Brief Note Dorsal and Anal Glands in the Eastern Chipmunk, Tamias

Total Page:16

File Type:pdf, Size:1020Kb

Brief Note Dorsal and Anal Glands in the Eastern Chipmunk, Tamias Copyright © 1979 Ohio Acad. Sci. 0030-0950/79/0001-0040$! .00/0 BRIEF NOTE DORSAL AND ANAL GLANDS IN THE EASTERN CHIPMUNK, T AM I AS STRIATUS1 RICHARD H. YAHNER,2 B. L. ALLEN and WESLEY J. PETERSON, Department of Zoology and Microbiology, Ohio University, Athens, OH 45701 OHIO J. SCI. 79(1): 40, 1979 Scent marks are important mechanisms means of synchronizing mating activity of exchanging information among con- in both T. sibiricus (Dobroruka 1972) and specifics, orienting individuals within T. striatus (Yahner 1978). We, therefore, home ranges, or integrating reproductive inspected tissue in the dorsal and the and social behavior in many species of anal regions of T. striatus for the occur- mammals (Eisenberg and Kleiman 1972). rence of scent glands. For example, ground squirrels [Spermo- Two captive, adult male chipmunks philus spp.) frequently scent mark by were sacrificed, and the skins were re- rubbing large, macroscopic, dorsal glands moved and fixed in alcohol-formalin- against substrata (Steiner 1974). Size acetic acid. The skins were examined and use of dorsal glands in this genus are macroscopically, both at removal and related to social organization. The most after fixation, for the presence of dorsal social ground squirrels have large glands and anal glands. Portions of tissue from and frequently scent mark; in contrast, the skin of one male were removed from the least social species have smaller the central region of the shoulder blades glands and never scent mark, except per- and from the anal region. The tissue haps in a passive manner when indi- specimens were washed in running tap viduals accidently touch tunnels of en- water and then dehydrated by the trances to burrow systems during passage standard procedure in graded percentages (Kivett el al 1976). of ethyl alcohol. After the final immer- The eastern chipmunk, Tamias striatus, sion in absolute alcohol they were de- is a diurnal ground squirrel common to alcoholized in xylol and then embedded the eastern deciduous forests of North in Paraplast by gradual infiltration America (Hall and Kelson 1959). East- through a mixture of xylol and Paraplast ern chipmunks are solitary and territorial and finally Paraplast alone. The tissue as adults, and each occupies a burrow specimens were then sectioned at 10 n. system distinct from those of others Each fifth section from both the cranial (Yahner 1978). Mucous and sebaceous half of the dorsal tissue and the right oral glands have been described in the side of the anal tissue, and all sections of eastern chipmunk (Quay 1965), but the the caudal half of the dorsal tissue and presence of glands in other regions of the left anal tissue were mounted on slides, body have not been reported to our hydrated, and immersed in Bouin's fixa- knowledge. The social organization of tive. After 30 minutes, the slide prepa- T. striatus is similar to certain solitary rations were washed in running tap water species of Spermophilus (see Kivett et al and then stained by the rapid phospho- 1976, Yahner 1978), and anal, or perhaps tungstic acid-hematoxylin method. vaginal, secretations may be an important No dorsal glands were detected in xNote received 11 May 1978 and in revised fresh or fixed skins, either macroscopically form 26 July 1978 (#78-25). 2Present address: Department of Entomol- or with a dissecting microscope. Micro- ogy, Fisheries and Wildlife, University of scopic examination of the dorsal sections Minnesota, St. Paul, MN 55108. revealed no glands (mucous, sebaceous, 40 Ohio J. Sci. DORSAL AND ANAL GLANDS IN TAMIAS 41 or sudoriferous) either associated with ing season, are of minor importance for hair follicles or isolated from follicles. intraspecific communication in this spe- In the anal sections, numerous sebace- cies compared to other ground squirrels ous glands were observed in association (e.g. Spermophilus; Kivett et al 1976). with hair follicles around the anal orifice Anal glands in Tamias appear to be and in the entire perineal region (fig. 1). modified sebaceous glands, and the loca- FIGURE 1. Typical section through the perineal region showing hair follicles and associated sebaceous glands. X100. No sebaceous glands occurred laterad or tion of the glands largely corresponds to dorsad to these regions. In addition to those described in the Richardson ground sebaceous glands, aggregations of glandu- squirrel, S. richardsonii (Sleggs 1926). lar tissue were noted in the walls of the Anal glands in Tamias are a plausible anal canal and extending into the source of reproductive pheromones. The perineum. This glandular tissue was alveoli of the anal glands in our speci- observed between the external anal mens, which were sacrificed in early sphincter and the connective tissue layer December, however, seemed to be in a of the canal (fig. 2) and also extending a quiescent stage. Recrudescence of go- short distance craniad between the ex- nads and accessory reproductive struc- ternal and internal anal sphicters. Ducts tures in male eastern chipmunks does not lined by thick stratified squamous epi- begin until late December or January thelium opened near the anal orifice (Neff and Anthony 1963), and mating (fig. 3). does not occur until mid-February (Yah- Scent marking with dorsal regions of ner and Svendsen 1978). Examination the body was never observed in eastern of additional specimens at various times chipmunks during 2500 hours of field of the year would be necessary to de- study (Yahner 1978); thus, the absence termine whether or not maximal develop- of dorsal glands is not surprising. This ment of anal glands correlates with re- supports the contention that glandular productive condition and breeding ac- secretions, at least during the nonbreed- tivity. 42 RICHARD H. YAHNER ET AL Vol. 79 FIGURE 2. (upper) Obliquely longitudinal section through the anal canal, AC. A mass of glandular tissue, G, shows at extreme left center and another aggregation below and to the right of the larger aggregation. The external anal sphincter muscle, ES, appears in the lower left corner and in the upper right corner. Note the numerous hair follicles in cross section. A higher magnification would show an abundance of sebaceous glands attached to the hair follicles. X62. FIGURE 3. (lower) Section through a main duct of an anal gland. Note the thick stratified squamous epithelium lining the duct, and the pale sebaceous-type cells that may be discharging into the lumen, D, of the duct. Fibers of the external anal sphincter, ES, appear in the upper left corner. In this section, the anal canal is not shown but it was above the duct and a little to the right. X100. Ohio J. Sci. DORSAL AND ANAL GLANDS IN TAMIAS 43 Acknowledgment. Funds for this study were eastern chipmunk, Tamias striatus. Penn- provided by the Department of Zoology and sylvania Acad. Sci. 37: 64-70. Microbiology, Ohio University. W. Peterson Quay, W. B. 1965 Comparative survey of the prepared the photomicrographs. sebaceous and sudoriferous glands of the oral lips and angle in rodents. J. Mammal. LITERATURE CITED 46: 23-37. Dobroruka, L. J. 1972 Scent marking and courtship in Siberian chipmunks, Tamias Sleggs, G. F. 1926 The adult anatomy and sibiricus lineatus (Siebold 1824), with notes on histology of the anal glands of the Richardson the taxonomic relations of chipmunks (Mam- ground squirrel, Citellus richardsomi, Sabine. malia). Vest. Cs Spol. Zool. 36: 12-16. Anat. Rec. 32: 1-43. Eisenberg, J. P. and D. G. Kleiman 1972 Steiner, A. L. 1974 Body-rubbing, marking, Olfactory communication in mammals. Ann. and other scent-related behavior in some Rev. Ecol. Syst. 3: 1-32. ground squirrels (Sciuridae): a descriptive Hall, E. R. and R. Kelson 1959 The mammals study. Canadian J. Zool. 52: 889-906. of North America. Ronald Press, New York. Kivett, V. K., J. O. Murie and A. L. Steiner Yahner, R. H. 1978 The adaptive nature of 1976 A comparative study of scent-gland lo- the social system and behavior in the eastern cation and related behavior in some north- chipmunk, Tamias striatus. Behav. Ecol. western nearctic ground squirrel species Sociobiol. 3: 397-427. (Sciuridae): an evolutionary approach. Ca- and G. E. Svendsen 1978 Effects of nadian J. Zool. 54: 1294-1306. climate on the circannual rhythm of the Neff, W. H. and A. Anthony 1963 Seasonal eastern chipmunk, Tamias striatus. J. Mam- changes in the male reproductive tract of the mal. 59: 109-117..
Recommended publications
  • Black-Tailed Prairie Dog Management Plan
    Badlands National Park – North Unit Environmental Assessment U.S. Department of the Interior National Park Service Badlands National Park, North Unit Pennington and Jackson Counties, South Dakota Black-Tailed Prairie Dog Management Plan Environmental Assessment August 2007 Badlands National Park – North Unit Environmental Assessment National Park Service Prairie Dog Management Plan U.S. Department of the Interior National Park Service Black-Tailed Prairie Dog Management Plan Environmental Assessment Badlands National Park, North Unit Pennington and Jackson Counties, South Dakota Executive Summary The U.S. Department of Interior, National Park Service (NPS) proposes to implement a comprehensive black-tailed prairie dog management plan for the North Unit of Badlands National Park where prairie dog populations have increased from approximately 2,070 acres in 1979 to 6,363 acres in 2006, or 11% of the approximately 60,000 acres of available suitable habitat. The principal objectives of the management plan are to ensure that the black-tailed prairie dog is maintained in its role as a keystone species in the mixed-grass prairie ecosystem on the North Unit, while providing strategies to effectively manage instances of prairie dog encroachment onto adjacent private lands. The plan also seeks to manage the North Unit’s prairie dog populations to sustain numbers sufficient to survive unpredictable events that may cause high mortality, such as sylvatic plague, while at the same time allowing park managers to meet management goals for other North Unit resources. Primary considerations in developing the plan include conservation of the park’s natural processes and conditions, identification of effective tools for prairie dog management, implementing strategies to deal with prairie dog encroachment onto adjacent private lands, and protection of human health and safety.
    [Show full text]
  • An Extra-Limital Population of Black-Tailed Prairie Dogs, Cynomys Ludovicianus, in Central Alberta
    46 THE CANADIAN FIELD -N ATURALIST Vol. 126 An Extra-Limital Population of Black-tailed Prairie Dogs, Cynomys ludovicianus, in Central Alberta HELEN E. T REFRY 1 and GEOFFREY L. H OLROYD 2 1Environment Canada, 4999-98 Avenue, Edmonton, Alberta T6B 2X3 Canada; email: [email protected] 2Environment Canada, 4999-98 Avenue, Edmonton, Alberta T6B 2X3 Canada Trefry, Helen E., and Geoffrey L. Holroyd. 2012. An extra-limital population of Black-tailed Prairie Dogs, Cynomys ludovicianus, in central Alberta. Canadian Field-Naturalist 126(1): 4 6–49. An introduced population of Black-tailed Prairie Dogs, Cynomys ludovicianus, has persisted for the past 50 years east of Edmonton, Alberta, over 600 km northwest of the natural prairie range of the species. This colony has slowly expanded at this northern latitude within a transition ecotone between the Boreal Plains ecozone and the Prairies ecozone. Although this colony is derived from escaped animals, it is worth documenting, as it represents a significant disjunct range extension for the species and it is separated from the sylvatic plague ( Yersina pestis ) that threatens southern populations. The unique northern location of these Black-tailed Prairie Dogs makes them valuable for the study of adaptability and geographic variation, with implications for climate change impacts on the species, which is threatened in Canada. Key Words: Black-tailed Prairie Dog, Cynomys ludovicianus, extra-limital occurrence, Alberta. Black-tailed Prairie Dogs ( Cynomys ludovicianus ) Among the animals he displayed were three Black- occur from northern Mexico through the Great Plains tailed Prairie Dogs, a male and two females, originat - of the United States to southern Canada, where they ing from the Dixon ranch colony southeast of Val Marie are found only in Saskatchewan (Banfield 1974).
    [Show full text]
  • Translocations of European Ground Squirrel (Spermophilus Citellus) Along Altitudinal Gradient in Bulgaria – an Overview
    A peer-reviewed open-access journal Nature ConservationTranslocations 35: 63–95 of European (2019) ground squirrel (Spermophilus citellus) along altitudinal... 63 doi: 10.3897/natureconservation.35.30911 REVIEW ARTICLE http://natureconservation.pensoft.net Launched to accelerate biodiversity conservation Translocations of European ground squirrel (Spermophilus citellus) along altitudinal gradient in Bulgaria – an overview Yordan Koshev1, Maria Kachamakova1, Simeon Arangelov2, Dimitar Ragyov1 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences; 1, Tzar Osvoboditel blvd.; 1000 Sofia, Bulgaria 2 Balkani Wildlife Society; 93, Evlogy and Hristo Georgievi blvd.; 1000 Sofia, Bulgaria Corresponding author: Yordan Koshev ([email protected]) Academic editor: Gabriel Ortega | Received 31 October 2018 | Accepted 15 May 2019 | Published 20 June 2019 http://zoobank.org/B16DBBA5-1B2C-491A-839B-A76CA3594DB6 Citation: Koshev Y, Kachamakova M, Arangelov S, Ragyov D (2019) Translocations of European ground squirrel (Spermophilus citellus) along altitudinal gradient in Bulgaria – an overview. Nature Conservation 35: 63–95. https://doi. org/10.3897/natureconservation.35.30911 Abstract The European ground squirrel (Spermophilus citellus) is a vulnerable species (IUCN) living in open habi- tats of Central and South-eastern Europe. Translocations (introductions, reintroductions and reinforce- ments) are commonly used as part of the European ground squirrel (EGS) conservation. There are numer- ous publications for such activities carried out in Central Europe, but data from South-eastern Europe, where translocations have also been implemented, are still scarce. The present study summarises the methodologies used in the translocations in Bulgaria and analyses the factors impacting their success. Eight translocations of more than 1730 individuals were performed in the period 2010 to 2018.
    [Show full text]
  • Evolutionary History of the Arctic Ground Squirrel (Spermophilus Parryii) in Nearctic Beringia
    Journal of Mammalogy, 85(4):601–610, 2004 EVOLUTIONARY HISTORY OF THE ARCTIC GROUND SQUIRREL (SPERMOPHILUS PARRYII) IN NEARCTIC BERINGIA AREN A. EDDINGSAAS,* BRANDY K. JACOBSEN,ENRIQUE P. LESSA, AND JOSEPH A. COOK Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA (AAE) University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775-6960, USA (BKJ) Laboratorio de Evolucio´n, Facultad de Ciencias, Casilla de Correos 12106, Montevideo 11300, Uruguay (EPL) Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (JAC) Pleistocene glaciations had significant effects on the distribution and evolution of arctic species. We focus on these effects in Nearctic Beringia, a high-latitude ice-free refugium in northwest Canada and Alaska, by examining variation in mitochondrial cytochrome b (Cytb) sequences to elucidate phylogeographic relationships and identify times of evolutionary divergence in arctic ground squirrels (Spermophilus parryii). This arctic- adapted species provides an excellent model to examine the biogeographic history of the Nearctic due to its extensive subspecific variation and long evolutionary history in the region. Four geographically distinct clades are identified within this species and provide a framework for exploring patterns of biotic diversification and evolution within the region. Phylogeographic analysis and divergence estimates are consistent with a glacial vicariance hypothesis. Estimates of genetic and population divergence suggest that differentiation within Nearctic S. parryii occurred as early as the Kansan glaciation. Timing of these divergence events clusters around the onset of the Kansan, Illinoian, and Wisconsin glaciations, supporting glacial vicariance, and suggests that S. parryii survived multiple glacial periods in Nearctic Beringia.
    [Show full text]
  • Phylogeny, Biogeography and Systematic Revision of Plain Long-Nosed Squirrels (Genus Dremomys, Nannosciurinae) Q ⇑ Melissa T.R
    Molecular Phylogenetics and Evolution 94 (2016) 752–764 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny, biogeography and systematic revision of plain long-nosed squirrels (genus Dremomys, Nannosciurinae) q ⇑ Melissa T.R. Hawkins a,b,c,d, , Kristofer M. Helgen b, Jesus E. Maldonado a,b, Larry L. Rockwood e, Mirian T.N. Tsuchiya a,b,d, Jennifer A. Leonard c a Smithsonian Conservation Biology Institute, Center for Conservation and Evolutionary Genetics, National Zoological Park, Washington DC 20008, USA b Division of Mammals, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington DC 20013-7012, USA c Estación Biológica de Doñana (EBD-CSIC), Conservation and Evolutionary Genetics Group, Avda. Americo Vespucio s/n, Sevilla 41092, Spain d George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA 20030, USA e George Mason University, Department of Biology, 4400 University Drive, Fairfax, VA 20030, USA article info abstract Article history: The plain long-nosed squirrels, genus Dremomys, are high elevation species in East and Southeast Asia. Received 25 March 2015 Here we present a complete molecular phylogeny for the genus based on nuclear and mitochondrial Revised 19 October 2015 DNA sequences. Concatenated mitochondrial and nuclear gene trees were constructed to determine Accepted 20 October 2015 the tree topology, and date the tree. All speciation events within the plain-long nosed squirrels (genus Available online 31 October 2015 Dremomys) were ancient (dated to the Pliocene or Miocene), and averaged older than many speciation events in the related Sunda squirrels, genus Sundasciurus.
    [Show full text]
  • Tamias Ruficaudus Simulans, Red-Tailed Chipmunk
    Conservation Assessment for the Red-Tailed Chipmunk (Tamias ruficaudus simulans) in Washington Jennifer Gervais May 2015 Oregon Wildlife Institute Disclaimer This Conservation Assessment was prepared to compile the published and unpublished information on the red-tailed chipmunk (Tamias ruficaudus simulans). If you have information that will assist in conserving this species or questions concerning this Conservation Assessment, please contact the interagency Conservation Planning Coordinator for Region 6 Forest Service, BLM OR/WA in Portland, Oregon, via the Interagency Special Status and Sensitive Species Program website at http://www.fs.fed.us/r6/sfpnw/issssp/contactus/ U.S.D.A. Forest Service Region 6 and U.S.D.I. Bureau of Land Management Interagency Special Status and Sensitive Species Program Executive Summary Species: Red-tailed chipmunk (Tamias ruficaudus) Taxonomic Group: Mammal Management Status: The red-tailed chipmunk is considered abundant through most of its range in western North America, but it is highly localized in Alberta, British Columbia, and Washington (Jacques 2000, Fig. 1). The species is made up of two fairly distinct subspecies, T. r. simulans in the western half of its range, including Washington, and T. r. ruficaudus in the east (e.g., Good and Sullivan 2001, Hird and Sullivan 2009). In British Columbia, T. r. simulans is listed as Provincial S3 or of conservation concern and is on the provincial Blue List (BC Conservation Data Centre 2014). The Washington Natural Heritage Program lists the red-tailed chipmunk’s global rank as G2, “critically imperiled globally because of extreme rarity or because of some factor(s) making it especially vulnerable to extinction,” and its state status as S2 although the S2 rank is uncertain.
    [Show full text]
  • Distribution and Abundance of Hoary Marmots in North Cascades National Park Complex, Washington, 2007-2008
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Distribution and Abundance of Hoary Marmots in North Cascades National Park Complex, Washington, 2007-2008 Natural Resource Technical Report NPS/NOCA/NRTR—2012/593 ON THE COVER Hoary Marmot (Marmota caligata) Photograph courtesy of Roger Christophersen, North Cascades National Park Complex Distribution and Abundance of Hoary Marmots in North Cascades National Park Complex, Washington, 2007-2008 Natural Resource Technical Report NPS/NOCA/NRTR—2012/593 Roger G. Christophersen National Park Service North Cascades National Park Complex 810 State Route 20 Sedro-Woolley, WA 98284 June 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Distribution, Population Size, and Habitat Characteristics of The
    sustainability Article Distribution, Population Size, and Habitat Characteristics of the Endangered European Ground Squirrel (Spermophilus citellus, Rodentia, Mammalia) in Its Southernmost Range Dimitra-Lida Rammou 1 , Dimitris Kavroudakis 2 and Dionisios Youlatos 1,* 1 Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; [email protected] 2 Department of Geography, University of the Aegean, GR-81100 Mytilene, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-2310998734 Abstract: The European ground squirrel (Spermophilus citellus) is an endangered species, endemic to Central and Southeastern Europe, inhabiting burrow colonies in grassland and agricultural ecosystems. In recent years, agricultural land-use changes and increased urbanization have largely contributed to a severe population decline across its range, particularly in its southernmost edge. Assessing the population and habitat status of this species is essential for prioritizing appropriate conservation actions. The present study aims to track population size changes and identify habitat characteristics of the species in Greece via a literature search, questionnaires, and fieldwork for assessing trends in population size as well as spatial K-means analysis for estimating its relation to specific habitat attributes. We found that both distribution size (grid number) and colony numbers of Citation: Rammou, D.-L.; the species decreased in the last decades (by 62.4% and 74.6%, respectively). The remaining colonies Kavroudakis, D.; Youlatos, D. are isolated and characterized by low density (mean = 7.4 ± 8.6 ind/ha) and low number of animals Distribution, Population Size, and (mean = 13 ± 16 individuals). Most of the colonies are situated in lowlands and did not relate to Habitat Characteristics of the specific habitat attributes.
    [Show full text]
  • Golden-Mantled Ground Squirrel Or Chipmunk? by Lynne Brosch
    Who Is Your Pest? Golden-Mantled Ground Squirrel or Chipmunk? by Lynne Brosch Recently as I went around the lake doing talks on pest management, I had several complaints about chipmunks. People describe a lot of digging and eating of plants by these chipmunks. As I began thinking about putting out some information on how to handle the situation I thought about the golden-mantled ground squirrel, I watched eating garden plants voraciously on the Baldwin Estate grounds just yesterday. Perhaps gardeners need to know who they are dealing with. The golden-mantled ground squirrel looks a lot like a chipmunk. It has a large white stripe bordered by black on each side. The main difference between this squirrel and a chipmunk is that its stripes don’t go all the way to the face and it is a slightly larger animal. It lives along the west coast in coniferous forests and mountainous areas. It likes to eat plants, seeds, nuts, fruit and some insects. It lives in an underground burrow usually near trees or logs. Chipmunks have very similar burrows. Most common in the Tahoe basin is the Lodgepole chipmunk. Fencing can be used to protect plants from squirrels and chipmunks, but has challenges in effectiveness because of the excellent digging and climbing skills exhibited by these garden pests. Hardware cloth may be used to exclude animals from flower beds with seeds and bulbs covered by the hardware cloth and all covered with soil. This method of prevention may prove less costly and time consuming than trapping. The most successful method for control of ground squirrels and chipmunks is the use of traps.
    [Show full text]
  • Alarm Calling in Yellow-Bellied Marmots: I
    Anim. Behav., 1997, 53, 143–171 Alarm calling in yellow-bellied marmots: I. The meaning of situationally variable alarm calls DANIEL T. BLUMSTEIN & KENNETH B. ARMITAGE Department of Systematics and Ecology, University of Kansas (Received 27 November 1995; initial acceptance 27 January 1996; final acceptance 13 May 1996; MS. number: 7461) Abstract. Yellow-bellied marmots, Marmota flaviventris, were reported to produce qualitatively different alarm calls in response to different predators. To test this claim rigorously, yellow-bellied marmot alarm communication was studied at two study sites in Colorado and at one site in Utah. Natural alarm calls were observed and alarm calls were artificially elicited with trained dogs, a model badger, a radiocontrolled glider and by walking towards marmots. Marmots ‘whistled’, ‘chucked’ and ‘trilled’ in response to alarming stimuli. There was no evidence that either of the three call types, or the acoustic structure of whistles, the most common alarm call, uniquely covaried with predator type. Marmots primarily varied the rate, and potentially a few frequency characteristics, as a function of the risk the caller experienced. Playback experiments were conducted to determine the effects of call type (chucks versus whistles), whistle rate and whistle volume on marmot responsiveness. Playback results suggested that variation in whistle number/rate could communicate variation in risk. No evidence was found of intraspecific variation in the mechanism used to communicate risk: marmots at all study sites produced the same vocalizations and appeared to vary call rate as a function of risk. There was significant individual variation in call structure, but acoustic parameters that were individually variable were not used to communicate variation in risk.
    [Show full text]
  • Capsaicin-Treated Seed As a Squirrel Deterrent at Birdfeeders
    Capsaicin-treated seed as a squirrel deterrent at birdfeeders Paul D. Curtis, Elizabeth D. Rowland, and Gwen B. Curtis, Department of Natural Resources, Cornell University, Ithaca , NY 14853 , USA Joseph A. Dunn, Snyder Seed Corporation, 255 Great Arrow Ave. , Buffalo , New York 14207, USA Abstract: Eastern gray squirrels (Sciurus carolinensis) are considered to be a pest by many bird­ lovers because they take significant quantities of seed from birdfeeders. None of the available methods of protecting birdseed against squirrels is completely effective. We assessed the efficacy of treating birdseed with capsaicin oleoresin as a means of deterring squirrels . Consumption of treated and untreated whole, black-oil sunflower seed was compared by carrying out one-choice feeding trials at 3 sites near Ithaca, New York, from 11 May to 24 June 1999. The heat strength of the treated seed was 40,000 Scoville Heat Units (SHUs) (2,424 ppm) on the shell and 2,000 SHUs (121 ppm) on the heart. At each site, we provided 600 g of seed at a feeding station for one 3-hr session each day, and recorded the weight of seed consumed. Observations of feeding behavior by squirrels, birds and Eastern chipmunks (Tamias striatus) were recorded throughout the 3-hr session on 2 days per week at each site during most weeks. Untreated seed was provided in weeks 1, 2, and 4; capsaicin-treated seed was offered in weeks 3, 5, and 6. We concluded that treatment with capsaicin significantly reduced both the amount of seed taken by squirrels and the total time squirrels spent feeding.
    [Show full text]
  • Zeitschrift Für Säugetierkunde
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Investigations on the Sciurid manus I. Some new taxonomic characters and their importance in the Classification of squirrels By Charles A. Long and Joseph Captain Receipt of Ms. 28. 1. 1973 Introduction The structure of the manus is important in the Classification of the Sciuridae. Some of the characters of the manus that distinguish high taxonomic groups result perhaps from evolutionary convergence, but others are conservative and useful. Some trends in form of the manus are irreversible, and therefore reveal phylogenetic information. The characters of the forefoot augment those of the teeth and baculum in sciurid Classification. Materials and methods The forefoot of specimens in Nearctic Eutamias (minimus 32, amoenusl, dorsalis2, merriamil, ruficaudus 1, quadrivittatus 2, umbrinus9, ruficaudusX), Tamias striatus 86, Marmota (monaxS, flaviventris 2), Spermophilus (tridecemlineatus 34, spilosoma 1, mexicanus 1, jranklinii 5, lateralis 9, tereticaudus 3, variegatus 3, armatus 3, richardsonii 8, beldingi 1, townsendii 1, washingtonii 1, beecheyi 1, undulatus \), Ammospermophilus (leucurus 1, harrisii 3), Cynomys (leucurus 3, ludovicianus \), Tamiasciurus (douglasii 1, hudsonicus 70), Sciurus (niger 24, carolinensis AI), and Glaucomys (sabrinus 6, volans 22), as well as three Oriental species (Petaurista lena 1; P. grandis 1; Sciurus Iis 1) and one South American species (Sciurus granatensis 2) was examined of preserved skins in the University of Wisconsin-Stevens Point
    [Show full text]