Computer Music (So Far)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wendy Reid Composer
WENDY REID COMPOSER 1326 Shattuck Avenue #2 Berkeley, California 94709 [email protected] treepieces.net EDUCATION 1982 Stanford University, CCRMA, Post-graduate study Workshop in computer-generated music with lectures by John Chowning, Max Mathews, John Pierce and Jean-Claude Risset 1978-80 Mills College, M.A. in Music Composition Composition with Terry Riley, Robert Ashley and Charles Shere Violin and chamber music with the Kronos Quartet 1975-77 Ecoles D’Art Americaines, Palais de Fontainbleau and Paris, France: Composition with Nadia Boulanger; Classes in analysis, harmony, counterpoint, composition; Solfege with assistant Annette Dieudonne 1970-75 University of Southern California, School of Performing Arts, B.M. in Music Composition, minor in Violin Performance Composition with James Hopkins, Halsey Stevens and film composer David Raksin 1 AWARDS, GRANTS, and COMMISSIONS Meet The Composer/California Meet The Composer/New York Subito Composer Grant ASMC Grant Paul Merritt Henry Award Hellman Award The Oakland Museum The Nature Company Sound/Image Unlimited Graduate Assistantship California State Scholarship Honors at Entrance USC National Merit Award Finalist National Educational Development Award Finalist Commission, Brassiosaurus (Tomita/Djil/ Heglin):Tree Piece #52 Commission, Joyce Umamoto: Tree Piece #42 Commission, Abel-Steinberg-Winant Trio: Tree Piece #41 Commission, Tom Dambly: Tree Piece #31 Commission, Mary Oliver: Tree Piece #21 Commission, Don Buchla: Tree Piece #17 Commission, William Winant: Tree Piece #10 DISCOGRAPHY LP/Cassette: TREE PIECES (FROG RECORDS,1988/ FROG PEAK) CD: TREEPIECES(FROG RECORDS, 2002/ FROGPEAK) TREE PIECES volume 2 (NIENTE, 2004 / FROGPEAK) TREE PIECE SINGLE #1: LULU VARIATIONS (NIENTE, 2009) TREE PIECE SINGLE #2: LU-SHOO FRAGMENTS (NIENTE, 2010) 2 PUBLICATIONS Scores: Tree Pieces/Frog On Rock/Game of Tree/Klee Pieces/Glass Walls/Early Works (Frogpeak Music/Sound-Image/W. -
Interpretação Em Tempo Real Sobre Material Sonoro Pré-Gravado
Interpretação em tempo real sobre material sonoro pré-gravado JOÃO PEDRO MARTINS MEALHA DOS SANTOS Mestrado em Multimédia da Universidade do Porto Dissertação realizada sob a orientação do Professor José Alberto Gomes da Universidade Católica Portuguesa - Escola das Artes Julho de 2014 2 Agradecimentos Em primeiro lugar quero agradecer aos meus pais, por todo o apoio e ajuda desde sempre. Ao orientador José Alberto Gomes, um agradecimento muito especial por toda a paciência e ajuda prestada nesta dissertação. Pelo apoio, incentivo, e ajuda à Sara Esteves, Inês Santos, Manuel Molarinho, Carlos Casaleiro, Luís Salgado e todos os outros amigos que apesar de se encontraram fisicamente ausentes, estão sempre presentes. A todos, muito obrigado! 3 Resumo Esta dissertação tem como foco principal a abordagem à interpretação em tempo real sobre material sonoro pré-gravado, num contexto performativo. Neste caso particular, material sonoro é entendido como música, que consiste numa pulsação regular e definida. O objetivo desta investigação é compreender os diferentes modelos de organização referentes a esse material e, consequentemente, apresentar uma solução em forma de uma aplicação orientada para a performance ao vivo intitulada Reap. Importa referir que o material sonoro utilizado no software aqui apresentado é composto por músicas inteiras, em oposição às pequenas amostras (samples) recorrentes em muitas aplicações já existentes. No desenvolvimento da aplicação foi adotada a análise estatística de descritores aplicada ao material sonoro pré-gravado, de maneira a retirar segmentos que permitem uma nova reorganização da informação sequencial originalmente contida numa música. Através da utilização de controladores de matriz com feedback visual, o arranjo e distribuição destes segmentos são alterados e reorganizados de forma mais simplificada. -
Musique Algorithmique
[Version adaptée pour un cours commun ATIAM/CURSUS d’un article à paraître dans N. Donin and L. Feneyrou (dir.), Théorie de la composition musicale au XXe siècle, Symétrie, 2012] Musique algorithmique Moreno Andreatta . La plupart des études sur la musique algorithmique soulignent, à juste titre, le caractère systématique et combinatoire de certaines démarches compositionnelles qui ont accompagné l’évolution de la musique occidentale. De l’isorythmie du Moyen Âge aux musikalische Würfelspiele ou « jeux musicaux » attribués à Johann Philipp Kirnberger, Wolfgang Amadeus Mozart, Josef Haydn ou Carl Philipp Emmanuel Bach, l’utilisation de méthodes combinatoires et algorithmiques n’a pas dû attendre l’« implémentation » informatique pour voir le jour1. Fig 0.1 : « Jeux musicaux » (générés par http://sunsite.univie.ac.at/Mozart/dice/) 1 En attendant un article sur la musique algorithmique dans le Grove Music Online, nous renvoyons le lecteur à l’étude de Karlheinz ESSL, « Algorithmic Composition » (The Cambridge Companion to Electronic Music (Nick COLLINS et Julio D’ESCRIVAN, éds.), Cambridge : Cambridge University Press, 2007, p. 107-125) pour une analyse plus large des procédés algorithmiques. On pourrait penser, et c’est l’hypothèse le plus souvent proposée, que c’est l’artifice de l’écriture qui rend possible l’exploration de la combinatoire. Cela est sans doute vrai dans plusieurs répertoires, des polyphonies complexes de Philippe de Vitry ou Guillaume de Machaut aux œuvres sérielles intégrales de la seconde moitié du XXe siècle. Cependant, comme l’ont bien montré certains travaux d’ethnomusicologie et d’ethnomathématique (voir Marc CHEMILLIER, Les Mathématiques naturelles, Paris : Odile Jacob, 2007), l’utilisation d’algorithmes est également présente dans les musiques de tradition orale – une problématique que nous n’aborderons cependant pas ici, car elle dépasse le cadre de cette étude. -
The Evolution of the Performer Composer
CONTEMPORARY APPROACHES TO LIVE COMPUTER MUSIC: THE EVOLUTION OF THE PERFORMER COMPOSER BY OWEN SKIPPER VALLIS A thesis submitted to the Victoria University of Wellington in fulfillment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2013 Supervisory Committee Dr. Ajay Kapur (New Zealand School of Music) Supervisor Dr. Dugal McKinnon (New Zealand School of Music) Co-Supervisor © OWEN VALLIS, 2013 NEW ZEALAND SCHOOL OF MUSIC ii ABSTRACT This thesis examines contemporary approaches to live computer music, and the impact they have on the evolution of the composer performer. How do online resources and communities impact the design and creation of new musical interfaces used for live computer music? Can we use machine learning to augment and extend the expressive potential of a single live musician? How can these tools be integrated into ensembles of computer musicians? Given these tools, can we understand the computer musician within the traditional context of acoustic instrumentalists, or do we require new concepts and taxonomies? Lastly, how do audiences perceive and understand these new technologies, and what does this mean for the connection between musician and audience? The focus of the research presented in this dissertation examines the application of current computing technology towards furthering the field of live computer music. This field is diverse and rich, with individual live computer musicians developing custom instruments and unique modes of performance. This diversity leads to the development of new models of performance, and the evolution of established approaches to live instrumental music. This research was conducted in several parts. The first section examines how online communities are iteratively developing interfaces for computer music. -
Editorial: Alternative Histories of Electroacoustic Music
This is a repository copy of Editorial: Alternative histories of electroacoustic music. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119074/ Version: Accepted Version Article: Mooney, J orcid.org/0000-0002-7925-9634, Schampaert, D and Boon, T (2017) Editorial: Alternative histories of electroacoustic music. Organised Sound, 22 (02). pp. 143-149. ISSN 1355-7718 https://doi.org/10.1017/S135577181700005X This article has been published in a revised form in Organised Sound http://doi.org/10.1017/S135577181700005X. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University Press Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ EDITORIAL: Alternative Histories of Electroacoustic Music In the more than twenty years of its existence, Organised Sound has rarely focussed on issues of history and historiography in electroacoustic music research. -
62 Years and Counting: MUSIC N and the Modular Revolution
62 Years and Counting: MUSIC N and the Modular Revolution By Brian Lindgren MUSC 7660X - History of Electronic and Computer Music Fall 2019 24 December 2019 © Copyright 2020 Brian Lindgren Abstract. MUSIC N by Max Mathews had two profound impacts in the world of music synthesis. The first was the implementation of modularity to ensure a flexibility as a tool for the user; with the introduction of the unit generator, the instrument and the compiler, composers had the building blocks to create an unlimited range of sounds. The second was the impact of this implementation in the modular analog synthesizers developed a few years later. While Jean-Claude Risset, a well known Mathews associate, asserts this, Mathews actually denies it. They both are correct in their perspectives. Introduction Over 76 years have passed since the invention of the first electronic general purpose computer,1 the ENIAC. Today, we carry computers in our pockets that can perform millions of times more calculations per second.2 With the amazing rate of change in computer technology, it's hard to imagine that any development of yesteryear could maintain a semblance of relevance today. However, in the world of music synthesis, the foundations that were laid six decades ago not only spawned a breadth of multifaceted innovation but continue to function as the bedrock of important digital applications used around the world today. Not only did a new modular approach implemented by its creator, Max Mathews, ensure that the MUSIC N lineage would continue to be useful in today’s world (in one of its descendents, Csound) but this approach also likely inspired the analog synthesizer engineers of the day, impacting their designs. -
DSP Class III: Digital Electronic Music Concepts Overview (Part III) ADC and DAC Analog-To-Digital Conversion
TECH 350: DSP Class III: Digital Electronic Music Concepts Overview (Part III) ADC and DAC Analog-to-Digital Conversion Parameters of ADC: • Sampling Rate (fs) = rate at which analog signal is ^ captured (sampling) (in Hertz) Intensity v • Bit Depth = number of values for each digital sample (quantization) (in bits) Time -> Limitations/Issues with Sampling Distortion caused by sampling, AKA ALIASING (or foldover) How can we rectify (or at least describe) this phenomenon? Sampling (Nyquist) Theorem •Can describe the resultant frequency of aliasing via the following (rough) formula, iff input freq. > half the sampling rate && < sampling rate: resultant frequency = sampling frequency (fs) - input frequency For example, if fs = 1000Hz and the frequency of our input is at 800Hz: 1000 - 800 = 200, so resultant frequency is 200Hz (!) •Nyquist theorem = In order to be able to reconstruct a signal, the sampling frequency must be at least twice the frequency of the signal being sampled •If you want to represent frequencies up to X Hz, you need fs = 2X Hz Ideal Sampling Frequency (for audio) •What sampling rate should we use for musical applications? •This is an on-going debate. Benefits of a higher sampling rate? Drawbacks? •AES Standards: •Why 44.1kHz? Why 48kHz? Why higher (we can’t hear up there, can we?) •For 44.1kHz and 48kHz answer lies primarily within video standard considerations, actually… •44.1kHz = 22 · 32 · 52 · 72, meaning it has a ton of integer factors •>2 * 20kHz is great, as it allows us to have frequency headroom to work with, and subharmonics (and interactions of phase, etc.) up in that range are within our audible range Anti-Aliasing Filters + Phase Correction •How to fix aliasing? Add a low-pass filter set at a special cutoff frequency before we digitize the signal. -
Fifty Years of Computer Music: Ideas of the Past Speak to the Future
Fifty Years of Computer Music: Ideas of the Past Speak to the Future John Chowning1 1 CCRMA, Department of Music, Stanford University, Stanford, California 94305 [email protected] Abstract. The use of the computer to analyze and synthesize sound in two early forms, additive and FM synthesis, led to new thoughts about synthesizing sound spectra, tuning and pitch. Detached from their traditional association with the timbre of acoustic instruments, spectra become structured and associated with pitch in ways that are unique to the medium of computer music. 1 Introduction In 1957, just fifty years ago, Max Mathews introduced a wholly new means of mak- ing music. An engineer/scientist at Bell Telephone Laboratories (BTL), Max (with the support of John Pierce, who was director of research) created out of numbers and code the first music to be produced by a digital computer. It is usually the case that a fascination with some aspect of a discipline outside of one’s own will quickly con- clude with an experiment without elaboration. But in Max’s case, it was the begin- ning of a profoundly deep and consequential adventure, one which he modestly in- vited us all to join through his elegantly conceived programs, engendering tendrils that found their way into far-flung disciplines that today, 50 years later, continue to grow without end. From the very beginning Max’s use of the computer for making music was expan- sive. Synthesis, signal processing, analysis, algorithmic composition, psychoacous- tics—all were within his scope and all were expressed and described in great detail in his famous article [1] and the succession of programs MUSIC I-V.1 It is in the nature of the computer medium that detail be elevated at times to the forefront of our thinking, for unlike preceding music technologies, both acoustic and analogue, computers require us to manage detail to accomplish even the most basic steps. -
Download Chapter 264KB
Memorial Tributes: Volume 16 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 16 MAX V. MATHEWS 1926–2011 Elected in 1979 “For contributions to computer generation and analysis of meaningful sounds.” BY C. GORDON BELL MAX VERNON MATHEWS, often called the father of computer music, died on April 21, 2011, at the age of 84. At the time of his death he was serving as professor (research) emeritus at Stanford University’s Center for Computer Research in Music and Acoustics. Max was born in Columbus, Nebraska, on November 13, 1926. He attended high school in Peru, Nebraska, where his father taught physics and his mother taught biology at the state teachers college there. Peru High School was the training school for the college. This was during World War II (1943– 1944). One day when Max was a senior in high school, he simply went off to Omaha (strictly on his own volition) and enlisted in the U.S. Navy—a fortunate move because he was able to have some influence on the service to which he was assigned, and after taking the Eddy Aptitude Test, he was selected for radar school. Radar, however, was so secret, that Max was designated a “radio technician.” After basic training he was sent to Treasure Island, San Francisco, where he met Marjorie (Marj), who became his wife. After returning from the war, Max applied to the California Institute of Technology (Caltech) and to the Massachusetts Institute of Technology (MIT). On graduating with a bachelor’s degree in electrical engineering from Caltech in 1950, he went to MIT to earn a doctorate in 1954. -
MTO 20.1: Willey, Editing and Arrangement
Volume 20, Number 1, March 2014 Copyright © 2014 Society for Music Theory The Editing and Arrangement of Conlon Nancarrow’s Studies for Disklavier and Synthesizers Robert Willey NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.1/mto.14.20.1.willey.php KEYWORDS: Conlon Nancarrow, MIDI, synthesis, Disklavier ABSTRACT: Over the last three decades a number of approaches have been used to hear Conlon Nancarrow’s Studies for Player Piano in new settings. The musical information necessary to do this can be obtained from his published scores, the punching scores that reveal the planning behind the compositions, copies of the rolls, or the punched rolls themselves. The most direct method of extending the Studies is to convert them to digital format, because of the similarities between the way notes are represented on a player piano roll and in MIDI. The process of editing and arranging Nancarrow’s Studies in the MIDI environment is explained, including how piano roll dynamics are converted into MIDI velocities, and other decisions that must be made in order to perform them in a particular environment: the Yamaha Disklavier with its accompanying GM sound module. While Nancarrow approved of multi-timbral synthesis, separating the voices of his Studies and assigning them unique timbres changes the listener’s experience of the “resultant,” Tenney’s term for the fusion of multiple voices into a single polyphonic texture. Received January 2014 1. Introduction [1.1] Conlon Nancarrow’s compositional output from 1948 until his death in 1997 was primarily for the two player pianos in his studio in Mexico City. -
Flocking: a Framework for Declarative Music-Making on the Web
Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece Flocking: A Framework for Declarative Music-Making on the Web Colin Clark Adam Tindale OCAD University OCAD University [email protected] [email protected] ABSTRACT JavaScript. As artists and musicians increasingly use net- worked devices, sensors, and collaboration in their work, Flocking 1 is a framework for audio synthesis and mu- these limitations take an increasing toll on the complexity sic composition written in JavaScript. It takes a unique and scalability of creative coding. approach to solving several of the common architectural Flocking is an open source JavaScript framework that problems faced by computer music environments, empha- aims to address some of these concerns by connecting mu- sizing a declarative style that is closely aligned with the sicians and artists with the cross-platform, distributed de- principles of the web. livery model of the web, and with the larger pool of li- Flocking’s goal is to enable the growth of an ecosys- braries, user interface components, and tutorials that are tem of tools that can easily parse and understand the logic available to the web development community. Further, and semantics of digital instruments by representing the it emphasizes an approach to interoperability in which basic building blocks of synthesis declaratively. This is declarative instruments and compositions can be broadly particularly useful for supporting generative composition shared, manipulated, and extended across traditional tech- (where programs generate new instruments and scores al- nical subcultural boundaries. gorithmically), graphical tools (for programmers and non- programmers alike to collaborate), and new modes of so- cial programming that allow musicians to easily adapt, ex- 1.1 Interoperability in Context tend, and rework existing instruments without having to A primary motivating concern for Flocking is that the “fork” their code. -
43558913.Pdf
! ! ! Generative Music Composition Software Systems Using Biologically Inspired Algorithms: A Systematic Literature Review ! ! ! Master of Science Thesis in the Master Degree Programme ! !Software Engineering and Management! ! ! KEREM PARLAKGÜMÜŞ ! ! ! University of Gothenburg Chalmers University of Technology Department of Computer Science and Engineering Göteborg, Sweden, January 2014 The author grants Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the work electronically and in a non-commercial purpose and to make it accessible on the Internet. The author warrants that he/she is the author of the work, and warrants that the work does not contain texts, pictures or other material that !violates copyright laws. The author shall, when transferring the rights of the work to a third party (like a publisher or a company), acknowledge the third party about this agreement. If the author has signed a copyright agreement with a third party regarding the work, the author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the work electronically and make it accessible on the Internet. ! ! Generative Music Composition Software Systems Using Biologically Inspired Algorithms: A !Systematic Literature Review ! !KEREM PARLAKGÜMÜŞ" ! !© KEREM PARLAKGÜMÜŞ, January 2014." Examiner: LARS PARETO, MIROSLAW STARON" !Supervisor: PALLE DAHLSTEDT" University of Gothenburg" Chalmers University of Technology" Department of Computer Science and Engineering" SE-412 96 Göteborg" Sweden" !Telephone + 46 (0)31-772 1000" ! ! ! Department of Computer Science and Engineering" !Göteborg, Sweden, January 2014 Abstract My original contribution to knowledge is to examine existing work for methods and approaches used, main functionalities, benefits and limitations of 30 Genera- tive Music Composition Software Systems (GMCSS) by performing a systematic literature review.