Investigation of Isotopes and Hydrological Processes in Indus River System, Pakistan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Glacial Flood Hazards in Karakoram Range Using Remote Sensing Technique and Risk Analysis
IDENTIFICATION OF GLACIAL FLOOD HAZARDS IN Arshad Ashraf*† , Rakhshan Roohi*, Rozina Naz* KARAKORAM RANGE USING REMOTE SENSING and Naveed Mustafa* TECHNIQUEAND RISK ANALYSIS ABSTRACT importance of this situation has magnified over the past decades due to increase in numbers of glacial Glacial Lake Outburst Floods (GLOFs) are great lakes that are formed at the glacier terminus. Thirty- hazard for the downstream communities in context of five destructive out-burst floods have been recorded changing climatic conditions in the glaciated region of for the Karakoram Range during the past two hundred Pakistan. The remote sensing data of Landsat ETM+ years (Hewitt, 1982). Some of the ice dams may have was utilized for the identification of glacial lakes been the result of glacier surges. There is susceptible to posing GLOF hazard in Karakoram unambiguous evidence of large reservoirs ponded by Range. Overall, 887 glacial lakes are identified in 18 glaciers. Kelly (1988) outlines the historical different river-basins of Karakoram Range, out of development and disappearance of Virjerab lake in which 16 lakes are characterized as potentially Hunza due to glacial motion. There occurred a series dangerous in terms of GLOF. The analysis of of GLOF events in upper Hunza valley, central community’s response to GLOF events of 2008 in the Karakoram Range, within short time periods during central Karakoram Range indicated gaps in 2008 that had a devastating effect on the nearby coordination and capacity of the local communities to communities (Roohi, Ashraf, Mustafa and Mustafa, cope with such natural hazards. A regular monitoring 2008). The people residing at considerable distances of hot spots and potential GLOF lakes along with downstream from the unstable lakes are facing a capacity-building of local communities and institutions serious threat to their lives and property. -
INDUS DELTA, PAKISTAN: Economic Costs of Reduction in Freshwater Flows
water allocationdecisions. factored intoriverbasinplanning,or benefits of water-basedecosystemsarerarely economic users ofwater.Yettheeconomic schemes, Pakistan’secosystems,too,are hydropower dams, reservoirs,irrigationand as water tolarge-scale,commercialusessuch imperative that favours theallocationof Contrary tothedominantdevelopment economically norecologicallyoptimal. decisions beingmadethatareneither needs has oftenledtowaterallocation Failure torecognisedownstreamecosystem heavily byupstreamwaterabstraction. end of rivers,havebeenimpactedmost the at lie and marineregions,becausethey Coastal ecosystems. needs ofdownstream many cases, left insufficientflowtomeetthe of large volumesofwaterfromrivershas,in particular there isconcernthattheabstraction exacting a heavytollontheenvironment.In This impressive irrigationsystemis,however, world. the irrigated torain-fedlandratioin highest the farmland, affordingPakistan system feedsmorethan15millionhectaresof than 1.65 million km(IRIN2001).The more watercourses witharunninglengthof 89,000 conveyance lengthof57,000km,and head works, 43maincanalswitha or barrages 19 three majorstoragereservoirs, comprises Pakistan’s vastirrigationnetwork Pakistan Water-based developmentsin flows reduction infreshwater economic costsof INDUS DELTA,PAKISTAN: VALUATION #5:May2003 CASE STUDIESINWETLAND Integrating Wetland Economic Values into River Basin Management Managing freshwater flows in the The economic costs and losses arising from Indus River such omissions can be immense, and often The Indus River has -
Brief District Profile District Anantnag Is One of the Oldest Districts of The
District at a Glance Brief District Profile District Anantnag is one of the oldest districts of the valley and covered the entire south Kashmir before its bifurcation into Anantnag and Pulwama in 1979. The districts of Anantnag and Pulwama later got sub-divided into Kulgam and Shopian, in 2007. The districts of Pulwama and Kulgam lie on the north and north-west of District Anantnag, respectively. The district of Ganderbal and Kargil touch its eastern boundary and the district of Kishtawar meets on its southern boundary whileas District Doda touches its west land strip. The population of the district, as per census 2011, is 1078692 (10.79 lac) souls, comprising of 153640 households, with a gender distribution of 559767 (5.60 lac) males and 518925 (5.19 lac) females and as per the natural arrangement the district has 927 females against 1000 males while as it is 1000:889 at the state level. The Rural, Urban constitution of the populations stands in the ratio of 74:26 as against 73:27 for the state. 1 District at a Glance The district consists of 386 inhabited and 09 un-inhabited revenue villages. Besides, there is one Municipal Council and 09 Municipal Committees in the district. The district consists of 12 tehsils, viz, Anantnag, Anantnag-East, Bijbehara, Dooru, Kokernag, Larnoo, Pahalgam, Qazigund, Sallar, Shahabad Bala, Shangus and Srigufwara with four sub-divisions viz Bijbehara, Kokernag, Dooru and Pahalgam. The district is also divided into 16 CD blocks, viz, Achabal, Anantnag, Bijbehara, Breng, Chhittergul, Dachnipora, Hiller Shahabad, Khoveripora, Larnoo, Pahalgam, Qazigund, Sagam, Shahabad, Shangus, Verinag and Vessu for ensuring speedy and all-out development of rural areas. -
Restoration of Springs Around Manasbal Lake
INTACH Jammu & Kashmir Chapter I Vol: 3 I Issue: 14I Month: July, 2018 Restoration of springs around Manasbal Lake Photo: Ongoing restoration of spring around Manasbal Lake, Ganderbal (INTACH 2018). As part of its natural heritage conservation program, INTACH Kashmir takes up restoration of springs around Manasbal Lake as a pilot. In the initial phase of restoration drive, 50 springs were restored around the lake. The life line of any community is water. In Kashmir, nature has bestowed with a rich resource of water in the form of lakes, rivers and above all springs. These springs were a perennial water source for local communities. Unfortunately most and a large number of these springs are facing extinction due to neglect which results water shortages in villages and at some places we have water refugees or climate migrants. The springs are critical part of our survival and needs to be preserved. Keeping in view the importance of preservation of these natural resources which is our natural heritage also, INTACH Kashmir initiated a drive to the springs around Manasbal lake which are on the verge of extinction. restore the springs. A local NGO from There was an overwhelming response from the local inhabitants during the dis trict Ganderbal, Heeling Touch Foundation is involved to identify restoration process. 1 I N D I A N N A T I O N A L T R U S T F O R A R T & C U L T U R A L H E R I T A G E INTACH Jammu & Kashmir Chapter I Vol: 3 I Issue: 14I Month: July, 2018 RESTORATION OF SPRINGS AROUND MANASBAL LAKE 2 I N D I A N N A T I O N A L T R U S T F O R A R T & C U L T U R A L H E R I T A G E INTACH Jammu & Kashmir Chapter I Vol: 3 I Issue: 14I Month: July, 2018 INTACH Jammu celebrates Vanmohatsav festival, plants Chinar saplings INTACH Jammu Chapter, in collaboration with Floriculture Department, Jammu Municipal Corporation and local residents celebrated “VANMAHOTSAV” on 11th July 2018. -
Geospatial Analysis of Indus River Meandering and Flow Pattern from Chachran to Guddu Barrage, Pakistan Vol 9 (2), December 2018
Geospatial Analysis of Indus River Meandering and Flow Pattern from Chachran to Guddu Barrage, Pakistan Vol 9 (2), December 2018 Open Access ORIGINAL ARTICLE Full Length Ar t icle Geospatial Analysis of Indus River Meandering and Flow Pattern from Chachran to Guddu Barrage, Pakistan Danish Raza* and Aqeel Ahmed Kidwai Department of Meteorology-COMSATS University Islamabad, Islamabad, Pakistan ABS TRACT Natural and anthropogenic influence affects directly ecologic equilibrium and hydro morphologic symmetry of riverine surroundings. The current research intends to study the hydro morphologic features (meanders, shape, and size) of Indus River, Pakistan by using remote sensing (RS) and geographical information science (GIS) techniques to calculate the temporal changes. Landsat satellite imagery was used for qualitative and analytical study. Satellite imagery was acquired from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). Temporal satellite imagery of study area was used to identify the variations of river morphology for the years 1988,1995,2002,2009 and 2017. Research was based upon the spatial and temporal change of river pattern with respect to meandering and flow pattern observations for 30 years’ temporal data with almost 7 years’ interval. Image preprocessing was applied on the imagery of the study area for the better visualization and identification of variations among the objects. Object-based image analysis technique was performed for better results of a feature on the earth surface. Model builder (Arc GIS) was used for calculation of temporal variation of the river. In observation many natural factor involves for pattern changes such as; floods and rain fall. -
Estimation of Paleo-Discharge of the Lost Saraswati River, North West India
EGU2020-21212 https://doi.org/10.5194/egusphere-egu2020-21212 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Estimation of paleo-discharge of the lost Saraswati River, north west India Zafar Beg, Kumar Gaurav, and Sampat Kumar Tandon Indian Institute of Science Education and Research Bhopal, Earth and Environment Sciences, India ([email protected], [email protected], [email protected] ) The lost Saraswati has been described as a large perennial river which was 'lost' in the desert towards the end of the 'Indus-Saraswati civilisation'. It has been suggested that this paleo river flowed in the Sutlej-Yamuna interfluve, parallel to the present-day Indus River. Today, in this interfluve an ephemeral river- the Ghaggar flows along the abandoned course of the ‘lost’ Saraswati River. We examine the hypothesis given by Yashpal et al. (1980) that two Himalayan-fed rivers Sutlej and Yamuna were the tributaries of the lost Saraswati River, and constituted the bulk of its paleo-discharge. Subsequently, the recognition of the occurrence of thick fluvial sand bodies in the subsurface and the presence of a large number of Harappan sites in the interfluve region have been used to suggest that the Saraswati River was a large perennial river. Further, the wider course of about 4-7 km recognised from satellite imagery of Ghaggar-Hakra belt in between Suratgarh and Anupgarh in the Thar strengthens this hypothesis. In this study, we have developed a methodology to estimate the paleo-discharge and paleo- width of the lost Saraswati River. -
Inventory and GLOF Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum
remote sensing Article Inventory and GLOF Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum Fakhra Muneeb 1 , Siddique Ullah Baig 2, Junaid Aziz Khan 3 and Muhammad Fahim Khokhar 1,* 1 Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; [email protected] 2 High Mountain Research Center, Department of Development Studies COMSATS University Islamabad, Abbottabad 22060, Pakistan; [email protected] 3 Institute of Geographical Information System, National University of Sciences and Technology, Islamabad 44000, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +92-51-90854308 Abstract: Northern latitudes of Pakistan are warming at faster rate as compared to the rest of the country. It has induced irregular and sudden glacier fluctuations leading to the progression of glacial lakes, and thus enhancing the risk of Glacier Lake Outbursts Floods (GLOF) in the mountain systems of Pakistan. Lack of up-to-date inventory, classification, and susceptibility profiles of glacier lakes and newly formed GLOFs, are few factors which pose huge hindrance towards disaster preparedness and risk reduction strategies in Pakistan. This study aims to bridge the existing gap in data and knowledge by exploiting satellite observations, and efforts are made to compile and update glacier lake inventories. GLOF susceptibility assessment is evaluated by using Analytical Hierarchy Process (AHP), a multicriteria structured technique based on three susceptibility contributing factors: Geographic, topographic, and climatic. A total of 294 glacial lakes are delineated with a total area of 7.85 ± 0.31 km2 for the year 2018. -
Status of the Indus River Dolphin Platanista Minor
ORYX VOL 32 NO 1 JANUARY 1998 Status of the Indus River dolphin Platanista minor Randall R. Reeves and Abdul Aleem Chaudhry The endemic freshwater dolphins in the Indus River system of Pakistan, Platanista minor, have been considered endangered since the early 1970s. Measures taken to protect them from deliberate capture seem to have stopped a rapid decline, and combined counts in Sindh and Punjab provinces since the early 1980s suggest a total population of at least a few hundred animals. Severe problems remain, however. In addition to the risks inherent to any species with an effective population size in the low hundreds (at most), these dolphins are subject to long-term threats associated with living in an artificially controlled waterway used intensively by humans. Irrigation barrages partition the aggregate population into discrete subpopulations for much of the year. Dolphins that 'escape' during the flood season into irrigation canals or into reaches downstream of barrages where winter water levels are low have little chance of survival. A few dolphins probably die each year after being caught in fishing nets. Pollution by untreated urban sewage, agricultural runoff and industrial effluent threatens the health of the entire Indus system. The future of this dolphin species depends on Pakistan's commitment to protecting biological diversity in the face of escalating human demands on dwindling resources. Introduction In the early 1970s, G. Pilleri and his co- workers called world attention to the fact that The Indus River dolphin Platanista minor, Indus dolphins were declining rapidly (Pilleri known locally as bhulan, is endemic to the and Zbinden, 1973-74; Pilleri, 1980). -
Basic Design Study Report on the Project for Rehabilitation of Gates of Taunsa Barrage in Islamic Republic of Pakistan
No. BASIC DESIGN STUDY REPORT ON THE PROJECT FOR REHABILITATION OF GATES OF TAUNSA BARRAGE IN ISLAMIC REPUBLIC OF PAKISTAN DECEMBER 2004 JAPAN INTERNATIONAL COOPERATION AGENCY SANYU CONSULTANTS INC. YACHIYO ENGINEERING CO.,LTD GM JR 04-238 Intake at right bank Upstream Weir Gate Under Sluice gate at Right bank Intake at left bank Downstream Under Sluice gate PERSPECTIVE at Left bank THE PROJECT FOR REHABILITATION OF GATES OF TAUNSA BARRAGE IN ISLAMIC REPUBLIC OF PAKISTAN Summary Economy of Islamic Republic of Pakistan (Population 149,030 thousand, GNP 470 USD per Capita, in 2003) has been largely dependent on the agricultural sector with such dominant indexes of about 1/4 of GDP, about 1/2 of working population, etc. However, the agriculture sector is now in a very difficult and sensitive situation being subjected to problematic weather conditions affecting the area. The GDP of the country in 2000/01 came down due to severe drought that occurred in the country. Situation changed in 2003/2004 because the country’s GDP was 6.4 percent higher than the government objective figures of 5.3 percent due mainly to the favorable conditions of the manufacturing sector, as well as the recovery of the agricultural sector. However, economy of the country is still on the decline due to problems of debt repayment, and other medium and long-term problems such as delay of adequate privatization, stagnation of agricultural productivity, sluggish growth of export industry, etc. Major problems in the fields of irrigation and drainage are summarized in the issues of: a) shortage of water resources in accordance with population increase, b) lowering of irrigation efficiencies caused by the deterioration of provided irrigation systems, c) facility damages due to water-logging and salt, water contamination, lowering of ground-water table, flood, and; d) shortages of operation and maintenance (O&M) costs due to low recovery of water-charges, etc. -
Rivers, Canals, and Distributaries in Punjab, Pakistan
Socio#Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wescoat, James L., Jr. et al. "Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan." Water Resources Research 54, 1 (January 2018): 464-479 © 2018 The Authors As Published http://dx.doi.org/10.1002/2017wr021486 Publisher American Geophysical Union (AGU) Version Final published version Citable link https://hdl.handle.net/1721.1/122058 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ PUBLICATIONS Water Resources Research RESEARCH ARTICLE Socio-Hydrology of Channel Flows in Complex River Basins: 10.1002/2017WR021486 Rivers, Canals, and Distributaries in Punjab, Pakistan Special Section: James L. Wescoat Jr.1 , Afreen Siddiqi2 , and Abubakr Muhammad3 Socio-hydrology: Spatial and Temporal Dynamics of 1School of Architecture and Planning, Massachusetts Institute of Technology, Cambridge, MA, USA, 2Institute of Data, Coupled Human-Water Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA, 3Lahore University of Management Systems Sciences, Lahore, Pakistan Key Points: This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Coupling historical geographic and Abstract statistical analysis makes an Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irri- important contribution to the theory gation in the mid-nineteenth century to partition and development of the international river basin in the and methods of socio-hydrology mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge Comparing channel flow entitlements with deliveries sheds measurement and data analytics in the early twenty-first century. -
River Vishav Contribution to 2014 Devastating Floods of Kashmir (India)
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2, July 2019 River Vishav Contribution to 2014 Devastating Floods of Kashmir (India) MA Lone that precipitation has increased over north-western states in Abstract: Floods cannot be absolutely controlled but can be India. [8] Observed decreasing trend in mean annual air managed to reduce the losses. The changing climate is a major temperature for the period of 1901–1982 over the northwest cause of the increasing trends in the erratic and heavy rainfall Indian region. Trend analysis of temperature data at 121 events causing floods. The rains those lashed out during the first stations in India for 1901–1987 showed increasing trend in week of Septemeber-2014 in Kashmir Valley resulting in a devastating flood is one of the examples of such hazards. Many maximum air temperature and trendless minimum air attempts have been made by different agencies and the people to temperature, followed by rise in mean and diurnal range of ascertain the cause of this devastating flood. Most of these temperature. Various meteorological indices like Standard studies focus on the River Jhelum’s main course and do not pay Precipitation Index (SPI) have been used by a number of much attention to the role of its tributaries in the said event. The researchers [9-10] to detect flood events. Floods are of many present study is an attempt to analyse the role of the most types; they may be flash floods, riverine floods, glacial lake hazardous tributary of the River Jhelum, known as Vishav River in the horrible catastrophe. -
B.A. 6Th Semester Unit IV Geography of Jammu and Kashmir
B.A. 6th Semester Unit IV Geography of Jammu and Kashmir Introduction The state of Jammu and Kashmir constitutes northern most extremity of India and is situated between 32o 17′ to 36o 58′ north latitude and 37o 26′ to 80o 30′ east longitude. It falls in the great northwestern complex of the Himalayan Ranges with marked relief variation, snow- capped summits, antecedent drainage, complex geological structure and rich temperate flora and fauna. The state is 640 km in length from north to south and 480 km from east to west. It consists of the territories of Jammu, Kashmir, Ladakh and Gilgit and is divided among three Asian sovereign states of India, Pakistan and China. The total area of the State is 222,236 km2 comprising 6.93 per cent of the total area of the Indian territory including 78,114 km2 under the occupation of Pakistan and 42,685 km2 under China. The cultural landscape of the state represents a zone of convergence and diffusion of mainly three religio-cultural realms namely Muslims, Hindus and Buddhists. The population of Hindus is predominant in Jammu division, Muslims are in majority in Kashmir division while Buddhists are in majority in Ladakh division. Jammu is the winter capital while Srinagar is the summer capital of the state for a period of six months each. The state constitutes 6.76 percent share of India's total geographical area and 41.83 per cent share of Indian Himalayan Region (Nandy, et al. 2001). It ranks 6th in area and 17th in population among states and union territories of India while it is the most populated state of Indian Himalayan Region constituting 25.33 per cent of its total population.