Estimation of Surface Runoff Using Curve Number Method- a Geospatial Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Managing Storm Water Runoff to Prevent Contamination of Drinking Water
United States Office of Water EPA 816-F-01-020 Environmental Protection (4606) July 2001 Agency Source Water Protection Practices Bulletin Managing Storm Water Runoff to Prevent Contamination of Drinking Water Storm water runoff is rain or snow melt that flows off the land, from streets, roof tops, and lawns. The runoff carries sediment and contaminants with it to a surface water body or infiltrates through the soil to ground water. This fact sheet focuses on the management of runoff in urban environments; other fact sheets address management measures for other specific sources, such as pesticides, animal feeding operations, and vehicle washing. SOURCES OF STORM WATER RUNOFF Urban and suburban areas are predominated by impervious cover including pavements on roads, sidewalks, and parking lots; rooftops of buildings and other structures; and impaired pervious surfaces (compacted soils) such as dirt parking lots, walking paths, baseball fields and suburban lawns. During storms, rainwater flows across these impervious surfaces, mobilizing contaminants, and transporting them to water bodies. All of the activities that take place in urban and suburban areas contribute to the pollutant load of storm water runoff. Oil, gasoline, and automotive fluids drip from vehicles onto roads and parking lots. Storm water runoff from shopping malls and retail centers also contains hydrocarbons from automobiles. Landscaping by homeowners, around businesses, and on public grounds contributes sediments, pesticides, fertilizers, and nutrients to runoff. Construction of roads and buildings is another large contributor of sediment loads to waterways. In addition, any uncovered materials such as improperly stored hazardous substances (e.g., household Parking lot runoff cleaners, pool chemicals, or lawn care products), pet and wildlife wastes, and litter can be carried in runoff to streams or ground water. -
Surface Water
Chapter 5 SURFACE WATER Surface water originates mostly from rainfall and is a mixture of surface run-off and ground water. It includes larges rivers, ponds and lakes, and the small upland streams which may originate from springs and collect the run-off from the watersheds. The quantity of run-off depends upon a large number of factors, the most important of which are the amount and intensity of rainfall, the climate and vegetation and, also, the geological, geographi- cal, and topographical features of the area under consideration. It varies widely, from about 20 % in arid and sandy areas where the rainfall is scarce to more than 50% in rocky regions in which the annual rainfall is heavy. Of the remaining portion of the rainfall. some of the water percolates into the ground (see "Ground water", page 57), and the rest is lost by evaporation, transpiration and absorption. The quality of surface water is governed by its content of living organisms and by the amounts of mineral and organic matter which it may have picked up in the course of its formation. As rain falls through the atmo- sphere, it collects dust and absorbs oxygen and carbon dioxide from the air. While flowing over the ground, surface water collects silt and particles of organic matter, some of which will ultimately go into solution. It also picks up more carbon dioxide from the vegetation and micro-organisms and bacteria from the topsoil and from decaying matter. On inhabited watersheds, pollution may include faecal material and pathogenic organisms, as well as other human and industrial wastes which have not been properly disposed of. -
Determination of Curve Number and Estimation of Runoff Using Indian Experimental Rainfall and Runoff Data
Journal of Spatial Hydrology Volume 13 Number 1 Article 2 2017 Determination of curve number and estimation of runoff using Indian experimental rainfall and runoff data Follow this and additional works at: https://scholarsarchive.byu.edu/josh BYU ScholarsArchive Citation (2017) "Determination of curve number and estimation of runoff using Indian experimental rainfall and runoff data," Journal of Spatial Hydrology: Vol. 13 : No. 1 , Article 2. Available at: https://scholarsarchive.byu.edu/josh/vol13/iss1/2 This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Journal of Spatial Hydrology by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Journal of Spatial Hydrology Vol.13, No.1 Fall 2017 Determination of curve number and estimation of runoff using Indian experimental rainfall and runoff data Pushpendra Singh*, National Institute of Hydrology, Roorkee, Uttarakhand, India; email: [email protected] S. K. Mishra, Dept. of Water Resources Development & Management, IIT Roorkee, Uttarakhand; email: [email protected] *Corresponding author Abstract The Curve Number (CN) method has been widely used to estimate runoff from rainfall runoff events. In this study, experimental plots in Roorkee, India have been used to measure natural rainfall-driven rates of runoff under the main crops found in the region and derive associated CN values from the measured data using five different statistical methods. CNs obtained from the standard United States Department of Agriculture - Natural Resources Conservation Service (USDA-NRCS) table were suitable to estimate runoff for bare soil, soybeans and sugarcane. -
Estimation of Surface Runoff Using NRCS Curve Number in Some Areas in Northwest Coast, Egypt
E3S Web of Conferences 167, 02002 (2020) https://doi.org/10.1051/e3sconf/202016702002 ICESD 2020 Estimation of surface runoff using NRCS curve number in some areas in northwest coast, Egypt Mohamed E.S1. Abdellatif M.A1. Sameh Kotb Abd-Elmabod2, Khalil M.M.N.3 1 National Authority for Remote Sensing and Space Sciences (NARSS), Cairo, Egypt 2 Soil and Water Use Department, Agricultural and Biological Research Division, National Research Centre, Cairo 12622, Egyp 3 Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt. Abstract. The sustainable agricultural development in the northwest coast of Egypt suffers constantly from the effects of surface runoff. Moreover, there is an urgent need by decision makers to know the effects of runoff. So the aim of this work is to integrate remote sensing and field data and the natural resource conservation service curve number model (NRCS-CN).using geographic information systems (GIS) for spatial evaluation of surface runoff .CN approach to assessment the effect of patio-temporal variations of different soil types as well as potential climate change impact on surface runoff. DEM was used to describe the effects of slope variables on water retention and surface runoff volumes. In addition the results reflects that the magnitude of surface runoff is associated with CN values using NRCS-CN model . The average of water retention ranging between 2.5 to 3.9m the results illustrated that the highest value of runoff is distinguished around the urban area and its surrounding where it ranged between 138 - 199 mm. The results show an increase in the amount of surface runoff to 199 mm when rainfall increases 200 mm / year. -
Introduction and Characteristics of Flow
Introduction and Characteristics of Flow By James W. LaBaugh and Donald O. Rosenberry Chapter 1 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods Chapter 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction.....................................................................................................................................................5 Purpose and Scope .......................................................................................................................................6 Characteristics of Water Exchange Between Surface Water and Ground Water .............................7 Characteristics of Near-Shore Sediments .......................................................................................8 Temporal and Spatial Variability of Flow .........................................................................................10 Defining the Purpose for Measuring the Exchange of Water Between Surface Water and Ground Water ..........................................................................................................................12 Determining Locations of Water Exchange ....................................................................................12 Measuring Direction of Flow ............................................................................................................15 Measuring the Quantity of Flow .......................................................................................................15 -
Land Degeneration Due to Water Infiltration and Sub-Erosion
sustainability Article Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China Xiangjian Rui, Lei Nie, Yan Xu * and Hong Wang Construction Engineering College, Jilin University, Changchun 130026, China * Correspondence: [email protected] Received: 7 August 2019; Accepted: 26 August 2019; Published: 29 August 2019 Abstract: Sustainable development of the natural landscape has received an increasing attention worldwide. Identifying the causes of land degradation is the primary condition for adopting appropriate methods to preserve degraded landscapes. The National Geological Park of Qian-an mud forest in China is facing widespread land degradation, which not only threatens landscape development but also endangers many households and farmlands. Using the park as a research object, we identified the types of slope failure and the factors that contribute to their occurrence. During June 2017, a detailed field survey conducted in a representative area of the studied region found two main types of slope failure: soil cave piping and vertical collapse. Physicochemical properties of the soil samples were measured in the laboratory. Results show that soil slope failure is controlled by three factors: (1) the typical geological structure of the mud forest area represented by an upper layer of thick loess sub-sandy soil and the near-vertical slope morphology; (2) particular soil properties, especially soil dispersibility; and (3) special climate conditions with distinct wet and dry seasons. Keywords: landscape; mud forest; land degeneration; water infiltration; sub-erosion; soil slope failure 1. Introduction Recently, the sustainable development of natural landscapes has received an increasing attention worldwide. -
Chapter 3: Introduction to Water Sources
Introduction to Water Sources Chapter 3 What Is In This Chapter? 1. Definition of surface water 2. Examples of surface water 3. Advantages and disadvantages of surface water 4. Surface water hydrology 5. Raw water storage and flow measurements 6. Surface water intake structures 7. The types of pumps used to collect surface water 8. Definition of groundwater 9. Examples of groundwater 10. Advantages and disadvantages of groundwater 11. Groundwater hydrology 12. Three types of aquifers 13. Well components 14. Data and record keeping requirements 15. Transmission lines and flow meters 16. Groundwater under the direct influence of surface water Key Words • Aquifer • Flume • Porosity • Surface Water • Baseline Data • Glycol • Raw Water • Unconfined Aquifer • Caisson • Groundwater • Recharge Area • Water Rights • Cone of Depression • Impermeable • Riprap • Water Table • Confined Aquifer • ntu • Spring • Watershed • Contamination • Parshall flume • Static Water Level • Weir • Drainage Basin • Permeability • Stratum • Drawdown • Polluted Water • Surface Runoff 62 Chapter 3 Introduction to Water Sources Introduction This lesson is a discussion of the components associated with collecting water from its source and bringing it to the water treatment plant. Lesson Content 1 Surface Water – Water on the earth’s This lesson will focus on surface water1 and groundwater2, hydrology, and the ma- surface as distinguished from water underground (groundwater). jor components associated with the collection and transmission of water to the water 2 Groundwater – Subsurface water treatment plant. occupying a saturated geological for- mation from which wells and springs are fed. Sources of Water Three Classifications The current federal drinking water regulations define three distinct and separate sources of water: • Surface water • Groundwater • Groundwater under the direct influence of surface water (GUDISW) This last classification is a result of the Surface Water Treatment Rule. -
Kansas Surface Water Quality Standards
KANSAS SURFACE WATER QUALITY STANDARDS Prepared by The Kansas Department of Health and Environment Bureau of Water April 11, 2018 DATE: April 11, 2018 FROM: Michelle Probasco, Unit Chief, Planning and Standards Unit SUBJECT: Unofficial Functional Copy Kansas Water Quality Standards and Supporting Documents The following pages contain an unofficial functional version of the most currently effective Kansas Surface Water Quality Standards (K.A.R. 28-16-28b through 28-16-28h, and 28-16-58), and links to the standards supporting documents. The supporting documents include the Kansas Surface Water Quality Standards: Tables of Numeric Criteria, the Kansas Antidegradation Policy, the Kansas Implementation Procedures: Surface Water Quality Standards, and the Kansas Surface Water Quality Standards Variance Register. The Kansas Surface Water Quality Standards, K.A.R. 28-16-28b and 28-16-28d through 28-16-28h were published in the Kansas Register on February 8, 2018 and became effective on February 23, 2018, and K.A.R. 28-16-28c and 28-16-58 were published in the Kansas Register on March 5, 2015 and became effective on March 20, 2015. The Kansas Surface Water Register, 28-16-28g, was last published in the Kansas Register on June 19, 2014 and became effective on July 7, 2014. There have been many style and editorial changes to the regulations. The major amendments to this set of regulations include: - Adopting revised criteria for ammonia aquatic life criteria; - Adopting revised regulations for water quality variances; - Adopting a new regulation for the adoption of the Kansas Surface Water Quality Standards Variance Register; - Adopting the Multiple-Discharger Wastewater Lagoon Ammonia Variance. -
Mitchell Creek Watershed Hydrologic Study 12/18/2007 Page 1
Mitchell Creek Watershed Hydrologic Study Dave Fongers Hydrologic Studies Unit Land and Water Management Division Michigan Department of Environmental Quality September 19, 2007 Table of Contents Summary......................................................................................................................... 1 Watershed Description .................................................................................................... 2 Hydrologic Analysis......................................................................................................... 8 General ........................................................................................................................ 8 Mitchell Creek Results.................................................................................................. 9 Tributary 1 Results ..................................................................................................... 11 Tributary 2 Results ..................................................................................................... 15 Recommendations ..................................................................................................... 18 Stormwater Management .............................................................................................. 19 Water Quality ............................................................................................................. 20 Stream Channel Protection ....................................................................................... -
Water Supply Surface Water Sources
Water Supply In some cases, in humid areas, brackish wa- ter can be used for irrigation. If the chief An adequate supply of water is the main contaminant is sea water at a low concen- requirement for an irrigation system. Before tration and the crop is salt tolerant and there you buy and install an irrigation system you is enough rainfall to leach the salts out of must find a source of water and determine the the root zone, then brackish water might be rate, quantity and quality of the water. Most suitable. important, your water rights must be known. In most locations there are laws, rules and Surface Water Sources regulations regarding the use of water. Be sure to obtain any necessary permits before Stream flow is generally the cheapest proceeding. source of water for irrigation. But, it is also the least dependable. If your fields require You must consider seasonal variations in the more water than is available during dry supply of water. A stream may look like a weather, the water must be stored to insure good source of water, but will there be enough an adequate supply when needed. water when you need to irrigate in the middle of the summer? When selecting a water source you must consider the level of risk you are willing to accept. Most high value crops need to have irrigation water available in 9 out of 10 years. Water quality is important in evaluating water sources. A water test is needed to determine if the water is suitable for your crops. -
NJ American Water Company - Western Division Source Water Assessment Summary
NJ American Water Company - Western Division Source Water Assessment Summary A State Review of Potential Contamination Sources Near Your Drinking Water The Department of Environmental Protection (DEP) has conducted an assessment of the water sources that supply each public water system in the state, including yours. The goal of this assessment was to measure each system’s susceptibility to contamination, not actual (if any) contamination measured in a water supply system. The assessment of your water system, the NJ American Water Company - Western Division, involved: Identifying the area (known as the source water assessment area) that supplies water to your public drinking water system; Inventorying any significant potential sources of contamination in the area; and Analyzing how susceptible the drinking water source is to the potential sources of contamination. DEP evaluated the susceptibility of all public water systems to eight categories of contaminants. These contaminant categories are explained, along with a summary of the results for your water system, on page 3. Page 4 contains a map of your water system’s source water assessment area. A public water system’s susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L). How “sensitive” the water supply is to contamination. For example, a shallow well or surface water source, like a reservoir, would be more exposed to contamination from the surface or above ground than a very deep well. -
North Branch of the Chicago River SCS Curve Number Generation
North Branch of the Chicago River SCS Curve Number Generation This technical memorandum describes HDR’s approach for generating SCS Curve Number data for the watersheds comprising the North Branch of the Chicago River (herein referred to as the “North Branch”). 1. Approach Previous approaches for Detailed Watershed Plan (DWP) SCS curve number generation are the “Calumet-Sag Watershed SCS Curve Number Generation” technical memorandum a authored by CH2M Hill (dated August 14, 2007 and herein referred to as the “CH2M Hill Memo”) and “Comments on CH2MHill Curve Numbers” b email authored by CTE (dated September 14, 2007 and herein referred to as the “CTE email”). HDR will incorporate these approaches, with the following changes or refinements: o The use of an additional Natural Resources Conservation Service (NRCS) soil survey for the City of Chicago; o Analysis of the affects of minor soil types; o Review and revisions of land use information; o Use of existing remote sensing datasets to estimate impervious areas; o GIS dataset preparation. 2. NRCS Soil Survey The CH2M Hill Memo noted that NRCS soils datasets covered portions of the watersheds but did not include the City of Chicago. In place of this, the CH2M Hill Memo recommended assuming a uniform hydrologic soil group (HSG) of “C”, representing moderately high runoff potential soils. The NRCS provides two types of soil datasets for the area. One type is the Soil Survey Geographic, or SSURGO, dataset c. The SSURGO dataset is available for select areas and is a detailed soil survey. The City of Chicago is not included in the SSURGO dataset, although portions of the North Branch upper basin are included.