Temperature Dysregulation

Total Page:16

File Type:pdf, Size:1020Kb

Temperature Dysregulation CHAPTER 54 Temperature Dysregulation Susan M. Wilson and Ian A. Ross Normal human body temperature ranges from drug, idiosyncratic reactions, and hypersensitivity 36.7°C to 37°C measured orally. Axillary tempera- reactions.1 tures and those measured rectally are 1°C lower and A drug may alter thermoregulation by disrupt- 1°C higher, respectively. Intraindividual body tem- ing central dopamine or serotonin homeostasis, perature varies throughout the day and over time, or via peripheral alteration of normal hypotha- and slight variations may also be noted between lamic temperature balance, creating an imbalance individuals. The anterior hypothalamus maintains of increased heat production and reduced heat dis- body temperature within a relatively narrow range sipation.2 Two such drug- induced dysregulation by sensing core body temperature and adjusting diseases— neuroleptic malignant syndrome (NMS) (homeostatic) mechanisms in the autonomic ner- and serotonin syndrome— will be discussed in sub- vous system. Central dopaminergic and seroto- sequent sections. A rare, but serious, late effect of nergic pathways are also involved in temperature salicylate toxicity is fever resultant of excess heat regulation via the autonomic nervous system. production due to an uncoupling of mitochondrial A relative decrease in serum dopamine concentra- oxidative phosphorylation.3 Additionally, drugs may tions or alterations in serotonin balance may lead to affect thermoregulation via modulation of periph- autonomic impairment and dysregulation in body eral factors that help maintain normal body tem- temperature. Drugs may act as antigens to induce perature, including cutaneous and regional blood an immune- mediated response, causing the release flow, hormonal responses, shivering, and sweating.4-6 of endogenous pyrogens such as interleukin-1 and Drugs such as anticholinergics, sympathomimetics, tumor necrosis factor from leukocytes, resulting in prostaglandins, general anesthetics, and thyroid sup- a febrile response. plements that affect these peripheral factors directly Drug- induced hyperthermia may be divided or indirectly will not be discussed in detail in this into five general categories: altered thermoregula- chapter. tory mechanisms, drug administration–related fever, Drug administration–related fever is caused by fevers relating to the pharmacologic action of the pyrogens or endotoxins and is often encountered 1185 1186 DRUG-INDUCED DISEASES: Prevention, Detection, and Management in association with agents derived from micro- is another condition in which hyperthermia is often bial products. These pyrogens induce an immune- observed. A comparison of the signs and symptoms mediated response causing the release of cytokines of the various drug-in duced hyperthermic condi- such as interleukin-1 and tumor necrosis factor tions is presented in Table 54-1. from leukocytes, leading to fever. Examples include Although antipyretics are effective in the treat- fever during amphotericin B and bleomycin infu- ment of hyperthermia due to drug fever and serum sion. Further, an administration- related response sickness- like reaction, careful temperature monitor- associated with fever may occur in association with ing during their use is very important. The mechanism drugs given intravenously (phlebitis) or intramus- of fever in these cases is a hypothalamus-m ediated cularly (sterile abscess). Pentazocine and paralde- increase in the body’s core temperature. Antipyretics hyde are known to induce such a response when are not effective for the treatment of hyperthermia administered intramuscularly. secondary to NMS, serotonin syndrome, or malig- Fevers relating to the pharmacologic action of nant hyperthermia because the hyperthermia rep- drugs are most commonly observed in the treat- resents an alteration in thermoregulatory balance ment of infections or cancer as pyrogen is released and hypermetabolism and not a fever. from damaged or dying cells. The classic example is Drug- induced hypothermia is much less com- the Jarisch–Herxheimer reaction that occurs during mon than hyperthermia and is associated more com- the treatment of syphilis. Patients taking clozapine monly with illicit drugs rather than with prescription may experience fever potentially due to the immu- or nonprescription medications. Agents with agonist nomodulating effects of increased concentrations of activity at the gamma-a minobutyric acid (GABA) 7,8 interleukin-6 and tumor necrosis factor. receptor, such as gamma- hydroxybutyrate (GHB), Malignant hyperthermia is a specific idiosyn- are often associated with hypothermic effects. GABA cratic reaction that results in the development of is a primary inhibitory central neurotransmitter. severe fever and muscle damage in susceptible indi- GABA, dopamine, serotonin, and opioid peptides viduals receiving causative drugs. Approximately are mediators in temperature regulation; the pri- 5–8% of patients treated with the antiretroviral drug mary effect of GABA is to decrease temperature. abacavir experience a hypersensitivity reaction char- acterized by fever, rash, malaise, gastrointestinal, and respiratory symptoms that has been linked to HYPERTHERMIA DUE TO the major histocompatibility complex allele HLA- DRUG FEVER B*5701. Reactions can be severe enough that screen- ing prior to therapy initiation is required for safe use.9,10 A diagnosis of “drug fever” is generally established when there is a febrile response to a medication, no Finally, the most common cause of drug- induced other cause of the fever may be elucidated, and the hyperthermia is a hypersensitivity reaction. The fever resolves upon discontinuation of the suspect reaction is mediated through immunologic mecha- agent.1,11 Drug fever tends to be a diagnosis of exclu- nisms and caused by drugs or their metabolites, most sion following a review of a patient’s drug therapy, commonly antibiotics.1 clinical presentation characteristics, and labora- Conditions to consider in the differential diag- tory values. An early presumptive diagnosis of drug nosis of the drug- induced hyperthermia include pri- fever and initiation of treatment may reduce unnec- mary central nervous system disorders (infection, essary further evaluation and patient discomfort. tumors, ischemic or hemorrhagic stroke, trauma, seizures), systemic diseases (infections, cancer, met- abolic conditions, endocrinopathies, autoimmune CAUSATIVE AGENTS disorders), and toxins (carbon monoxide, phenols, Although any drug has the potential to cause strychnine, tetanus). Drug reaction with eosino- drug fever, certain medications should be con- philia and systemic symptoms (DRESS), discussed in sidered with a higher level of suspicion. Drugs Chapter 6: Drug Allergy and Cutaneous Diseases, .
Recommended publications
  • Basal Digital Thermometer How to Use Instructions for Use 1
    BASAL DIGITAL THERMOMETER HOW TO USE INSTRUCTIONS FOR USE 1. The probe is folded into the body of the thermometer for storage. Unfold the probe and Please read thoroughly before using KD-2160 disinfect with rubbing alcohol before using. FEATURES 2. Press and release the on/off button. The display will read or 3. Next the display will show L°F or L°C with the °F or °C flashing. This basal digital thermometer is intended to measure the human body temperature for 4. Place the probe under the tongue as described and shown below. women. It’s precise digital display is for using in a household environment. 5. Once the degree sign °F (°C) on the display has stopped flashing, the measured temperature is indicated. 1. Oral temperature measurement in approximately 30 seconds with proper use. 2. 40 sets of memories. Recall all memories using NFC (Near Field Communication) or the 6. The unit will automatically turn off in approx. 3 minutes. However, to prolong battery life, headset jack adaptor on your mobile device. it is best to turn off the thermometer by pressing the ON/OFF button once the 3. Very sensitive unit, easy to read digital LCD (liquid crystal display). temperature has been noted. 4. Compact, accurate and durable LSI (large scale integration) unit. 5. If the thermometer is inadvertently left on after temperature stabilization, it will automatically ORAL USE shut off after approximately 3 minutes. Place the probe well under the patient's tongue with the probe 6. Small, light weight unit with “store-away” probe and a handy carry case.
    [Show full text]
  • Allergic Reactions After Vaccination: Translating Guidelines Into Clinical Practice
    R E V I E W EUR ANN ALLERGY CLIN IMMUNOL VOL 51, N 2, 51-61, 2019 A. RADICE1, G. CARLI2, D. MACCHIA1, A. FARSI2 Allergic reactions after vaccination: translating guidelines into clinical practice 1SOS Allergologia e Immunologia, Firenze, Azienda USL Toscana Centro, Italy 2SOS Allergologia e Immunologia, Prato, Azienda USL Toscana Centro, Italy KEYWORDS Summary vaccine; vaccination; allergic reactions; Vaccination represents one of the most powerful medical interventions on global health. anaphylaxis; vaccine hesitancy; vaccine Despite being safe, sustainable, and effective against infectious and in some cases also components; desensitization non-infectious diseases, it’s nowadays facing general opinion’s hesitancy because of a false perceived risk of adverse events. Adverse reactions to vaccines are relatively rare, instead, and those recognizing a hypersensitivity mechanism are even rarer. Corresponding author The purpose of this review is to offer a practical approach to adverse events after vaccina- Anna Radice Ospedale San Giovanni di Dio tion, focusing on immune-mediated reactions with particular regard to their recognition, Via Torregalli 3, 50143 Firenze diagnosis and management. Phone: +39 055 6932304 According to clinical features, we propose an algorythm for allergologic work-up, which E-mail: [email protected] helps in confirming hypersensitivity to vaccine, nonetheless ensuring access to vaccination. Finally, a screening questionnaire is included, providing criteria for immunisation in spe- Doi cialized care settings. 10.23822/EurAnnACI.1764-1489.86 Introduction The gain from vaccination is not just about human health, but it is also a matter of financial resources for health systems. “Smallpox is dead” stated the magazine of the World Health It has been calculated that for every dollar spent in vaccines, Organisation (WHO) in 1980.
    [Show full text]
  • Calcitonin Receptors Are Ancient Modulators for Rhythms of Preferential Temperature in Insects and Body Temperature in Mammals
    Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals Tadahiro Goda,1,5 Masao Doi,2,5 Yujiro Umezaki,1 Iori Murai,2 Hiroyuki Shimatani,2 Michelle L. Chu,1 Victoria H. Nguyen,1 Hitoshi Okamura,2 and Fumika N. Hamada1,3,4,6 1Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 2Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; 3Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 4Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA Daily body temperature rhythm (BTR) is essential for maintaining homeostasis. BTR is regulated separately from locomotor activity rhythms, but its molecular basis is largely unknown. While mammals internally regulate BTR, ectotherms, including Drosophila, exhibit temperature preference rhythm (TPR) behavior to regulate BTR. Here, we demonstrate that the diuretic hormone 31 receptor (DH31R) mediates TPR during the active phase in Drosophila. DH31R is expressed in clock cells, and its ligand, DH31, acts on clock cells to regulate TPR during the active phase. Surprisingly, the mouse homolog of DH31R, calcitonin receptor (Calcr), is expressed in the suprachiasmatic nucleus (SCN) and mediates body temperature fluctuations during the active phase in mice. Importantly, DH31R and Calcr are not required for coordinating locomotor activity rhythms. Our results represent the first molecular evidence that BTR is regulated distinctly from locomotor activity rhythms and show that DH31R/Calcr is an ancient specific mediator of BTR during the active phase in organisms ranging from ectotherms to endotherms.
    [Show full text]
  • Rethinking the Normal Human Body Temperature
    CART FREE HEALTHBEAT SIGNUP SHOP ▼ SIGN IN What can we help you 繠nd? HEART HEALTH MIND & MOOD PAIN STAYING CANCER DISEASES & MEN'S HEALTH WOMEN'S HEALTHY CONDITIONS HEALTH Normal Body Temperature : Rethinking the normal human body temperature The 98.6° F "normal" benchmark for body temperature comes to us from Dr. Carl Wunderlich, a 19th-century German physician who collected and analyzed over a million armpit temperatures for 25,000 patients. Some of Wunderlich's observations have stood up over time, but his de繠nition of normal has been debunked, says the April issue of the Harvard Health Letter {http://www.health.harvard.edu/newsletters/Harvard_Health_Letter.htm}. A study published years ago in the Journal of the American Medical Association found the average normal temperature for adults to be 98.2°, not 98.6°, and replaced the 100.4° fever mark with fever thresholds based on the time of day. Now, researchers at Winthrop University Hospital in Mineola, N.Y., have found support for another temperature truism doctors have long recognized: Older people have lower temperatures. In a study of 150 older people with an average age of about 81, they found that the average temperature never reached 98.6°. These 繠ndings suggest that even when older people are ill, their body temperature may not reach levels that people recognize as fever. On the other hand, body temperatures that are too low (about 95°) can also be a sign of illness. The bottom line is that individual variations in body temperature should be taken into account, reports the Harvard Health Letter.
    [Show full text]
  • Decreasing Human Body Temperature in the United States Since the Industrial Revolution
    bioRxiv preprint doi: https://doi.org/10.1101/729913; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Decreasing human body temperature in the United States since the Industrial Revolution Myroslava Protsiv1, Catherine Ley1, Joanna Lankester2, Trevor Hastie3,4, Julie Parsonnet1,5,* Affiliations: 5 1Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305. 2 Division of Cardiovascular Medicine, Stanford University, School of Medicine CA 94305. 3Department of Statistics, Stanford University, Stanford, CA 94305. 4Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, 10 CA, 94305. 5Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, 94305 *Correspondence to: Julie Parsonnet, 300 Pasteur Dr., Lane L134, Stanford University, Stanford, CA 94305. [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/729913; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 15 ABSTRACT In the US, the normal, oral temperature
    [Show full text]
  • Drug Allergies: an Epidemic of Over-Diagnosis
    Drug Allergies: An Epidemic of Over-diagnosis Donald D. Stevenson MD Senior Consultant Div of Allergy, Asthma and Immunology Scripps Clinic Learning objectives • Classification of drug induced adverse reactions vs hypersensitivity reactions • Patient reports of drug induced reactions grossly overstate the true prevalence • The 2 most commonly recorded drug “allergies”: NSAIDs and Penicillin • Accurate diagnoses of drug allergies • Consequences of falsely identifying a drug as causing allergic reactions Classification of Drug Associated Events • Type A: Events occur in most normal humans, given sufficient dose and duration of therapy (85-90%) – Overdose Barbiturates, morphine, cocaine, Tylenol – Side effects ASA in high enough doses induces tinnitus – Indirect effects Alteration of microbiota (antibiotics) – Drug interactions Increased blood levels digoxin (Erythromycin) • Type B: Drug reactions are restricted to a small subset of the general population (10-15%) where patients respond abnormally to pharmacologic doses of the drug – Intolerance: Gastritis sometimes bleeding from NSAIDs – Hypersensitivity: Non-immune mediated (NSAIDs, RCM) – Hypersensitivity: Immune mediated (NSAIDs, Penicillins ) Celik G, Pichler WJ, Adkinson Jr NF Drug Allergy Chap 68 Middleton’s Allergy: Principles and Practice, 7th Ed, Elsevier Inc. 2009; pg 1206 1206. Immunopathologic (Allergic) reactions to drugs (antigens): Sensitization followed by re-exposure to same drug antigen triggering reaction Type I Immediate Hypersensitivity IgE Mediated Skin testing followed
    [Show full text]
  • Prevalence and Impact of Reported Drug Allergies Among Rheumatology Patients
    diagnostics Article Prevalence and Impact of Reported Drug Allergies among Rheumatology Patients Shirley Chiu Wai Chan , Winnie Wan Yin Yeung, Jane Chi Yan Wong, Ernest Sing Hong Chui, Matthew Shing Him Lee, Ho Yin Chung, Tommy Tsang Cheung, Chak Sing Lau and Philip Hei Li * Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong; [email protected] (S.C.W.C.); [email protected] (W.W.Y.Y.); [email protected] (J.C.Y.W.); [email protected] (E.S.H.C.); [email protected] (M.S.H.L.); [email protected] (H.Y.C.); [email protected] (T.T.C.); [email protected] (C.S.L.) * Correspondence: [email protected]; Tel.: +852-2255-3348 Received: 28 October 2020; Accepted: 7 November 2020; Published: 9 November 2020 Abstract: Background: Drug allergies (DA) are immunologically mediated adverse drug reactions and their manifestations depend on a variety of drug- and patient-specific factors. The dysregulated immune system underpinning rheumatological diseases may also lead to an increase in hypersensitivity reactions, including DA. The higher prevalence of reported DA, especially anti-microbials, also restricts the medication repertoire for these already immunocompromised patients. However, few studies have examined the prevalence and impact of reported DA in this group of patients. Methods: Patients with a diagnosis of rheumatoid arthritis (RA), spondyloarthritis (SpA), or systemic lupus erythematosus (SLE) were recruited from the rheumatology clinics in a tertiary referral hospital between 2018 and 2019. Prevalence and clinical outcomes of reported DA among different rheumatological diseases were calculated and compared to a cohort of hospitalized non-rheumatology patients within the same period.
    [Show full text]
  • Hypothermia Hyperthermia Normothemic
    Means normal body temperature. Normal body core temperature ranges from 99.7ºF to 99.5ºF. A fever is a Normothemic body temperature of 99.5 to 100.9ºF and above. Humans are warm-blooded mammals who maintain a constant body temperature (euthermia). Temperature regulation is controlled by the hypothalamus in the base of the brain. The hypothalamus functions as a thermostat for the body. Temperature receptors (thermoreceptors) are located in the skin, certain mucous membranes, and in the deeper tissues of the body. When an increase in body temperature is detected, the hypothalamus shuts off body mechanisms that generate heat (for example, shivering). When a decrease in body temperature is detected, the hypothalamus shuts off body mechanisms designed to cool the body (for example, sweating). The body continuously adjusts the metabolic rate in order to maintain a constant CORE Hypothermia Core body temperatures of 95ºF and lower is considered hypothermic can cause the heart and nervous system to begin to malfunction and can, in many instances, lead to severe heart, respiratory and other problems that can result in organ damage and death.Hannibal lost nearly half of his troops while crossing the Pyrenees Alps in 218 B.C. from hypothermia; and only 4,000 of Napoleon Bonaparte’s 100,000 men survived the march back from Russia in the winter of 1812 - most dying of starvation and hypothermia. During the sinking of the Titanic most people who entered the 28°F water died within 15–30 minutes. Symptoms: First Aid : Mild hypothermia: As the body temperature drops below 97°F there is Call 911 or emergency medical assistance.
    [Show full text]
  • The Skin's Role in Human Thermoregulation and Comfort
    Center for the Built Environment UC Berkeley Peer Reviewed Title: The skin's role in human thermoregulation and comfort Book Title: from Thermal and Moisture Transport in Fibrous Materials Author: Arens, Edward A, Center for the Built Environment, University of California, Berkeley Zhang, H., Center for the Built Environment, University of California, Berkeley Publication Date: 2006 Series: Indoor Environmental Quality (IEQ) Permalink: http://escholarship.org/uc/item/3f4599hx Additional Info: ORIGINAL CITATION: Arens, E. and H. Zhang 2006. The Skin's Role in Human Thermoregulation and Comfort. Thermal and Moisture Transport in Fibrous Materials, eds N. Pan and P. Gibson, Woodhead Publishing Ltd, pp 560-602. Copyright Information: All rights reserved unless otherwise indicated. Contact the author or original publisher for any necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more at http://www.escholarship.org/help_copyright.html#reuse eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. 16 The skin’s role in human thermoregulation and comfort E. ARENS and H. ZHANG, University of California, Berkeley, USA 16.1 Introduction This chapter is intended to explain those aspects of human thermal physiology, heat and moisture transfer from the skin surface, and human thermal comfort, that could be useful for designing clothing and other types of skin covering. Humans maintain their core temperatures within a small range, between 36 and 38°C. The skin is the major organ that controls heat and moisture flow to and from the surrounding environment. The human environment occurs naturally across very wide range of temperatures (100K) and water vapor pressures (4.7 kPa), and in addition to this, solar radiation may impose heat loads of as much as 0.8kW per square meter of exposed skin surface.
    [Show full text]
  • Thermal Model of Human Body Temperature Regulation Considering Individual Difference
    Proceedings: Building Simulation 2007 THERMAL MODEL OF HUMAN BODY TEMPERATURE REGULATION CONSIDERING INDIVIDUAL DIFFERENCE Satoru Takada1, Hiroaki Kobayashi2, and Takayuki Matsushita1 1Department of Architecture, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan 2Department of Architecture and Civil Engineering, Graduate School of Science and Technology, Kobe University Rokko, Nada, Kobe 657-8501, Japan state. However, the difference in body temperature ABSTRACT regulation between real subjects makes it difficult; This paper proposes the methodology to quantify the Even for one environmental condition, more than one individual difference in temperature regulation of kinds of experimental results are obtained from human body for transient simulation of body several subjects, while a model gives one result for temperature. one condition. In other words, the problem of individual difference cannot be avoided for the Experiments of transient thermal exposure were validation of thermal model of human body. conducted for four subjects and the characteristics of individual difference in themoregulatory response Havenith (2001) proposes to express individual were observed quantitatively. As the result, the differences in the human thermoregulation model by differences in core temperature and heart rate were giving several individual characteristics such as body significant. surface area, mass and body fat into the model. In that work, the simulated results with consideration of For each subject, the physiological coefficients used individual difference are compared with those in the two-node model were adjusted in order to without consideration, but the improvement by the minimize the difference between experimental and consideration is not so clear. Zhang et al. (2001) uses calculated values in a series of a representative ‘body builder model’ that expresses the individual transient state in core and skin temperature.
    [Show full text]
  • Unlocking the Non-Ige-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2)
    cells Review Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2) Mukesh Kumar, Karthi Duraisamy and Billy-Kwok-Chong Chow * School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; [email protected] (M.K.); [email protected] (K.D.) * Correspondence: [email protected]; Tel.: +852-2299-0850; Fax: +852-2559-9114 Abstract: Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR ex- pressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (Fc"RI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reac- tions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE- mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 ag- onists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 Citation: Kumar, M.; Duraisamy, K.; Chow, B.-K.-C.
    [Show full text]
  • About Drug Side-Effects and Allergies
    About drug side-effects and allergies Introduction This leaflet has been produced to provide you with information about side-effects of medicines and drug allergies, and the differences between the two. There are a variety of ways in which people can experience adverse reactions to medications, whether prescribed or bought 'over-the-counter'. Most of these effects are not an 'allergy'. Contrary to what most people think, only small amounts (5-10%) of all adverse drug reactions are caused by a drug allergy. It is important to tell the doctor or healthcare professional looking after you about any drug allergies or side-effects to drugs you may have/or had as this may affect your current treatment. It is important to know the difference between a drug allergy and side-effect because saying you have a drug allergy when in fact it is a side-effect may unnecessarily restrict the treatment choices available to treat your condition. What should I be aware of when taking my medicines? Many medicines can cause side-effects e.g. some medicines may affect your sight or co-ordination or make you sleepy, which may affect your ability to drive, perform skilled tasks safely. The information leaflet provided with your medicine will list any side effects which are known to be linked to your medicine. All medications have side-effects because of the way they work. The majority of people get none, or very few, but some people are more prone to them. The most common side-effects are usually nausea, vomiting, diarrhoea (or occasionally constipation), tiredness, rashes, itching, headaches and blurred vision.
    [Show full text]