Review of the Biology, Ecology, and Management of Halyomorpha Halys (Hemiptera: Pentatomidae) in China, Japan, and the Republic of Korea

Total Page:16

File Type:pdf, Size:1020Kb

Review of the Biology, Ecology, and Management of Halyomorpha Halys (Hemiptera: Pentatomidae) in China, Japan, and the Republic of Korea POPULATION ECOLOGY Review of the Biology, Ecology, and Management of Halyomorpha halys (Hemiptera: Pentatomidae) in China, Japan, and the Republic of Korea DOO-HYUNG LEE,1,2 BRENT D. SHORT,1 SHIMAT V. JOSEPH,3,4 J. CHRISTOPHER BERGH,3 1 AND TRACY C. LESKEY Environ. Entomol. 42(4): 627Ð641 (2013); DOI: http://dx.doi.org/10.1603/EN13006 ABSTRACT Native to China, Japan, Korea, and Taiwan, the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) was Þrst detected in the United States in the mid-1990s. Since establishing in the United States, this invasive species has caused signiÞcant economic losses in agriculture and created major nuisance problems for home and business owners, especially in the mid-Atlantic region. Basic and applied questions on H. halys have been addressed in its native range in Asia since the mid-1900s and the research outcomes have been published in at least 216 articles from China, Japan, and the Republic of Korea. In Asia, H. halys is described as an occasional or outbreak pest of a number of crops such as apple, pear, persimmon, and soybeans. This species is considered a nuisance pest as well, particularly in Japan. This review summarizes 100 articles primarily translated from Chinese, Japanese, and Korean to English. The content of this review focuses on the biology, ecology, and management of H. halys in Asia, with speciÞc emphasis on nomenclature, life history, host range, damage, economic importance, sampling and moni- toring tools, and management strategies. This information from the native range of H. halys provides greater context and understanding of its biology, ecology, and management in North America. KEY WORDS brown marmorated stink bug, invasive species, Asia The brown marmorated stink bug, Halyomorpha halys large numbers of invading adults subsequently over- (Stål) (Hemiptera: Pentatomidae), is an invasive spe- wintering in human-made structures (Hamilton 2009, cies native to China, Japan, Korea, and Taiwan (Hoe- Inkley 2012). beke and Carter 2003). First discovered in the United Basic and applied studies of Halyomorpha spp. in States in the mid-1990s in or near Allentown, PA (Hoe- Asia have been reported in at least 216 articles from beke and Carter 2003), the distribution of H. halys has China, Japan, and the Republic of Korea since the grown steadily and, as of 2013, it had been ofÞcially mid-1900s (e.g., Sasaki 1905; K. Funayama, personal detected in 40 states, the District of Columbia (www. communication) (Fig. 1; Supp. 1 and 2 [online only] stopbmsb.org), Hamilton, Ontario, Canada (Fogain for annotated bibliographies). The number of publi- and Graff 2011), Switzerland (Wermelinger et al. cations from Asia on Halyomorpha spp. has increased 2008), Liechtenstein (Arnold 2009), Germany (Heck- rapidly since the 1970s. However, only Ϸ15% of these mann 2012), and France (Callot and Brua 2013). Based publications were written entirely in English, while on climatic data, Zhu et al. (2012) predicted that the the rest were entirely in Asian languages or had partial eastern, central, and portions of the paciÞc northwest English text (e.g., abstract, tables, Þgure captions, and of the United States are favorable for widespread es- references). Consequently, this review encompasses tablishment of H. halys. Indeed, this invasive species information from a selection of publications from has emerged as a key pest in tree fruit in the mid- China, Japan, and the Republic of Korea. Of the Atlantic region, with damage reported on vegetables, known publications, 100 articles were selected for row crops, ornamentals, and potential risks to small inclusion in this review, based on their citation record fruit and grapes (Leskey et al. 2012). In addition, H. and breadth of scope. In this review article, we sum- halys has become a serious nuisance because of the marized information on H. halys published from Asia on the following topics: nomenclature, life history, host range, damage economic importance, sampling 1 U.S. Department of AgricultureÐAgriculture Research Service, Appalachian Fruit Research Station, 2217 Wiltshire Rd., Kear- and monitoring tools, and management strategies. neysville, WV 25430-2771. 2 Corresponding author, e-mail: [email protected]. 3 Department of Entomology, Virginia Tech, AHS AREC, 595 Lau- Nomenclature rel Grove Rd., Winchester, VA 22602. 4 Current Address: University of California Cooperative Extension, H. halys has had a confusing nomenclatural record, 1432 Abbott St., Salinas, CA 93901. having previously been referred to as H. mista or H. 0046-225X/13/0627Ð0641$04.00/0 ᭧ 2013 Entomological Society of America 628 ENVIRONMENTAL ENTOMOLOGY Vol. 42, no. 4 Fig. 1. Number of articles on Halyomorpha halys published by decade in China, Japan, and the Republic of Korea. brevis (synonyms), and H. picus (misidentiÞcation) 126Њ 31Ј E) and is reported to complete up to two (Rider et al. 2002). Ultimately, Josifov and Kerzhner generations in southern portions of the country (Bae (1978) determined that only one species of Halyo- et al. 2008, 2009). H. halys is also widely distributed morpha, H. halys, is present in eastern China, Japan, across Japan, and tends to be the principal species in and Korea. Therefore, all references to Halyomorpha cooler regions (Adachi et al. 2007). In Japan, one or spp. from these locations are considered synonymous two generations have been reported based on anec- with H. halys (Rider et al. 2002). In this review article, dotal evidence, as well as laboratory and Þeld studies we followed this nomenclatural veriÞcation. (Saito et al. 1964, Watanabe et al. 1978, Oda et al. 1980, Yanagi and Hagihara 1980, Kawada and Kitamura 1983a, Fujiie 1985, Katayama et al. 1993, Funayama Life History 2008). Watanabe (1980) suggested that H. halys is Studies of the life history and seasonal population univoltine and bivoltine in western and eastern Japan, dynamics of H. halys on economically important crops respectively, though no supporting data were pre- and in adjacent unmanaged landscapes have generally sented. revealed one or two generations in its native range in Overwintering Adults. H. halys adults begin moving Asia. The life history of H. halys has been described to overwintering sites in September (Saito et al. 1964, primarily based on the univoltine populations in the Kobayashi and Kimura 1969, Kawada and Kitamura studies reviewed here, although limited phenological 1992) (Fig. 3). This activity was reported to increase information of bivoltine H. halys populations is in- by mid-October (Qin 1990, Zhang et al. 1993) and to cluded. We have also incorporated results of studies continue into November (Kobayashi and Kimura focused on effects of photoperiod, temperature, and 1969, Watanabe et al. 1978, Yanagi and Hagihara 1980, diet on H. halys reproduction, development, survivor- Zhang et al. 1993, Funayama 2012b). The majority of ship, and diapause. H. halys become inactive below 9ЊC (Li et al. 2007). Distribution and Voltinism. In China, one or two Aggregations of adults are found in dark locations in generations of H. halys are commonly present (Qin overwintering sites and, once settled, the individuals 1990, Zhang et al. 1993, Li et al. 1996; as reviewed by are unlikely to leave (Toyama et al. 2011) unless stored Yu and Zhang 2007, Chu et al. 1997), although Hoff- nutrients in the fat body are depleted (Funayama man (1931) suggested that four or even six generations 2012b). Toyama et al. (2006) suggested that aggrega- may occur in the Kwangtung (Guangdong) province tions were the result of adults responding to tactile (23o N, 113o E) (Fig. 2). Bivoltine populations in and/or olfactory cues, but not visual cues. H. halys are China begin ovipositing in mid- to late May (Wang and commonly found overwintering in human-made Wang 1988, Zhang et al. 1993, Qiu 2007). Following structures (Kobayashi and Kimura 1969, Yanagi and these overwintered adults, Þrst generation adults be- Hagihara 1980, Watanabe et al. 1994c, Funayama gin to lay eggs from late June to early July (Qin 1990) 2003). Qin (1990) reported that more H. halys ßew to or mid- to late-July (Zhang et al. 1993, Qiu 2007), with the west-facing portion of buildings than other cardi- second generation adults observed between late Au- nal directions. Overwintering adults have also been gust (Qiu 2007) and early to mid-September (Qin reported in natural landscapes in litter and tree holes 1990, Zhang et al. 1993). H. halys has not been reported (Qin 1990), under the bark of cedar trees (Ueno and from Xinjiang (42Њ N, 85Њ E), Ningxia (37Њ N, 106Њ E), Shoji 1978a), and in dry, high elevation mountain Qinghai (35Њ N, 96Њ E), or Tibetan (32Њ N, 89Њ E) terrain (Wang and Wang 1988). provinces of China (as reviewed by Yu and Zhang Survivorship of overwintering H. halys has been 2007). H. halys has been found across the Republic of examined in relation to temperature. Kiritani (2007) Korea, including the southern island of Jeju (33Њ 25Ј N, cited a report (Plant Protection Division, MAFF 1986) August 2013 LEE ET AL.: REVIEW OF ASIAN LITERATURE ON Halyomorpha halys 629 Fig. 2. Number of generations of Halyomorpha halys reported in Asia. Numbers in the Þgure correspond to the following references: 1Bae et al. 2008; 2Chu et al. 1997; 3Fujiie 1985; 4Funayama 2008; 5Hoffmann 1931; 6Hou et al. 2009; 7Katayama et al. 1993; 8Kawada and Kitamura 1983a; 9Oda et al. 1980; 10Qin 1990; 11Saito et al. 1964; 12Watanabe et al. 1978; 13Yanagi and Hagihara 1980; 14Yang et al. 2009; 15Zhang et al. 1993. Map is not to scale. that related H. halys overwintering mortality to mean Funayama 2002a, Qiu 2007, Cai et al. 2008). Some temperatures in January and February, and concluded authors reported that adults exiting overwintering that each 1ЊC rise above 4ЊC would result in a 13.5% sites temporarily use host plants such as Chinese ar- increase in survivorship.
Recommended publications
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • First Records of Halyomorpha Halys (Stål, 1855) (Hemiptera: Heteroptera: Pentatomidae) in Vorarlberg and Vienna, Austria
    ©Österr. Ges. f. Entomofaunistik, Wien, download unter www.zobodat.at Beiträge zur Entomofaunistik 16: 115–139 From the west and from the east? First records of Halyomorpha halys (STÅL, 1855) (Hemiptera: Heteroptera: Pentatomidae) in Vorarlberg and Vienna, Austria. Aus dem Westen und dem Osten? Erste Nachweise von Halyomorpha halys (STÅL, 1855) (Hemiptera: Heteroptera: Pentatomidae) in Vorarlberg und Wien, Österreich. The Brown Marmorated Stink Bug, Halyomorpha halys (STÅL, 1855), is native to East Asia (China, Taiwan, Japan, Korea, Vietnam) (LEE & al. 2013). It was first discovered outside its native distribution range in North America in the mid-1990s (HOEBEKE & CARTER 2003) and has spread to more than 40 U.S. federal states and Canada (Ontario) since then. The first record in Europe dates back to 2004, when specimens were found in Liechtenstein (ARNOLD 2009). Halyomorpha halys was subsequently recorded in several cantons in Switzerland (e.g., WERMELINGER & al. 2008, WYNIGER & KMENT 2010, HAYE & al. 2014a), southern Germany (HEckMANN 2012) and northeastern regions of France (CALLOT & BRUA 2013). In 2012 it was detected in Modena, northern Italy (MAISTRELLO & al. 2013), and until 2014 approximately 200 records were made in northern Italy (MAISTRELLO & al. 2014). Genetic data indicate that Italian populations derive from at least two independent introduction events, one from Switzerland and one from Asia or North America (CESARI & al. 2015). In 2013 H. halys was detected in France in the region Île-de-France, some 400 km further west (GARROUSTE & al. 2014), and in Hungary in the vicinity of Budapest (VÉTEK & al. 2014), several hundred kilometres away from the closest known records in Italy.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2021-01 General 2021/001 New data on quarantine pests and pests of the EPPO Alert List 2021/002 Update on the situation of quarantine pests in the Russian Federation 2021/003 Update on the situation of quarantine pests in Tajikistan 2021/004 Update on the situation of quarantine pests in Uzbekistan 2021/005 New and revised dynamic EPPO datasheets are available in the EPPO Global Database Pests 2021/006 Anoplophora glabripennis eradicated from Austria 2021/007 Popillia japonica is absent from Germany 2021/008 First report of Scirtothrips aurantii in Spain 2021/009 Agrilus planipennis found in Saint Petersburg, Russia 2021/010 First report of Spodoptera frugiperda in Syria 2021/011 Spodoptera frugiperda found in New South Wales, Australia 2021/012 Spodoptera ornithogalli (Lepidoptera Noctuidae - yellow-striped armyworm): addition to the EPPO Alert List 2021/013 First report of Xylosandrus compactus in mainland Spain 2021/014 First report of Eotetranychus lewisi in mainland Portugal 2021/015 First report of Meloidogyne chitwoodi in Spain 2021/016 Update on the situation of the potato cyst nematodes Globodera rostochiensis and G. pallida in Portugal Diseases 2021/017 First report of tomato brown rugose fruit virus in Belgium 2021/018 Update on the situation of tomato brown rugose fruit virus in Spain 2021/019 Update on the situation of Acidovorax citrulli in Greece with findings
    [Show full text]
  • Incidence of Rice Bug,Leptocorisaoratorius (F.) (Hemiptera: Alydidae) Using White Muscardinefungus Beauveriabassiana (Bals.) Vuill.In Upland Rice
    IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 10, December 2014. www.ijiset.com ISSN 2348 – 7968 Incidence of Rice Bug,Leptocorisaoratorius (F.) (Hemiptera: Alydidae) Using White MuscardineFungus Beauveriabassiana (Bals.) Vuill.In Upland Rice Pio P. Tuan, PhD* Department of Agricultural Sciences, College of Agriculture, Fisheries, and Natural Resources University of Eastern Philippines, University Town, Catarman, Northern Samar, Philippines Abstract A field experiment was conducted to evaluate the incidence of Rice bug, Leptocorisaoratorius(F.) using B. bassiana as mycoinsectice under upland conditions. Field population of L. oratorius was not significantly affected by B. bassiana7 DAS, but significant at 15 DAS. The application of B. bassiana did not significantly affect the damage caused by L. oratoriuson rice grains.The results suggest that B. bassiana cannot be used as a sole mortality factor in the management of rice bug under upland conditions. More field experimentations are necessary taking into consideration the influence of environmental factors and how these can be manipulated in favor of the fungal insecticide. Key Words: Conidia, substrate, microbial insecticide, upand rice, abiotic environmental factors INTRODUCTION Rice bug, Leptrocorisaoratorius (F.) is one of the major insect pests infesting rice in upland areas. Several species of rice bugs occur in the Philippines, but L. oratorius is the most prevalent (Reissig et al., 1986; Litsinger et al., 1987). Upland rice is usually cultivated for organic rice or with less application of fertilizer and pesticides. The increasing demand for organically produced foods including rice, has contributed to the adoption of ecologically oriented pest control methods. Consequently, reduced pesticide use has become a strong option to protect the environment and human health.
    [Show full text]
  • Border Habitat Effects on Captures of Halyomorpha Halys
    insects Article Border Habitat Effects on Captures of Halyomorpha halys (Hemiptera: Pentatomidae) in Pheromone Traps and Fruit Injury at Harvest in Apple and Peach Orchards in the Mid-Atlantic, USA James Christopher Bergh 1,*, William R. Morrison III 2 , Jon W. Stallrich 3, Brent D. Short 4, John P. Cullum 5 and Tracy C. Leskey 5 1 Virginia Tech, Alson Smith, Jr. Agricultural Research and Extension Center, Winchester, VA 22602, USA 2 United States Department of Agriculture Agricultural Research Service, Center for Animal Health and Grain Research, Manhattan, KS 66502, USA; [email protected] 3 Department of Statistics, Carolina State University, Raleigh, NC 27695, USA; [email protected] 4 Trécé, Inc., Adair, OK 74330, USA; [email protected] 5 United States Department of Agriculture Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA; [email protected] (J.P.C.); [email protected] (T.C.L.) * Correspondence: [email protected]; Tel.: +1-540-232-6046 Simple Summary: Brown marmorated stink bug (BMSB) is a significant threat to the production of tree fruit, corn and soybean, and some vegetable crops in much of the USA and abroad. Its feeding causes injury that reduces crop quality and yield. BMSB invades crop fields from adjoining habitats, Citation: Bergh, J.C.; Morrison, W.R., where it also feeds and develops on a broad range of wild and cultivated plants. Thus, it is considered III; Stallrich, J.W.; Short, B.D.; Cullum, a perimeter-driven threat, and research on management tactics to reduce insecticide applications J.P.; Leskey, T.C. Border Habitat against it has focused on intervention at crop edges.
    [Show full text]
  • Hemiptera: Heteroptera: Pentatomidae: Pentatominae
    CONSPECTUS OF AEPTINI STÅL, 1871 (HEMIPTERA: HETEROPTERA: PENTATOMIDAE: PENTATOMINAE) A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Eduardo Iván Faúndez In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Entomology July 2017 Fargo, North Dakota North Dakota State University Graduate School Title CONSPECTUS OF AEPTINI STÅL, 1871 (HEMIPTERA: HETEROPTERA: PENTATOMIDAE: PENTATOMINAE) By Eduardo Iván Faúndez The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. David A. Rider Chair Dr. Allan C. Ashworth Dr. Mark Boetel Dr. Rebecca Simmons Approved: 07-13-2017 Frank Casey Date Department Chair ABSTRACT The Pentatominae tribe Aeptini is revised. A key to the known genera is provided, together with redescription and figures. The genus Paramenestheus is revised, including a key to the species and figures to all the included taxa. Two new genera and eight new species are discovered and described. A phylogenetic analysis is included for the Aeptini, with two approaches, cladistic and maximum likelihood, both morphologically based. After these analysis it is concluded that it is a monophyletic tribe and has to be split into two subtribes: Aeptina (including Aeptus and Eribotes) and Menesthina (including Aeliosoma, Hillieria, Menestheus, Paramenestheus, Pseudaelia, New Genus 1, New Genus 2.). Diagnoses for both subtribes are included. Biogeographically it is hypothesized that the Aeptini have a Gondwanian origin which explains it current disjunct distribution in Africa and Australia. The importance of the findings on this dissertation, as well as the relationships among Aeptini and other Pentatominae groups is commented and disccused.
    [Show full text]
  • Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
    __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N.
    [Show full text]
  • Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha Halys in Europe with a Large-Scale Monitoring Program
    insects Article Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha halys in Europe with a Large-Scale Monitoring Program Livia Zapponi 1 , Francesco Tortorici 2 , Gianfranco Anfora 1,3 , Simone Bardella 4, Massimo Bariselli 5, Luca Benvenuto 6, Iris Bernardinelli 6, Alda Butturini 5, Stefano Caruso 7, Ruggero Colla 8, Elena Costi 9, Paolo Culatti 10, Emanuele Di Bella 9, Martina Falagiarda 11, Lucrezia Giovannini 12, Tim Haye 13 , Lara Maistrello 9 , Giorgio Malossini 6, Cristina Marazzi 14, Leonardo Marianelli 12 , Alberto Mele 15 , Lorenza Michelon 16, Silvia Teresa Moraglio 2 , Alberto Pozzebon 15 , Michele Preti 17 , Martino Salvetti 18, Davide Scaccini 15 , Silvia Schmidt 11, David Szalatnay 19, Pio Federico Roversi 12 , Luciana Tavella 2, Maria Grazia Tommasini 20, Giacomo Vaccari 7, Pietro Zandigiacomo 21 and Giuseppino Sabbatini-Peverieri 12,* 1 Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via Mach 1, 38098 S. Michele all’Adige, TN, Italy; [email protected] (L.Z.); [email protected] (G.A.) 2 Dipartimento di Scienze Agrarie, Forestali e Alimentari, University di Torino (UniTO), Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; [email protected] (F.T.); [email protected] (S.T.M.); [email protected] (L.T.) 3 Centro Agricoltura Alimenti Ambiente (C3A), Università di Trento, Via Mach 1, 38098 S. Michele all’Adige, TN, Italy 4 Fondazione per la Ricerca l’Innovazione e lo Sviluppo Tecnologico dell’Agricoltura Piemontese (AGRION), Via Falicetto 24, 12100 Manta, CN,
    [Show full text]
  • Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States
    Journal of Integrated Pest Management (2017) 8(1):11; 1–14 doi: 10.1093/jipm/pmx004 Profile Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States Robert L. Koch,1,2 Daniela T. Pezzini,1 Andrew P. Michel,3 and Thomas E. Hunt4 1 Department of Entomology, University of Minnesota, 1980 Folwell Ave., Saint Paul, MN 55108 ([email protected]; Downloaded from https://academic.oup.com/jipm/article-abstract/8/1/11/3745633 by guest on 08 January 2019 [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 210 Thorne, 1680 Madison Ave. Wooster, OH 44691 ([email protected]), and 4Department of Entomology, University of Nebraska, Haskell Agricultural Laboratory, 57905 866 Rd., Concord, NE 68728 ([email protected]) Subject Editor: Jeffrey Davis Received 12 December 2016; Editorial decision 22 March 2017 Abstract Stink bugs (Hemiptera: Heteroptera: Pentatomidae) are an emerging threat to soybean and corn production in the midwestern United States. An invasive species, the brown marmorated stink bug, Halyomorpha halys (Sta˚ l), is spreading through the region. However, little is known about the complex of stink bug species associ- ated with corn and soybean in the midwestern United States. In this region, particularly in the more northern states, stink bugs have historically caused only infrequent impacts to these crops. To prepare growers and agri- cultural professionals to contend with this new threat, we provide a review of stink bugs associated with soybean and corn in the midwestern United States.
    [Show full text]
  • Broad-Headed Bugs (Alydidae)
    Chapter 18 Broad-Headed Bugs (Alydidae) Antônio R. Panizzi and Carl w. Schaefer Abstract The broad-headed bugs (Alydidae) are divided into two subfamilies, Alydinaeand Micrelytrinae, each divided into two tribes, Daclerini and Alydini, and Micrelytriniand Leptocorisini, respectively, The farnily has 53 genera and about 250 specieins; the Neotropics, there are 21 genera. Alydids are small (8-20 mm), slen- Itr,with a triangular head; nymphs of alydines mimic ants, the adults of some Micrelytrinialso rnirnic ants. The most studied species in the Neotropics is the aly- dineNeomegalotomus parvus (Westwood), usually associated with legumes, and maybe a pest on soybean. Other common genera include Hyalymenus Amyot & Serville,Stenocoris Burmeister, Cydamus Stâl, and Trachelium Herrich-Schâffer. Studieson taxonomy and bioecology on alydids of the Neotropics are needed. 18.1 Introduction AlydidaeAmyot and Serville, 1843, were treated as a subfarnily of the farnily Coreidaeand even as a tribe (Schaffner 1964); now it has been treated as a farnily, ~ether with Coreidae, Rhopalidae, Hyocephalidae, and Stenocephalidae, in the !UperfarniCoreoidealy (Schaefer 1964). Thisfarnily contains 53 genera and approximately 250 species, mostly tropical Irsubtropical,in all regions of the world. There are only two genera that span both dleOldand the New World, Alydus and Megalotomus. These genera are Holarctic, IInAlydus extends from Alaska through Canada into Mexico (Brailovsky and Flores 1979;Froeschner 1988; Maw et al. 2000). The genera of Alydinae have been revised by Schaffner (1964; 22 species worldwide);the world genera of the subfamily Micrelytrinae, tribe Leptocorisini, were CarlW.Schaefer: Author deceased at the time of publication A.RP.anizzi ([gJ) Laboratóriode Entomologia, Embrapa Trigo, Caixa Postal 3081, Passo Fundo, RS9900l-970,Brazil e-mail:[email protected] eSpringerScience-Business Media Dordrecht 2015 537 :I.R.Panizzi,J.
    [Show full text]
  • De Novo Construction of a Transcriptome for the Stink Bug Crop
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.04.412270; this version posted December 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title 2 De novo construction of a transcriptome for the stink bug crop 3 pest Chinavia impicticornis during late development 4 5 Authors 6 Bruno C. Genevcius*, Tatiana T. Torres 7 8 Affiliation 9 Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, 10 Brazil 11 *correspondence: [email protected] 12 13 Abstract 14 Chinavia impicticornis is a Neotropical stink-bug (Hemiptera: Pentatomidae) with economic 15 importance for different crops. Little is known about the development of the species, as 16 well as the genetic mechanisms that may favor the establishment of populations in 17 cultivated plants. Here we conduct the first large-scale molecular study with C. 18 impicticornis. We generated RNA-seq data for males and females, at two immature 19 stages, for the genitalia separately and for the rest of the body. We assembled the 20 transcriptome and conduct a functional annotation. De novo assembled transcriptome 21 based on whole bodies and genitalia of males and females contained around 400,000 22 contigs with an average length of 688 bp. After pruning duplicated sequences and 23 conducting a functional annotation, the final annotated transcriptome comprised 39,478 24 transcripts of which 12,665 had GO terms assigned.
    [Show full text]
  • Climate-Related Transboundary Pests and Diseases
    HLC/08/BAK/4 CLIMATE-RELATED TRANSBOUNDARY PESTS AND DISEASES TECHNICAL BACKGROUND DOCUMENT FROM THE EXPERT CONSULTATION HELD ON 25 TO 27 FEBRUARY 2008 FAO, ROME CLIMATE CHANGE AND PEST DISEASES The movement of plant pests, animal diseases and invasive alien aquatic organisms across physical and political boundaries threatens food security and creates a global public concern across all countries and all regions. Countries allocate large resources to limit the spread and control of transboundary pests and diseases 1 such as avian influenza, foot-and-mouth disease and locust. They also adapt animal and plant health services and activities and cooperate regionally and globally for prevention, early warning and control. There is clear evidence that climate change is altering the distribution, incidence and intensity of animal and plant pests and diseases such as Bluetongue, a sheep disease that is moving north into more temperate zones of Europe. Cannon (see Annex 1) found examples of plant pests whose distribution is shifting in the United Kingdom and other parts of Europe, most likely due to climatic factors. For example, migrant moths of the Old World bollworm ( Helicoverpa armigera) had a phenomenal increase in the United Kingdom from 1969-2004 and there have been outbreaks at the northern edge of its range in Europe; cottony cushion scale ( Icerya purchasi) populations appear to be spreading northwards perhaps as a consequence of global warming; and cottony camellia scale ( Pulvinaria – Chloropulvinaria – floccifera) has become much more common in the United Kingdom, extending its range northwards in England and increasing its host range in the last decade or so, which is almost certainly in response to climate change.
    [Show full text]