janne Blichert-Toftb,2, Saemundur A. Halldórssonc,2, Andrea Mundl-Petermeierd, Michael Bizimise, Mark D. Kurzf, Allison A. Pricea, Sunna Harðardóttirc, Lori N. Willhitea,g, Kresten Breddamh, Thorsten W. Beckeri,j, and Rebecca A. Fischerk aDepartment of Earth Science, University of California, Santa Barbara, CA 93106-9630; bLaboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon, CNRS, and Université de Lyon, 69007 Lyon, France; cNordVulk, Institute of Earth Sciences, University of Iceland, 102 Reykjavík, Iceland; dDepartment of Lithospheric Research, University of Vienna, 1090 Vienna, Austria; eSchool of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208; fDepartment of Marine Chemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; gDepartment of Geology, University of Maryland, College Park, MD 20742; hRadiation Protection, Danish Health Authority, 2300 Copenhagen, Denmark; iInstitute for Geophysics, The Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713; jDepartment of Geological Sciences, The Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713; and kDepartment of Earth & Planetary Sciences, Harvard University, Cambridge, MA 02138 Edited by Albrecht W. Hofmann, Max Planck Institute for Chemistry, Mainz, Germany, and approved October 22, 2020 (received for review May 14, 2020) Rare high-3He/4He signatures in ocean island basalts (OIB) erupted Sr-Nd-Pb isotopic space, these four geochemical endmembers can at volcanic hotspots derive from deep-seated domains preserved in be used to define the apices of a tetrahedron (8) (Fig.
    [Show full text]
  • Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume
    Recycled ancient ghost carbonate in the Pitcairn mantle plume Xiao-Jun Wanga, Li-Hui Chena,1, Albrecht W. Hofmannb,1, Takeshi Hanyuc, Hiroshi Kawabatad, Yuan Zhonga, Lie-Wen Xiee, Jin-Hua Shia, Takashi Miyazakic, Yuka Hiraharac,2, Toshiro Takahashic,3, Ryoko Sendac,4, Qing Changc, Bogdan S. Vaglarovc, and Jun-Ichi Kimurac aState Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 210023 Nanjing, China; bAbteilung Klimageochemie, Max-Planck-Institut für Chemie, D-55128 Mainz, Germany; cDepartment of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology, 237-0061 Yokosuka, Japan; dFaculty of Science and Technology, Kochi University, 780-8520 Kochi, Japan; and eState Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029 Beijing, China Edited by Richard W. Carlson, Carnegie Institution for Science, Washington, DC, and approved July 17, 2018 (received for review November 9, 2017) The extreme Sr, Nd, Hf, and Pb isotopic compositions found in Pitcairn stable isotope tracer, magnesium, which undergoes strong iso- Island basalts have been labeled enriched mantle 1 (EM1), character- topic fractionation during precipitation of carbonate from izing them as one of the isotopic mantle end members. The EM1 seawater/pore fluids (12), producing distinctively low δ26Mg origin has been vigorously debated for over 25 years, with interpre- values in marine carbonates. Because of this, it appears to be an tations ranging from delaminated subcontinental lithosphere, to excellent tracer of a more specific recycled component than, for recycled lower continental crust, to recycled oceanic crust carrying example, oxygen isotopes. ancient pelagic sediments, all of which may potentially generate the There are many models for the creation of chemical hetero- requisite radiogenic isotopic composition.
    [Show full text]
  • The Pitcairn Hotspot in the South Paci¢C: Distribution and Composition of Submarine Volcanic Sequences
    Available online at www.sciencedirect.com R Journal of Volcanology and Geothermal Research 121 (2003) 219^245 www.elsevier.com/locate/jvolgeores The Pitcairn hotspot in the South Paci¢c: distribution and composition of submarine volcanic sequences R. Hekinian a;Ã, J.L. Chemine¤e b, J. Dubois b, P. Sto¡ers a, S. Scott c, C. Guivel d, D. Garbe-Scho«nberg a, C. Devey e, B. Bourdon b, K. Lackschewitz e, G. McMurtry f , E. Le Drezen g a Universita«t Kiel, Institut fu«r Geowissenschaften, OlshausentraMe 40, 24098 Kiel, Germany b Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris, France c Geology Department, University of Toronto, Toronto, ON, Canada M5S 3B1 d Universite¤ de Nantes, Faculte¤ des Sciences, 2 Rue de la Houssinie're, 92208 Nantes, France e University of Bremen, Geowissenschaften, Postfach 340440, 28334 Bremen, Germany f University of Hawaii, Department of Oceanography, 1000 Pope Road, Honolulu, HI 96822, USA g IFREMER Centre de Brest, Ge¤oscience Marine, 29280 Plouzane¤, France Received 19 March 2002; accepted 30 August 2002 Abstract Multibeam bathymetry and bottom imaging (Simrad EM12D) studies on an area of about 9500 km2 were conducted over the Pitcairn hotspot near 25‡10PS, 129‡ 20PW. In addition, 15 dives with the Nautile submersible enabled us to obtain ground-true observations and to sample volcanic structures on the ancient ocean crust of the Farallon Plate at 3500^4300 m depths. More than 100 submarine volcanoes overprint the ancient crust and are divided according to their size into large ( s 2000 m in height), intermediate (500^2000 m high) and small ( 6 500 m high) edifices.
    [Show full text]
  • The Plate Tectonics of Cenozoic SE Asia and the Distribution of Land and Sea
    Cenozoic plate tectonics of SE Asia 99 The plate tectonics of Cenozoic SE Asia and the distribution of land and sea Robert Hall SE Asia Research Group, Department of Geology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK Email: robert*hall@gl*rhbnc*ac*uk Key words: SE Asia, SW Pacific, plate tectonics, Cenozoic Abstract Introduction A plate tectonic model for the development of SE Asia and For the geologist, SE Asia is one of the most the SW Pacific during the Cenozoic is based on palaeomag- intriguing areas of the Earth$ The mountains of netic data, spreading histories of marginal basins deduced the Alpine-Himalayan belt turn southwards into from ocean floor magnetic anomalies, and interpretation of geological data from the region There are three important Indochina and terminate in a region of continen- periods in regional development: at about 45 Ma, 25 Ma and tal archipelagos, island arcs and small ocean ba- 5 Ma At these times plate boundaries and motions changed, sins$ To the south, west and east the region is probably as a result of major collision events surrounded by island arcs where lithosphere of In the Eocene the collision of India with Asia caused an the Indian and Pacific oceans is being influx of Gondwana plants and animals into Asia Mountain building resulting from the collision led to major changes in subducted at high rates, accompanied by in- habitats, climate, and drainage systems, and promoted dis- tense seismicity and spectacular volcanic activ- persal from Gondwana via India into SE Asia as well
    [Show full text]
  • Geoscenario Introduction: Yellowstone Hotspot Yellowstone Is One of America’S Most Beloved National Parks
    Geoscenario Introduction: Yellowstone Hotspot Yellowstone is one of America’s most beloved national parks. Did you know that its unique scenery is the result of the area’s geology? Yellowstone National Park lies in a volcanic Hydrothermal Features caldera, an area that collapsed after an Hot springs are naturally warm bodies of eruption. Below the caldera is a hotspot. water. Hot magma heats water underground There, huge amounts of magma sit just below to near boiling. Some organisms still manage Earth’s surface. In this geoscenario, you’ll to live in these springs. learn some of the geologic secrets that make Yellowstone such a special place. Its vivid colors and huge size make Grand Prismatic www.fossweb.com Spring the most photographed feature at Yellowstone. Extremely hot water rises 37 m from a crack in Earth’s crust to form this hot spring. permission. further Berkeley without use California of classroom University than the of other use or Regents The redistribution, Copyright resale, for Investigation 8: Geoscenarios 109 2018-2019 Not © 1558514_MSNG_Earth History_Text.indd 109 11/29/18 3:15 PM The water in mud pots tends to be acidic. Hotspot Theory It dissolves the surrounding rock. Hot water Most earthquakes and volcanic eruptions mixes with the dissolved rock to create occur near plate boundaries, but there are bubbly pots. some exceptions. In 1963, John Tuzo Wilson Other hydrothermal features include (1908–1993) came up with a theory for these fumaroles and geysers. Fumaroles exceptions. He described stationary magma are cracks that allow steam to escape chambers beneath the crust.
    [Show full text]
  • The Kerguelen Plume: What We Have Learned from ~120 Myr of Volcanism
    The Kerguelen Plume: What We Have Learned From ~120 Myr of Volcanism F.A. Frey (1) and D. Weis (2) (1) Earth Atmospheric & Planetary Sciences, MIT, Cambridge, MA 02139, (2) EOS, University of British Columbia, Vancouver, BC V6T1Z4 The Kerguelen Plume has had a major role in creating major volcanic features in the Eastern Indian Ocean over the last ~120 myr. In order to understand this role, igneous basement has been drilled and cored at 9 sites on the Kerguelen Plateau, 2 sites on Broken Ridge and 7 sites on the Ninetyeast Ridge(1,2,3,4). In addition, stratigraphic volcanic sections on the two relatively young islands (Kerguelen and Heard) constructed on the Kerguelen Plateau have been studied(5,6), as well as dredged samples from seamounts defining a linear trend between these islands(7). Major results are: (a) The Kerguelen Plateau began forming at ~120 Ma, after Gondwana breakup. Eruption ages decrease from ~120 Ma in the southern plateau to ~95 Ma in the central plateau. This age range is not consistent with a pulse of volcanism associated with melting of a single, large plume head. (b) The sampled volcanic portion of the plateau is dominantly tholeiitic basalt that formed islands, but the waning stage of volcanism included alkalic basalt and highly evolved, explosively erupted trachytes and rhyolites. (c) At several geographically dispersed locations on the plateau, the Cretaceous tholeiitic basalt has been contaminated by a component derived from continental crust. Geophysical data are consistent with continental crust in the oceanic lithosphere and clasts of ancient garnet-biotite gneiss occur in a conglomerate intercalated with basalt on Elan Bank.
    [Show full text]
  • Aula 4 – Tipos Crustais Tipos Crustais Continentais E Oceânicos
    14/09/2020 Aula 4 – Tipos Crustais Introdução Crosta e Litosfera, Astenosfera Crosta Oceânica e Tipos crustais oceânicos Crosta Continental e Tipos crustais continentais Tipos crustais Continentais e Oceânicos A interação divergente é o berço fundamental da litosfera oceânica: não forma cadeias de montanhas, mas forma a cadeia desenhada pela crista meso- oceânica por mais de 60.000km lineares do interior dos oceanos. A interação convergente leva inicialmente à formação dos arcos vulcânicos e magmáticos (que é praticamente o berço da litosfera continental) e posteriormente à colisão (que é praticamente o fechamento do Ciclo de Wilson, o desparecimento da litosfera oceânica). 1 14/09/2020 Curva hipsométrica da terra A área de superfície total da terra (A) é de 510 × 106 km2. Mostra a elevação em função da área cumulativa: 29% da superfície terrestre encontra-se acima do nível do mar; os mais profundos oceanos e montanhas mais altas uma pequena fração da A. A > parte das regiões de plataforma continental coincide com margens passivas, constituídas por crosta continental estirada. Brito Neves, 1995. Tipos crustais circunstâncias geométrico-estruturais da face da Terra (continentais ou oceânicos); Característica: transitoriedade passar do Tempo Geológico e como forma de dissipar o calor do interior da Terra. Todo tipo crustal adveio de um outro ou de dois outros, e será transformado em outro ou outros com o tempo, toda esta dança expressando a perda de calor do interior para o exterior da Terra. Nenhum tipo crustal é eterno; mais "duráveis" (e.g. velhos Crátons de de "ultra-longa duração"); tipos de curta duração, muitas modificações e rápida evolução potencial (como as bacias de antearco).
    [Show full text]
  • Ages of Seamounts, Islands and Plateaus on the Pacific Plate Version 2.1 - 15 May 2004
    Ages of seamounts, islands and plateaus on the Pacific plate version 2.1 - 15 May 2004 Valérie Clouard(1) and Alain Bonneville(2) [email protected] [email protected] (1) Departamento de Geofisica - U. de Chile Blanco Encalada 2002 / Casilla 2777 / Santiago / Chile Tel. : +56 2 678 42 96 / Fax: +56 2 696 86 86 (2) Lab. Géosciences Marines / Institut de Physique du Globe / CNRS 4, Place Jussieu/ 75252 Paris Cedex 05 / France Tel.:+33 1 44 27 68 94 / Fax: +33 1 44 27 99 69 This report presents a compilation of reliable dating of seamounts and islands of the Pacific plate (1300 samples). Paleomagnetic ages obtained from seamount magnetism have not been considered. We also do not consider foraminifers ages which only give minimum ages of seamounts. Only radiometric ages are thus considered, and Ar/Ar ages are preferred over K/Ar, when both exist at the same place. The following table presents the results of this compilation with the references of the selected data. An average age (as used in [1] and [2]) is proposed when several ages have been determined for the same volcanic stage, in this case the geographical coordinates are given only once on the line of the average age. When several volcanic stages exist for a same seamount or island, their ages are also presented with the same rule as above. NB: an ASCII file (ages_pacific_v2.1.dat) with only average ages and geographical coordinates is also available for plotting purposes. Averag Average Name (island, Long. E Latitude Age Error Island or seamount e age error seamount, plateau or Method Ref.
    [Show full text]
  • Deep Structure of the Northern Kerguelen Plateau and Hotspot
    Philippe Charvis,l Maurice Recq,2 Stéphane Operto3 and Daniel Brefort4 'ORSTOM (UR 14), Obsematoire Ocinnologiq~~ede Ville~rnnche-srir.mer, BP 4S, 06230 Villefmnche-sitr-mer, Fronce 'Doniaines océoniqiies (LIRA 1278 dir CNRS & GDR 'CEDO'), UFR des Sciences et Techniqites, Universite de Bretagne Occidentale, BP S09, 6 Aveme Le Gorgeit, 29285 Brest Cedex, France 3Laboratoire de Céodyrrnniiqire soils-marine, GEMCO, (URA 718 dir CNRS), Observatoire Océanologiqite de Villefranche-snr-mer, BP 45, 062320 Villefranclie-sur-nier, France 41nsfitici de Physique dii Globe de Paris, Laboratoire de Sismologie (LA195 du CNRS), Boîte 89, 4 place Jiissieit, 15252 Paris Cedex 05, France Accepted 1995 ?larch 10. Received 1995 March 10; in original form 1993 June 16 SUMMARY Seismic refraction profiles were carried out in 1983 and 1987 throughout the Kerguelen Isles (southern Indian Ocean, Terres Australes & Antarctiques Françaises, TAAF) and thereafter at sea on the Kerguelen-Heard Plateau during the MD66/KeOBS cruise in 1991. These profiles substantiate the existence of oceanic-type crust beneath the Kerguelen-Heard Plateau stretching from 46"s to SOS, including the archipelago. Seismic velocities within both structures are in the range of those encountered in 'standard' oceanic crust. However, the Kerguelen Isles and the Kerguelen-Heard Plateau differ strikingly in their velocity-depth structure. Unlike the Kerguelen Isles, the .thickening of the crust below the Kerguelen-Heard Plateau is caused by a 17km thick layer 3. Velocities of 7.4 km s-I or so Lvithin the transition to mantle zone below the Kerguelen Isles are ascribed to the lower crust intruded and/or underplated by upper mantle material.
    [Show full text]