Quantum Optics of Soliton Microcombs

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Optics of Soliton Microcombs Quantum Optics of Soliton Microcombs ,1 ,1 ,1 1,2 ,1 Melissa A. Guidry∗ , Daniil M. Lukin∗ , Ki Youl Yang∗ , Rahul Trivedi and Jelena Vuˇckovi´c† 1E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA. 2Max-Planck-Institute for Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching, Germany Soliton microcombs — phase-locked microcavity frequency combs — have become the foundation of several classical technologies in integrated photonics, including spectroscopy, LiDAR, and optical computing. Despite the predicted multimode entanglement across the comb, experimental study of the quantum optics of the soliton microcomb has been elusive. In this work, we use second- order photon correlations to study the underlying quantum processes of soliton microcombs in an integrated silicon carbide microresonator. We show that a stable temporal lattice of solitons can isolate a multimode below-threshold Gaussian state from any admixture of coherent light, and predict that all-to-all entanglement can be realized for the state. Our work opens a pathway toward a soliton-based multimode quantum resource. Kerr optical frequency combs1–3 are multimode states of light generated via a third-order optical nonlinearity in ˆ g0 an optical resonator. When a Kerr resonator is pumped Hint = δFWM(AmAnaˆ†aˆ† +A∗Anaˆ†aˆm +h.c.) − 2 j k k j weakly, spontaneous parametric processes populate res- m,n,j,kX onator modes in pairs. In this regime, Kerr combs can be (1) a quantum resource for the generation of heralded single where δFWM = δ(j+k m n) is the four-wave mixing 4–6 − − photons and energy-time entangled pairs , multiphoton (FWM) mode number matching condition and g0 is entangled states7–9, and squeezed vacuum10–12. When the nonlinear coupling coefficient. This approximation pumped more strongly, the parametric gain can exceed has successfully modelled the quantum correlations de- the resonator loss and give rise to optical parametric os- veloped by a coherent soliton pulse after propagating cillation (OPO) and bright comb formation. The modes through a fiber27,28, where the Kerr interaction is weak. of a Kerr comb can become phase-locked to form a stable, The DKS state, however, is itself generated by strong low-noise dissipative Kerr soliton (DKS). This regime of Kerr interactions where linearization can break down and Kerr comb operation has become the foundation of mul- yield unphysical predictions29,30. Experimentally verify- tiple technologies, including comb-based spectroscopy13, ing the validity of this model for the DKS is a prerequisite LiDAR14, optical frequency synthesizers15, and optical for exploring its application in quantum technologies. processors16. In this work, we use second-order photon correlation measurements to experimentally validate the linearized While the soliton microcomb has been mostly stud- model (Eq. 1) for describing the spontaneous parametric ied classically, it is nonetheless fundamentally governed processes in DKS states. We study the quantum for- by the dynamics of quantized parametric processes: each mation dynamics of Kerr frequency combs and identify resonator mode is coupled to every other mode through a class of DKS states — perfect soliton crystals31,32 — a four-photon interaction. The multimode coupled pro- which naturally isolate a subset of quantum optical fields cesses of the DKS resemble those of the well-studied 17,18 from the coherent mean-field (Fig. 1). We measure the synchronously pumped OPO . If the quantum pro- correlation matrix of the below-threshold modes to nu- cesses can be harnessed, soliton microcombs may open merically infer the multi-mode entanglement structure of a pathway toward the experimental realization of a 18–20 the state. We find that the DKS state may be engineered multimode quantum resource in a scalable, chip- as an on-chip source of all-to-all entanglement. integrated platform21,22. However, the quantum-optical properties of soliton microcombs have not yet been di- The observation of the full optical spectrum of a rectly observed: the first glimpse into non-classicality was Kerr frequency comb, including the above- and below- the recent measurement of the quantum-limited timing threshold processes, requires single-photon sensitivity arXiv:2103.10517v1 [physics.optics] 18 Mar 2021 jitter of the DKS state23,24. and a high dynamic range. For this purpose, we designed a single-photon optical spectrum analyzer (SPOSA) Linearization25 — the formal separation of the opti- using multipass grating monochromators and super- cal state into the mean field solution and the quantum conducting nanowire single-photon detectors (SNSPDs) fluctuations — is one approach to simplify the otherwise (PhotonSpot, Inc). The SPOSA has a broadband intractable many-body quartic Hamiltonian of the DKS. (> 200 nm) quantum efficiency of 20%, and close-in The result of this approximation is a quadratic Hamilto- dynamic range of > 140 dB at 0∼.8 nm. We generate ± nian, where the classical amplitudes Am, obtained for ex- Kerr frequency combs using microring resonators with ample through the spatiotemporal Lugiato-Lefever equa- 350 GHz free spectral range (FSR) fabricated in 4H- tion (LLE)26, drive the spontaneous parametric processes silicon carbide-on-insulator, a platform with favorable 33 34 between quantum modesa ˆj: nonlinear and quantum optical properties. With in- 2 FIG. 1: Linearized model for quantum optical fields in a DKS state A schematic depiction of a Kerr mi- croresonator with a circulating perfect soliton crystal state. The full optical state is modeled as a coherent classical comb (blue) that drives the quantum comb (red) via spontaneous parametric processes. FIG. 2: Single-photon spectroscopy of optical microcombs (a) Stages of frequency comb formation observed on the single-photon optical spectrum analyzer (SPOSA). Dashed line indicates noise floor of a commercial opti- cal spectrum analyzer (-80 dBm). (b) The single soliton state. (c) A 7-FSR soliton crystal state, observed in a different device. trinsic quality factors (Q) as high as 5.6 106, low thresh- 3 modes with very low photon number aj†aj < 10− . old OPO and low-power soliton operation× (0.5 mW and The quantum fluctuations generated inD theE DKS state 2.3 mW, respectively) are achieved. We use the SPOSA and responsible for its quantum-limited timing jitter23,24 to characterize the Kerr microcomb spectra through all 2 are obscured in the single-soliton spectrum. A perfect stages of DKS formation (Fig. 2a,b). The sech soliton soliton crystal31,32 (henceforth referred to as a soliton envelope is seen to persist at the tails of the DKS, in crystal), however, reveals these quantum fluctuations 3 FIG. 3: Quantum coherence of parametric oscillation (a) The near-threshold spectrum reproduced from (2) Fig. 2a. Vertical dashed lines indicate the modes where the primary comb will form. (b) Measured gauto(τ) on dif- ferent modes shows the dispersion-dependent parametric gain variation throughout the comb. (c) Observation of asymptotic growth of coherence near the OPO threshold. The effective parametric gain λ, extracted from a numer- ical fit to Eq. 2 is plotted against the detected count rate on mode µ = +5. (d) At the highest photon count rate, (2) gauto(τ) reveals coherence-broadening which corresponds to threshold proximity of 0.99896(5). (Fig. 2c). cess (analogous to lasing). In a Kerr frequency comb close The formation of DKS from a below-threshold quan- to but below the OPO threshold (Fig. 3a), both regimes (2) tum frequency comb begins with the transition of a spon- can be observed simultaneously. We measure gauto(τ) taneous FWM process into a stimulated FWM process using two SNSPD detectors in a Hanbury Brown and at the onset of OPO. This transition can be observed Twiss configuration, and observe the dispersion-induced through the second-order correlation function, g(2)(τ). variation in λ for different signal-idler pairs (Fig. 3b).36. Using input-output theory35 we derive the exact form of Mode µ = +9, far away from the pump, displays oscil- (2) (2) g (τ) for a general two-mode parametric process. The lations in gauto(τ), signifying poor phase-matching. In general derivation is presented in the Supplementary In- contrast, mode µ = +5 shows a substantial coherence in- formation. For signal and idler modes of equal linewidths crease, which correctly predicts that it will seed the for- κ, the auto-correlation is given by mation of the primary comb. To observe the asymptotic coherence growth at threshold, we repeatedly sweep the κτ 2 (2) e− κ pump laser detuning through the OPO threshold con- gauto(τ) = 1 + sinh(λτ) + λ cosh(λτ) (2) λ2 2 dition, while synchronously acquiring the photon count h i rates and two-photon correlations. Through the numer- where λ = g2 δ2 is the effective parametric gain, 2 − ical fit to Eq. 2, λ is extracted and plotted against the g = g0 A0 is the mode coupling strength, and δ is the | | p 2 2 measured count rate (Fig. 3c). The maximum recorded detuning. Here, two regimes are notable: when δ > g , 35 (2) coherence broadening exceeds the cavity coherence by λ is imaginary which gives rise to oscillations in gauto(τ), nearly three orders of magnitude (Fig. 3d), which indi- corresponding to the double-peaked photon spectrum for cates that the state is approaching the critical point at 25,30 a strongly detuned parametric process ; when λ ap- which the linearized model would break down.29,30 (2) proaches κ/2, the gauto(τ) coherence (decay time) in- creases asymptotically, reflecting the transition of the In the linearized model of an above-threshold Kerr spontaneous FWM process into a stimulated FWM pro- comb, a resonator mode may be occupied by both a co- 4 FIG. 4: Formation dynamics of secondary combs (a) A SPOSA spectrum of a secondary comb state. (b) A graphical representation of the stages of secondary comb formation.
Recommended publications
  • Real-Time Observation of Dissipative Soliton Formation in Nonlinear Polarization Rotation Mode- Locked fibre Lasers
    ARTICLE DOI: 10.1038/s42005-018-0022-7 OPEN Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode- locked fibre lasers Junsong Peng1, Mariia Sorokina2, Srikanth Sugavanam2, Nikita Tarasov2,3, Dmitry V. Churkin3, 1234567890():,; Sergei K. Turitsyn2,3 & Heping Zeng1 Formation of coherent structures and patterns from unstable uniform state or noise is a fundamental physical phenomenon that occurs in various areas of science ranging from biology to astrophysics. Understanding of the underlying mechanisms of such processes can both improve our general interdisciplinary knowledge about complex nonlinear systems and lead to new practical engineering techniques. Modern optics with its high precision mea- surements offers excellent test-beds for studying complex nonlinear dynamics, though capturing transient rapid formation of optical solitons is technically challenging. Here we unveil the build-up of dissipative soliton in mode-locked fibre lasers using dispersive Fourier transform to measure spectral dynamics and employing autocorrelation analysis to investi- gate temporal evolution. Numerical simulations corroborate experimental observations, and indicate an underlying universality in the pulse formation. Statistical analysis identifies cor- relations and dependencies during the build-up phase. Our study may open up possibilities for real-time observation of various nonlinear structures in photonic systems. 1 State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062 Shanghai,
    [Show full text]
  • Optical Event Horizons from the Collision of a Soliton and Its Own Dispersive Wave S
    Optical event horizons from the collision of a soliton and its own dispersive wave S. Wang, Arnaud Mussot, Matteo Conforti, A. Bendahmane, X. Zeng, Alexandre Kudlinski To cite this version: S. Wang, Arnaud Mussot, Matteo Conforti, A. Bendahmane, X. Zeng, et al.. Optical event horizons from the collision of a soliton and its own dispersive wave. Physical Review A, American Physical Society, 2015, 92 (2), 10.1103/PhysRevA.92.023837. hal-02388991 HAL Id: hal-02388991 https://hal.archives-ouvertes.fr/hal-02388991 Submitted on 2 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW A 92, 023837 (2015) Optical event horizons from the collision of a soliton and its own dispersive wave S. F. Wang,1,2 A. Mussot,1 M. Conforti,1 A. Bendahmane,1 X. L. Zeng,2 and A. Kudlinski1,* 1Laboratoire PhLAM, UMR CNRS 8523, IRCICA, USR CNRS 3380, Universite´ Lille 1, 59655 Villeneuve d’Ascq, France 2Key Laboratory of Specialty Fiber Optics and Optical Access Network, Shanghai University, 200072 Shanghai, China (Received 22 May 2015; published 20 August 2015) We observe experimentally the spectral signature of the collision between a soliton and the dispersive wave initially emitted from the soliton itself.
    [Show full text]
  • Orthogonally Polarized Kerr Frequency Combs
    Orthogonally Polarized Kerr Frequency Combs Changjing Bao1*, Peicheng Liao1, Arne Kordts2, Lin Zhang3, Andrey Matsko4, Maxim Karpov2, Martin H. P. Pfeiffer2, Guodong Xie1, Yinwen Cao1, Yan Yan1, Ahmed Almaiman1, Zhe Zhao1, Amirhossein Mohajerin-Ariaei1, Ahmad Fallahpour1, Fatemeh Alishahi1, Moshe Tur5, Lute Maleki4, Tobias J. Kippenberg2, Alan E. Willner1 1Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA. 2École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 3School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China 4OEwaves Inc., 465 N. Halstead Street, Pasadena, California 91107, USA 5School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel Corresponding author: [email protected] Abstract: Kerr optical frequency combs with multi-gigahertz spacing have previously been demonstrated in chip-scale microresonators, with potential applications in coherent communication, spectroscopy, arbitrary waveform generation, and radio frequency photonic oscillators. In general, the harmonics of a frequency comb are identically polarized in a single microresonator. In this work, we report that one comb in one polarization is generated by an orthogonally polarized soliton comb and two low-noise, orthogonally polarized combs interact with each other and exist simultaneously in a single microresonator. The second comb generation is attributed to the strong cross-phase modulation with the orthogonally polarized soliton comb and the high peak power of the intracavity soliton pulse. Experimental results show that a second 1 frequency comb is excited even when a continuous wave light as a "seed"—with power as low as 0.1 mW—is input, while its own power level is below the threshold of comb generation.
    [Show full text]
  • Integrable Nonlinear Schrödinger Systems and Their Soliton Dynamics
    Dynamics of PDE, Vol.1, No.3, 239-299, 2004 Integrable Nonlinear Schr¨odinger Systems and their Soliton Dynamics M. J. Ablowitz, B. Prinari, and A. D. Trubatch Communicated by Charles Li, received June 16, 2004. Abstract. Nonlinear Schr¨odinger (NLS) systems are important examples of physically-significant nonlinear evolution equations that can be solved by the inverse scattering transform (IST) method. In fact, the IST for discrete and continuous, as well as scalar and vector, NLS systems all fit into the same framework, which is reviewed here. The parallel presentation of the IST for each of these systems not only clarifies the common structure of the IST, but also highlights the key variations. Importantly, these variations manifest themselves in the dynamics of the solutions. With the IST approach, one can explicitly construct the soliton solutions of each of these systems, as well as formulas from which one can determine the dynamics of soliton interaction. In particular, vector solitons, both continuous and discrete, are partially charac- terized by a polarization vector, which is shifted by soliton interaction. Here, we give a complete account of the nature of this polarization shift. The po- larization vector can be used to encode the value of a binary digit (“bit”) and the soliton interaction arranged so as to effect logical computations. Contents 1. Introduction 240 2. Scalar Nonlinear Schr¨odinger equation (NLS) 244 3. Integrable Discrete Nonlinear Schr¨odinger equation (IDNLS) 253 4. Vector Nonlinear Schr¨odinger (VNLS) equation 266 5. Integrable Discrete Vector Nonlinear Schr¨odinger equation (IDVNLS) 274 6. Soliton Interactions 288 7.
    [Show full text]
  • Soliton Crystals in Kerr Resonators
    Soliton crystals in Kerr resonators Daniel C. Cole1,2, Erin S. Lamb1, Pascal Del’Haye1,†, Scott A. Diddams1, and Scott B. Papp1 1National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA 2Department of Physics, University of Colorado, Boulder, CO 80309, USA †Present address: National Physical Laboratory (NPL), Teddington, TW11 0LW, United Kingdom Corresponding author: [email protected] Strongly interacting solitons confined to an optical resonator would offer unique capabilities for experiments in communication, computation, and sensing with light. Here we report on the discovery of soliton crystals in monolithic Kerr microresonators—spontaneously and collectively ordered ensembles of co-propagating solitons whose interactions discretize their allowed temporal separations. We unambiguously identify and characterize soliton crystals through analysis of their ‘fingerprint’ optical spectra, which arise from spectral interference between the solitons. We identify a rich space of soliton crystals exhibiting crystallographic defects, and time-domain measurements directly confirm our inference of their crystal structure. The crystallization we observe is explained by long-range soliton interactions mediated by resonator mode degeneracies, and we probe the qualitative difference between soliton crystals and a soliton liquid that forms in the absence of these interactions. Our work explores the rich physics of monolithic Kerr resonators in a new regime of dense soliton occupation and offers a way to greatly increase the efficiency of Kerr combs; further, the extreme degeneracy of the configuration space of soliton crystals suggests an implementation for a robust on-chip optical buffer. Optical solitons have recently found a new realization in frequency combs generated in passive, monolithic Kerr- nonlinear resonators1 (microcombs).
    [Show full text]
  • Frequency Microcomb Stabilization Via Dual-Microwave Control
    ARTICLE https://doi.org/10.1038/s42005-021-00573-9 OPEN Frequency microcomb stabilization via dual- microwave control ✉ ✉ Abhinav Kumar Vinod1,3 , Shu-Wei Huang1 , Jinghui Yang 1, Mingbin Yu2, Dim-Lee Kwong2 & ✉ Chee Wei Wong1 Optical frequency comb technology has been the cornerstone for scientific breakthroughs in precision metrology. In particular, the unique phase-coherent link between microwave and optical frequencies solves the long-standing puzzle of precision optical frequency synthesis. While the current bulk mode-locked laser frequency comb has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains 1234567890():,; an unsolved challenge due to the relatively large size, weight and power consumption. Recently microresonator-based frequency combs have emerged as a candidate solution with chip-scale implementation and scalability. The wider-system precision control and stabili- zation approaches for frequency microcombs, however, requires external nonlinear processes and multiple peripherals which constrain their application space. Here we demonstrate an internal phase-stabilized frequency microcomb that does not require nonlinear second-third harmonic generation nor optical external frequency references. We demonstrate that the optical frequency can be stabilized by control of two internally accessible parameters: an intrinsic comb offset ξ and the comb spacing frep. Both parameters are phase-locked to microwave references, with phase noise residuals of 55 and 20 mrad respectively, and the resulting comb-to-comb optical frequency uncertainty is 80 mHz or less. Out-of-loop mea- surements confirm good coherence and stability across the comb, with measured optical frequency instability of 2 × 10−11 at 20-second gate time.
    [Show full text]
  • Plasmon-Soliton
    Plasmon-Soliton Eyal Feigenbaum and Meir Orenstein Department of Electrical Engineering, Technion, Haifa 32000, Israel [email protected] Abstract : Formation of a novel hybrid-vector spatial plasmon-soliton in a Kerr slab embedded in-between metal plates is predicted and analyzed with a modified NLSE, encompassing hybrid vector field characteristics. Assisted by the transverse plasmonic effect, the self trapping dimension of the plasmon-soliton was substantially compressed (compared to the dielectrically cladded slab case) when reducing the slab width. The practical limitation of the Plasmon-soliton size reduction is determined by available nonlinear materials and metal loss. For the extreme reported values of nonlinear index change, we predict soliton with a cross section of 300nm×30nm (average dimension of 100nm). 1 The downscaling of conventional photonics is halted when approaching a transverse dimension of ~ λ/2 ( λ is the wavelength). This limitation can be alleviated by the incorporation of metals, giving rise to surface plasmon polaritons (SPP) [1,2]. Here we analyze a novel configuration where light is transversely tightly guided between two metal layers, and laterally self trapped by a nonlinear Kerr effect to yield a plasmon-soliton. The tight field confinement of this scheme is important for potential excitation of plasmon-solitons by a low power continuous wave optical source, which is further assisted by the expected small group velocity of the plasmon-soliton. In this letter we present for the first time both an analysis of TM spatial solitons, using the Non- linear Schrödinger Equation (NLSE), where the full vectorial field is considered, as well as the prediction and characteristics of SPP based solitons.
    [Show full text]
  • Discrete Diffraction Managed Spatial Solitons
    VOLUME 87, NUMBER 25 PHYSICAL REVIEW LETTERS 17DECEMBER 2001 Discrete Diffraction Managed Spatial Solitons Mark J. Ablowitz and Ziad H. Musslimani Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526 (Received 25 June 2001; published 30 November 2001) Motivated by recent experimental observations of anomalous diffraction in linear waveguide array, we propose a novel model governing the propagation of an optical beam in a diffraction managed nonlinear waveguide array. This model supports discrete spatial solitons whose beamwidth and peak amplitude evolve periodically. A nonlocal integral equation governing the slow evolution of the soliton amplitude is derived and its stationary soliton solutions are obtained. DOI: 10.1103/PhysRevLett.87.254102 PACS numbers: 05.45.Yv Discrete spatial solitons in nonlinear media have at- Kerr media in the presence of both normal and anomalous tracted considerable attention in the scientific community diffraction. Importantly, even though optical diffraction for many years [1]. They have been demonstrated to exist and chromatic dispersion originate from different physics in a wide range of physical systems such as atomic chains (the former being geometric and the latter being media de- [2,3], molecular crystals [4], biophysical systems [5], elec- pendent), nevertheless, discrete diffraction spatial solitons trical lattices [6], and recently in arrays of coupled nonlin- and dispersion managed solitons share many properties ear optical waveguides [7,8]. Such discrete excitations can which highlight the universality and diversity of solitons. form when discrete diffraction is balanced by nonlinearity. A nonlocal integral equation governing the slow evolution In an optical waveguide array this can be achieved by using of the beam amplitude is derived, and its stationary soli- an intense laser beam which locally changes the nonlinear ton solutions are obtained.
    [Show full text]
  • Smooth Coherent Kerr Frequency Combs Generation with Broadly Tunable Pump by Higher Order Mode Suppression
    Smooth coherent Kerr frequency combs generation with broadly tunable pump by higher order mode suppression S.-W. Huang1*+, H. Liu1+, J. Yang1, M. Yu2, D.-L. Kwong2, and C. W. Wong1* 1Mesoscopic Optics and Quantum Electronics Laboratory, University of California Los Angeles, CA, USA 2Institute of Microelectronics, Singapore, Singapore *[email protected], [email protected] +these authors contributed equally to this work High-Q microresonator has been suggested a promising platform for optical frequency comb generation, via dissipative soliton formation. To achieve a higher Q and obtain the necessary anomalous dispersion, Si3N4 microresonators made of multi-mode waveguides were previously implemented. However, coupling between different transverse mode families in the multi-mode waveguides results in periodic disruption of dispersion and quality factor, introducing perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator such that single mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The microresonator is consisted of uniform single mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic Q of the microresonator reaches 1.36×106 while the GVD remains to be anomalous at -50 fs2/mm. We demonstrate, with 1 this novel microresonator, broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band.
    [Show full text]
  • Soliton-Guided Quantum Information Processing
    Chapter 1 Soliton-Guided Quantum Information Processing Ken Steiglitz Computer Science Department Princeton University Princeton NJ 08544 Abstract We describe applications of solitons and soliton collisions to the transport, transfer, and beam-splitting of qubits carried by optical photons. The transport and transfer realize the “flying qubits” necessary for quantum information processing, and the beam-splitting leads, in theory, to an implementation of quantum computing using linear optics. These proposed applications are embedded in a uniform optical fiber and require no special device fabrication, no cooling, and no vacuum. The pioneering papers of Feynman [1] and Deutsch [2] in the 1980s sparked the rapid development of the field of quantum information processing. The theoretical and experimentalprogress has been remarkable, with the development, for example, of quantum error correction and a fast algorithm for factoring, and the exploration of a wide variety of physical implementations. In the latter category, the optical photon as the carrier of a qubit has played an important role in the experimental demonstra- tion of quantum cryptography and other important applications to communications and information processing. At the same time there has been tremendous progress in our understanding of classical nonlinear waves, and, in particular, solitons in op- tical fibers. In this chapter we will explore what role solitons and soliton collisions might play in the development of quantum information processing with optical pho- tons. For a more detailed account, the reader is referred to [3, 4, 5], from which the material in this chapter was drawn. 1 2 Steiglitz 1.1 Photon trapping A pulse traveling down a fiber forms a soliton when the dispersion, which tends to widen the pulse, is counterbalanced by the nonlinear Kerr effect, whereby the elec- tric field changes the index of refraction of the material.
    [Show full text]
  • Photonic-Crystal-Reflector Nanoresonators for Kerr-Frequency
    Article Cite This: ACS Photonics XXXX, XXX, XXX−XXX pubs.acs.org/journal/apchd5 Photonic-Crystal-Reflector Nanoresonators for Kerr-Frequency Combs † ‡ † ‡ ¶ † ‡ § † ‡ Su-Peng Yu,*, , Hojoong Jung, , , Travis C. Briles, , Kartik Srinivasan, and Scott B. Papp , † Time and Frequency Division, NIST, Boulder, Colorado 80305, United States ‡ Department of Physics, University of Colorado, Boulder, Colorado 80309, United States § Microsystems and Nanotechnology Division, NIST, Gaithersburg, Maryland 20899, United States ABSTRACT: We demonstrate Kerr-frequency-comb gener- ation with nanofabricated Fabry−Perot resonators, which are formed with photonic-crystal-reflector (PCR) mirrors. The PCR group-velocity dispersion (GVD) is engineered to counteract the strong normal GVD of a rectangular wave- guide, fabricated on a thin, 450 nm silicon nitride device layer. The reflectors enable resonators with both high optical quality factor and anomalous GVD, which are required for Kerr-comb generation. We report design, fabrication, and characterization of devices in the 1550 nm wavelength bands. Kerr-comb generation is achieved by exciting the devices with a continuous-wave laser. The versatility of PCRs enables a general design principle and a material-independent device infrastructure for Kerr-nonlinear-resonator processes, opening new possibilities for manipulation of light. Visible and multispectral-band resonators appear to be natural extensions of the PCR approach. KEYWORDS: photonic crystal, microresonator, dispersion engineering, nonlinear optics,
    [Show full text]
  • Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures
    Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures Gregory Moille,1, 2, ∗ Xiyuan Lu,1, 2 Ashutosh Rao,1, 2 Qing Li,1, 2, 3 Daron A. Westly,1 Leonardo Ranzani,4 Scott B. Papp,5, 6 Mohammad Soltani,4 and Kartik Srinivasan1, 7, y 1Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 2Institute for Research in Electronics and Applied Physics and Maryland Nanocenter, University of Maryland,College Park, Maryland 20742, USA 3Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA 4Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA, 02138, USA 5Time and Frequency Division, National Institute of Standards and Technology, 385 Broadway, Boulder, CO 80305, USA 6Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA 7Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA (Dated: February 19, 2020) We investigate the accessibility and projected low-noise performance of single soliton Kerr fre- quency combs in silicon nitride microresonators enabled by operating at cryogenic temperatures as low as 7 K. The resulting two orders of magnitude reduction in the thermo-refractive coefficient relative to room-temperature enables direct access to single bright Kerr soliton states through adia- batic frequency tuning of the pump laser while remaining in thermal equilibrium. Our experimental results, supported by theoretical modeling, show that single solitons are easily accessible at tem- peratures below 60 K for the microresonator device under study. We further demonstrate that the cryogenic temperature primarily impacts the thermo-refractive coefficient. Other parameters critical to the generation of solitons, such as quality factor, dispersion, and effective nonlinearity, are unaltered.
    [Show full text]