Quasiperiodic Schrödinger Operators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CURRENT EVENTS BULLETIN Friday, January 8, 2016, 1:00 PM to 5:00 PM Room 4C-3 Washington State Convention Center Joint Mathematics Meetings, Seattle, WA
A MERICAN M ATHEMATICAL S OCIETY CURRENT EVENTS BULLETIN Friday, January 8, 2016, 1:00 PM to 5:00 PM Room 4C-3 Washington State Convention Center Joint Mathematics Meetings, Seattle, WA 1:00 PM Carina Curto, Pennsylvania State University What can topology tell us about the neural code? Surprising new applications of what used to be thought of as “pure” mathematics. 2:00 PM Yuval Peres, Microsoft Research and University of California, Berkeley, and Lionel Levine, Cornell University Laplacian growth, sandpiles and scaling limits Striking large-scale structure arising from simple cellular automata. 3:00 PM Timothy Gowers, Cambridge University Probabilistic combinatorics and the recent work of Peter Keevash The major existence conjecture for combinatorial designs has been proven! 4:00 PM Amie Wilkinson, University of Chicago What are Lyapunov exponents, and why are they interesting? A basic tool in understanding the predictability of physical systems, explained. Organized by David Eisenbud, Mathematical Sciences Research Institute Introduction to the Current Events Bulletin Will the Riemann Hypothesis be proved this week? What is the Geometric Langlands Conjecture about? How could you best exploit a stream of data flowing by too fast to capture? I think we mathematicians are provoked to ask such questions by our sense that underneath the vastness of mathematics is a fundamental unity allowing us to look into many different corners -- though we couldn't possibly work in all of them. I love the idea of having an expert explain such things to me in a brief, accessible way. And I, like most of us, love common-room gossip. -
On Absolute Continuity∗
journal of mathematical analysis and applications 222, 64–78 (1998) article no. AY975804 On Absolute Continuity∗ Zolt´an Buczolich† Department of Analysis, Eotv¨ os¨ Lorand´ University, Muzeum´ krt. 6–8, H–1088, Budapest, Hungary View metadata, citation and similar papers at core.ac.ukand brought to you by CORE provided by Elsevier - Publisher Connector Washek F. Pfeffer ‡ Department of Mathematics, University of California, Davis, California 95616 Submitted by Brian S. Thomson Received June 5, 1997 We prove that in any dimension a variational measure associated with an additive continuous function is σ-finite whenever it is absolutely continu- ous. The one-dimensional version of our result was obtained in [1] by a dif- ferent technique. As an application, we establish a simple and transparent relationship between the Lebesgue integral and the generalized Riemann integral defined in [7, Chap. 12]. In the process, we obtain a result (The- orem 4.1) involving Hausdorff measures and Baire category, which is of independent interest. As variations defined by BV sets coincide with those defined by figures [8], we restrict our attention to figures. The set of all real numbers is denoted by , and the ambient space of this paper is m where m 1 is a fixed integer. In m we use exclusively the metric induced by the maximum≥ norm . The usual inner product of · x; y m is denoted by x y, and 0 denotes the zero vector of m. For an ∈ · x m and ε>0, we let ∈ B x y m x y <ε : ε = ∈ x − *The results of this paper were presented to the Royal Belgian Academy on June 3, 1997. -
Spectral Analysis of Quasiperiodic Schrödinger Operators
UNIVERSITY OF CALIFORNIA, IRVINE Spectral analysis of quasiperiodic Schr¨odingeroperators DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mathematics by Shiwen Zhang Dissertation Committee: Professor Svetlana Jitomirskaya, Chair Professor Anton Gorodetski Professor Abel Klein 2016 c 2016 Shiwen Zhang Dedication This thesis is dedicated to my beloved parents. For their endless love, support and encouragement. ii Table of Contents Acknowledgements v Curriculum Vitae vi Abstract of the Dissertation x Introduction 1 0.1 Discrete Schr¨odingeroperators . 1 0.2 Motivation and Background . 1 1 Quantitative continuity of singular continuous spectral measures and arithmetic criteria. 5 1.1 Introduction . 5 1.1.1 Main application . 9 1.1.2 Spectral singularity, continuity and proof of Theorem 1.1.4 . 10 1.1.3 Relation with other dimensions; Corollaries for the AMO, Stur- mian potentials, and Transport exponents. 14 1.1.4 Preliminaries . 18 1.2 Spectral Continuity . 22 1.2.1 Proof of Theorem 1.1.6 . 22 1.2.2 Proof of Theorem 1.2.1 . 26 1.2.3 The hyperbolic case: Proof of Lemma 1.2.4 . 27 1.2.4 Energies with Trace close to 2: Proof of Lemma 1.2.5 . 33 1.2.5 Proof of Lemmas 1.2.2 and 1.2.3 . 39 1.3 Spectral Singularity . 40 1.3.1 Power law estimates and proof of Theorem 1.1.5 . 40 1.3.2 Proof of the density lemmas . 45 1.4 Sturmian Hamiltonian . 47 2 Mixed spectral types for the one frequency discrete quasi-periodic Schr¨odingeroperator 50 2.1 Introduction . -
What Are Lyapunov Exponents, and Why Are They Interesting?
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 1, January 2017, Pages 79–105 http://dx.doi.org/10.1090/bull/1552 Article electronically published on September 6, 2016 WHAT ARE LYAPUNOV EXPONENTS, AND WHY ARE THEY INTERESTING? AMIE WILKINSON Introduction At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.”1 Although it is not explicitly mentioned in this citation, there is a second unify- ing concept in Avila’s work that is closely tied with renormalization: Lyapunov (or characteristic) exponents. Lyapunov exponents play a key role in three areas of Avila’s research: smooth ergodic theory, billiards and translation surfaces, and the spectral theory of 1-dimensional Schr¨odinger operators. Here we take the op- portunity to explore these areas and reveal some underlying themes connecting exponents, chaotic dynamics and renormalization. But first, what are Lyapunov exponents? Let’s begin by viewing them in one of their natural habitats: the iterated barycentric subdivision of a triangle. When the midpoint of each side of a triangle is connected to its opposite vertex by a line segment, the three resulting segments meet in a point in the interior of the triangle. The barycentric subdivision of a triangle is the collection of 6 smaller triangles determined by these segments and the edges of the original triangle: Figure 1. Barycentric subdivision. Received by the editors August 2, 2016. -
Absolute Continuity for Operator Valued Completely Positive Maps on C
CORE Metadata, citation and similar papers at core.ac.uk Provided by Bilkent University Institutional Repository JOURNAL OF MATHEMATICAL PHYSICS 50, 022102 ͑2009͒ Absolute continuity for operator valued completely algebras-ءpositive maps on C ͒ ͒ Aurelian Gheondea1,a and Ali Şamil Kavruk2,b 1Department of Mathematics, Bilkent University, Bilkent, Ankara 06800, Turkey and Institutul de Matematică al Academiei Române, C. P. 1-764, 014700 Bucureşti, Romania 2Department of Mathematics, University of Houston, Houston, Texas 77204-3476, USA ͑Received 15 October 2008; accepted 16 December 2008; published online 11 February 2009͒ Motivated by applicability to quantum operations, quantum information, and quan- tum probability, we investigate the notion of absolute continuity for operator valued algebras, previously introduced by Parthasarathy-ءcompletely positive maps on C ͓in Athens Conference on Applied Probability and Time Series Analysis I ͑Springer- Verlag, Berlin, 1996͒, pp. 34–54͔. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maxi- mal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Le- besgue decomposition, and we point out the nonuniqueness of the Lebesgue de- composition as well as a sufficient condition for uniqueness. In addition, we con- sider Radon–Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon–Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi’s matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained. -
Read Press Release
The Work of Artur Avila Artur Avila has made outstanding contributions to dynamical systems, analysis, and other areas, in many cases proving decisive results that solved long-standing open problems. A native of Brazil who spends part of his time there and part in France, he combines the strong mathematical cultures and traditions of both countries. Nearly all his work has been done through collaborations with some 30 mathematicians around the world. To these collaborations Avila brings formidable technical power, the ingenuity and tenacity of a master problem-solver, and an unerring sense for deep and significant questions. Avila's achievements are many and span a broad range of topics; here we focus on only a few highlights. One of his early significant results closes a chapter on a long story that started in the 1970s. At that time, physicists, most notably Mitchell Feigenbaum, began trying to understand how chaos can arise out of very simple systems. Some of the systems they looked at were based on iterating a mathematical rule such as 3x(1−x). Starting with a given point, one can watch the trajectory of the point under repeated applications of the rule; one can think of the rule as moving the starting point around over time. For some maps, the trajectories eventually settle into stable orbits, while for other maps the trajectories become chaotic. Out of the drive to understand such phenomena grew the subject of discrete dynamical systems, to which scores of mathematicians contributed in the ensuing decades. Among the central aims was to develop ways to predict long-time behavior. -
The Absolutely Continuous Spectrum of the Almost Mathieu Operator
THE ABSOLUTELY CONTINUOUS SPECTRUM OF THE ALMOST MATHIEU OPERATOR ARTUR AVILA Abstract. We prove that the spectrum of the almost Mathieu operator is absolutely continuous if and only if the coupling is subcritical. This settles Problem 6 of Barry Simon’s list of Schr¨odinger operator problems for the twenty-first century. 1. Introduction This work is concerned with the almost Mathieu operator H = Hλ,α,θ defined on ℓ2(Z) (1.1) (Hu)n = un+1 + un−1 +2λ cos(2π[θ + nα])un where λ = 0 is the coupling, α R Q is the frequency and θ R is the phase. This is the6 most studied quasiperiodic∈ \ Schr¨odinger operator, arisin∈ g naturally as a physical model (see [L3] for a recent historical account and for the physics back- ground). We are interested in the decomposition of the spectral measures in atomic (corre- sponding to point spectrum), singular continuous and absolutely continuous parts. Our main result is the following. Main Theorem. The spectral measures of the almost Mathieu operator are abso- lutely continuous if and only if λ < 1. | | 1.1. Background. Singularity of the spectral measures for λ 1 had been pre- viously established (it follows from [LS], [L1], [AK]). Thus| | the ≥ Main Theorem reduces to showing absolute continuity of the spectral measures for λ < 1, which is Problem 6 of Barry Simon’s list [S3]. | | We recall the history of this problem (following [J]). Aubry-Andr´econjectured the following dependence on λ of the nature of the spectral measures: arXiv:0810.2965v1 [math.DS] 16 Oct 2008 (1) (Supercritical regime) For λ > 1, spectral measures are pure point, (2) (Subcritical regime) For λ| <| 1, spectral measures are absolutely continu- ous. -
Arithmetic Sums of Nearly Affine Cantor Sets
UNIVERSITY OF CALIFORNIA, IRVINE Arithmetic Sums of Nearly Affine Cantor Sets DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mathematics by Scott Northrup Dissertation Committee: Associate Professor Anton Gorodetski, Chair Professor Svetlana Jitomirskaya Associate Professor Germ´anA. Enciso 2015 c 2015 Scott Northrup DEDICATION To Cynthia and Max. ii TABLE OF CONTENTS Page LIST OF FIGURES iv ACKNOWLEDGMENTS v CURRICULUM VITAE vi ABSTRACT OF THE DISSERTATION vii Introduction 1 1 Outline 7 1.1 Statement of the Results . 7 1.2 Organization of the Thesis . 9 2 Cantor Sets 11 2.1 Dynamically Defined Cantor Sets . 11 2.2 Dimension Theory . 15 2.3 The Palis Conjecture . 18 2.4 Middle-α Cantor Sets . 19 2.5 Homogeneous Self-Similar Cantor Sets . 21 2.6 A Positive Answer to the Palis Conjecture . 22 2.7 The dimH C1 + dimH C2 < 1 Case . 23 3 Results for Nearly Affine Cantor Sets 26 3.1 Absolute Continuity of Convolutions . 26 3.2 Theorem 1.1 . 27 3.3 Construction of Measures for K and Cλ ..................... 28 3.4 Verifying the Conditions of Proposition 3.1 . 32 3.5 Corollaries . 41 4 Open Questions 42 Bibliography 44 A Proof of Proposition 3.1 51 iii LIST OF FIGURES Page 1 The horseshoe map; ' contracts the square horizontally and expands it verti- cally, before folding it back onto itself. The set of points invariant under this map will form a hyperbolic set, called Smale's Horseshoe............ 4 2.1 The Horseshoe map, again . 12 2.2 A few iterations of the Stable Manifold . -
Absolute Continuity of Poisson Random Fields
Publ. RIMS, Kyoto Univ. 26 (1990), 629-647 Absolute Continuity of Poisson Random Fields By Yoichiro TAKAHASHI* § 0. Introduction Let R be a locally compact Hausdorff space with countable basis. Given a nonatomic nonnegative Radon measure 2. on R, we denote the Poisson measure (or random fields or point processes) with intensity 1 by TT^. Theorem. Let X and p be two nonatomic infinite nonnegative Radon measures on R. Then the Poisson measures KZ and TCP are mutually absolutely continuous if and only if (a) 2 and p are mutually absolutely continuous and (b) the Hellinger distance d(p, 1} between 1 and p is finite: (1) d(p Furthermore, the Hellinger distance D(xp, m) between KP and KI is then given by the formula /o\ D(rr T \^ ' The main purpose of the present note is to give a proof to Theorem above. In the last section we shall apply Theorem to the problem of giving the precise definition of the Fisher information or, equivalently, of giving a statistically natural Riemannian metric for an "infinite dimensional statistical model", which consists of mutually absolutely continuous Poisson measures. Remark, (i) Assume (a) and denote d (3) A- P Y~ dl ' Then the Radon-Nikodym derivative ^ is positive and finite ^-almost everywhere Communicated by H. Araki, October 23, 1989. * Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153, Japan. 630 YOICHIRO TAKAHASHI and the condition (b) means that (10 V0~-1<EEL\R, X). In fact, by definition, (ii) The case where R is an Euclidean space is already studied by A.V. -
Semi-Classical Analysis and Harper's Equation –An Introduction
Semi-classical analysis and Harper's equation {An introduction{ Crash course1 at Tsinghua University Bernard Helffer Universit´ede Nantes and CNRS Laboratoire de Math´ematique J. Leray. 44322 Nantes Cedex, France November 9, 2018 1The author was kindly invited by YanHui Qu Abstract Since the description in 1976 of the beautiful butterfly by the physicist Hofstadter interpreted as the spectra of a family of operators (called almost Mathieu or Harper's operator) parametrized by some flux, a huge literature has been written for understanding the properties of these spectra. After a presentation of the subject, these lectures will be devoted to the description of the results of Helffer-Sj¨ostrand(at the end of the eighties) based on an illuminating strategy proposed by the physicist M. Wilkinson in 1985. This leads to the proof of the Cantor structure of the spectrum for the Harper model for a some specific family of irrational fluxes (characterized on its expansion in continuous fractions). This was a very particular case of the ten Martinis conjecture of M. Kac popularized by B. Simon and which was finally proved in (2009) by A. Avila, S. Jitomirskaya and coauthors for any irrational. The goal is to explain how semi-classical analysis appears in the analysis of this problem. The analysis of the spectrum of the Harper's model can indeed be done for some fluxes by semi-classical analysis and in this case can give a more precise information on the spectrum than simply its Cantor structure. If it seems to be impossible in these lectures to give a complete proof of the results (the use of the FBI techniques mainly due to J. -
On the Existence of Monotone Pure Strategy Equilibria in Bayesian Games
On the Existence of Monotone Pure Strategy Equilibria in Bayesian Games Philip J. Reny Department of Economics University of Chicago January 2006 Abstract We extend and strengthen both Athey’s (2001) and McAdams’(2003) results on the existence of monotone pure strategy equilibria in Bayesian games. We allow action spaces to be compact locally-complete metrizable semilatttices and can handle both a weaker form of quasisupermodularity than is employed by McAdams and a weaker single-crossing property than is required by both Athey and McAdams. Our proof — which is based upon contractibility rather than convexity of best reply sets — demonstrates that the only role of single-crossing is to help ensure the existence of monotone best replies. Finally, we do not require the Milgrom-Weber (1985) absolute continuity condition on the joint distribution of types. 1. Introduction In an important paper, Athey (2001) demonstrates that a monotone pure strategy equilib- rium exists whenever a Bayesian game satis…es a Spence-Mirlees single-crossing property. Athey’s result is now a central tool for establishing the existence of monotone pure strat- egy equilibria in auction theory (see e.g., Athey (2001), Reny and Zamir (2004)). Recently, McAdams (2003) has shown that Athey’sresults, which exploit the assumed total ordering of the players’one-dimensional type and action spaces, can be extended to settings in which type and action spaces are multi-dimensional and only partially ordered. This permits new existence results in auctions with multi-dimensional signals and multi-unit demands (see McAdams (2004)). At the heart of the results of both Athey (2001) and McAdams (2003) is a single-crossing assumption. -
Topics in Analysis 1 — Real Functions
Topics in analysis 1 | Real functions Onno van Gaans Version May 21, 2008 Contents 1 Monotone functions 2 1.1 Continuity . 2 1.2 Differentiability . 2 1.3 Bounded variation . 2 2 Fundamental theorem of calculus 2 2.1 Indefinite integrals . 2 2.2 The Cantor function . 2 2.3 Absolute continuity . 2 3 Sobolev spaces 2 3.1 Sobolev spaces on intervals . 3 3.2 Application to differential equations . 6 3.3 Distributions . 10 3.4 Fourier transform and fractional derivatives . 16 4 Stieltjes integral 20 4.1 Definition and properties . 20 4.2 Langevin's equation . 28 4.3 Wiener integral . 32 5 Convex functions 33 1 1 Monotone functions 1.1 Continuity 1.2 Differentiability 1.3 Bounded variation 2 Fundamental theorem of calculus 2.1 Indefinite integrals 2.2 The Cantor function 2.3 Absolute continuity 3 Sobolev spaces When studying differential equations it is often convenient to assume that all functions in the equation are several times differentiable and that their derivatives are continuous. If the equation is of second order, for instance, one usually assumes that the solution should be two times continuously differentiable. There are several reasons to allow functions with less smoothness. Let us consider two of them. Suppose that u00(t) + αu0(t) + βu(t) = f(t) describes the position u(t) of a particle at time t, where f is some external force acting on the particle. If the force is contiuous in t, one expects the solution u to be twice continuously differentiable. If the functions f has jumps, the second derivative of u will not be continuous and, more than that, u0 will probably not be differentiable at the points where f is discon- tinuous.