Ultrafilters and Topology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ultrafilter Extensions and the Standard Translation
Notes from Lecture 4: Ultrafilter Extensions and the Standard Translation Eric Pacuit∗ March 1, 2012 1 Ultrafilter Extensions Definition 1.1 (Ultrafilter) Let W be a non-empty set. An ultrafilter on W is a set u ⊆ }(W ) satisfying the following properties: 1. ; 62 u 2. If X; Y 2 u then X \ Y 2 u 3. If X 2 u and X ⊆ Y then Y 2 u. 4. For all X ⊆ W , either X 2 u or X 2 u (where X is the complement of X in W ) / A collection u0 ⊆ }(W ) has the finite intersection property provided for each X; Y 2 u0, X \ Y 6= ;. Theorem 1.2 (Ultrafilter Theorem) If a set u0 ⊆ }(W ) has the finite in- tersection property, then u0 can be extended to an ultrafilter over W (i.e., there is an ultrafilter u over W such that u0 ⊆ u. Proof. Suppose that u0 has the finite intersection property. Then, consider the set u1 = fZ j there are finitely many sets X1;:::Xk such that Z = X1 \···\ Xkg: That is, u1 is the set of finite intersections of sets from u0. Note that u0 ⊆ u1, since u0 has the finite intersection property, we have ; 62 u1, and by definition u1 is closed under finite intersections. Now, define u2 as follows: 0 u = fY j there is a Z 2 u1 such that Z ⊆ Y g ∗UMD, Philosophy. Webpage: ai.stanford.edu/∼epacuit, Email: [email protected] 1 0 0 We claim that u is a consistent filter: Y1;Y2 2 u then there is a Z1 2 u1 such that Z1 ⊆ Y1 and Z2 2 u1 such that Z2 ⊆ Y2. -
An Introduction to Nonstandard Analysis 11
AN INTRODUCTION TO NONSTANDARD ANALYSIS ISAAC DAVIS Abstract. In this paper we give an introduction to nonstandard analysis, starting with an ultrapower construction of the hyperreals. We then demon- strate how theorems in standard analysis \transfer over" to nonstandard anal- ysis, and how theorems in standard analysis can be proven using theorems in nonstandard analysis. 1. Introduction For many centuries, early mathematicians and physicists would solve problems by considering infinitesimally small pieces of a shape, or movement along a path by an infinitesimal amount. Archimedes derived the formula for the area of a circle by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In particular, the construction of calculus was first motivated by this intuitive notion of infinitesimal change. G.W. Leibniz's derivation of calculus made extensive use of “infinitesimal” numbers, which were both nonzero but small enough to add to any real number without changing it noticeably. Although intuitively clear, infinitesi- mals were ultimately rejected as mathematically unsound, and were replaced with the common -δ method of computing limits and derivatives. However, in 1960 Abraham Robinson developed nonstandard analysis, in which the reals are rigor- ously extended to include infinitesimal numbers and infinite numbers; this new extended field is called the field of hyperreal numbers. The goal was to create a system of analysis that was more intuitively appealing than standard analysis but without losing any of the rigor of standard analysis. In this paper, we will explore the construction and various uses of nonstandard analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow us to do a typical ultrapower construction of the hyperreal numbers. -
Pg**- Compact Spaces
International Journal of Mathematics Research. ISSN 0976-5840 Volume 9, Number 1 (2017), pp. 27-43 © International Research Publication House http://www.irphouse.com pg**- compact spaces Mrs. G. Priscilla Pacifica Assistant Professor, St.Mary’s College, Thoothukudi – 628001, Tamil Nadu, India. Dr. A. Punitha Tharani Associate Professor, St.Mary’s College, Thoothukudi –628001, Tamil Nadu, India. Abstract The concepts of pg**-compact, pg**-countably compact, sequentially pg**- compact, pg**-locally compact and pg**- paracompact are introduced, and several properties are investigated. Also the concept of pg**-compact modulo I and pg**-countably compact modulo I spaces are introduced and the relation between these concepts are discussed. Keywords: pg**-compact, pg**-countably compact, sequentially pg**- compact, pg**-locally compact, pg**- paracompact, pg**-compact modulo I, pg**-countably compact modulo I. 1. Introduction Levine [3] introduced the class of g-closed sets in 1970. Veerakumar [7] introduced g*- closed sets. P M Helen[5] introduced g**-closed sets. A.S.Mashhour, M.E Abd El. Monsef [4] introduced a new class of pre-open sets in 1982. Ideal topological spaces have been first introduced by K.Kuratowski [2] in 1930. In this paper we introduce 28 Mrs. G. Priscilla Pacifica and Dr. A. Punitha Tharani pg**-compact, pg**-countably compact, sequentially pg**-compact, pg**-locally compact, pg**-paracompact, pg**-compact modulo I and pg**-countably compact modulo I spaces and investigate their properties. 2. Preliminaries Throughout this paper(푋, 휏) and (푌, 휎) represent non-empty topological spaces of which no separation axioms are assumed unless otherwise stated. Definition 2.1 A subset 퐴 of a topological space(푋, 휏) is called a pre-open set [4] if 퐴 ⊆ 푖푛푡(푐푙(퐴) and a pre-closed set if 푐푙(푖푛푡(퐴)) ⊆ 퐴. -
The Nonstandard Theory of Topological Vector Spaces
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 172, October 1972 THE NONSTANDARDTHEORY OF TOPOLOGICAL VECTOR SPACES BY C. WARD HENSON AND L. C. MOORE, JR. ABSTRACT. In this paper the nonstandard theory of topological vector spaces is developed, with three main objectives: (1) creation of the basic nonstandard concepts and tools; (2) use of these tools to give nonstandard treatments of some major standard theorems ; (3) construction of the nonstandard hull of an arbitrary topological vector space, and the beginning of the study of the class of spaces which tesults. Introduction. Let Ml be a set theoretical structure and let *JR be an enlarge- ment of M. Let (E, 0) be a topological vector space in M. §§1 and 2 of this paper are devoted to the elementary nonstandard theory of (F, 0). In particular, in §1 the concept of 0-finiteness for elements of *E is introduced and the nonstandard hull of (E, 0) (relative to *3R) is defined. §2 introduces the concept of 0-bounded- ness for elements of *E. In §5 the elementary nonstandard theory of locally convex spaces is developed by investigating the mapping in *JK which corresponds to a given pairing. In §§6 and 7 we make use of this theory by providing nonstandard treatments of two aspects of the existing standard theory. In §6, Luxemburg's characterization of the pre-nearstandard elements of *E for a normed space (E, p) is extended to Hausdorff locally convex spaces (E, 8). This characterization is used to prove the theorem of Grothendieck which gives a criterion for the completeness of a Hausdorff locally convex space. -
1. Introduction in a Topological Space, the Closure Is Characterized by the Limits of the Ultrafilters
Pr´e-Publica¸c˜oes do Departamento de Matem´atica Universidade de Coimbra Preprint Number 08–37 THE ULTRAFILTER CLOSURE IN ZF GONC¸ALO GUTIERRES Abstract: It is well known that, in a topological space, the open sets can be characterized using filter convergence. In ZF (Zermelo-Fraenkel set theory without the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the ultrafilter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ultrafilter Theorem is equivalent to the fact that uX = kX for every topological space X, where k is the usual Kuratowski Closure operator and u is the Ultrafilter Closure with uX (A) := {x ∈ X : (∃U ultrafilter in X)[U converges to x and A ∈U]}. However, it is possible to built a topological space X for which uX 6= kX , but the open sets are characterized by the ultrafilter convergence. To do so, it is proved that if every set has a free ultrafilter then the Axiom of Countable Choice holds for families of non-empty finite sets. It is also investigated under which set theoretic conditions the equality u = k is true in some subclasses of topological spaces, such as metric spaces, second countable T0-spaces or {R}. Keywords: Ultrafilter Theorem, Ultrafilter Closure. AMS Subject Classification (2000): 03E25, 54A20. 1. Introduction In a topological space, the closure is characterized by the limits of the ultrafilters. Although, in the absence of the Axiom of Choice, this is not a fact anymore. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
An Introduction to Nonstandard Analysis
An Introduction to Nonstandard Analysis Jeffrey Zhang Directed Reading Program Fall 2018 December 5, 2018 Motivation • Developing/Understanding Differential and Integral Calculus using infinitely large and small numbers • Provide easier and more intuitive proofs of results in analysis Filters Definition Let I be a nonempty set. A filter on I is a nonempty collection F ⊆ P(I ) of subsets of I such that: • If A; B 2 F , then A \ B 2 F . • If A 2 F and A ⊆ B ⊆ I , then B 2 F . F is proper if ; 2= F . Definition An ultrafilter is a proper filter such that for any A ⊆ I , either A 2 F or Ac 2 F . F i = fA ⊆ I : i 2 Ag is called the principal ultrafilter generated by i. Filters Theorem Any infinite set has a nonprincipal ultrafilter on it. Pf: Zorn's Lemma/Axiom of Choice. The Hyperreals Let RN be the set of all real sequences on N, and let F be a fixed nonprincipal ultrafilter on N. Define an (equivalence) relation on RN as follows: hrni ≡ hsni iff fn 2 N : rn = sng 2 F . One can check that this is indeed an equivalence relation. We denote the equivalence class of a sequence r 2 RN under ≡ by [r]. Then ∗ R = f[r]: r 2 RNg: Also, we define [r] + [s] = [hrn + sni] [r] ∗ [s] = [hrn ∗ sni] The Hyperreals We say [r] = [s] iff fn 2 N : rn = sng 2 F . < is defined similarly. ∗ ∗ A subset A of R can be enlarged to a subset A of R, where ∗ [r] 2 A () fn 2 N : rn 2 Ag 2 F : ∗ ∗ ∗ Likewise, a function f : R ! R can be extended to f : R ! R, where ∗ f ([r]) := [hf (r1); f (r2); :::i] The Hyperreals A hyperreal b is called: • limited iff jbj < n for some n 2 N. -
Discrete Subspaces of Topological Spaces 1)
MATHEMATICS DISCRETE SUBSPACES OF TOPOLOGICAL SPACES 1) BY A. HAJNAL AND I. JUHASZ (Communicated by Prof. J. POPKEN at the meeting of October 29, 1966) §. l. Introduction Recently several papers appeared in the literature proving theorems of the following type. A topological space with "very many points" contains a discrete subspace with "many points". J. DE GROOT and B. A. EFIMOV proved in [2] and [4] that a Hausdorff space of power > exp exp exp m contains a discrete subspace of power >m. J. ISBELL proved in [3] a similar result for completely regular spaces. J. de Groot proved as well that for regular spaces R the assumption IRI > exp exp m is sufficient to imply the existence of a discrete subspace of potency > m. One of our main issues will be to improve this result and show that the same holds for Hausdorff spaces (see Theorems 2 and 3). Our Theorem 1 states that a Hausdorff space of density > exp m contains a discrete subspace of power >m. We give two different proofs for the main result already mentioned. The proof outlined for Theorem 3 is a slight improvement of de Groot's proof. The proof given for Theorem 2 is of purely combinatorial character. We make use of the ideas and some theorems of the so called set-theoretical partition calculus developed by P. ERDOS and R. RADO (see [5], [ 11 ]). Almost all the other results we prove are based on combinatorial theorems. For the convenience of the reader we always state these theorems in full detail. Our Theorem 4 states that if m is a strong limit cardinal which is the sum of No smaller cardinals, then every Hausdorff space of power m contains a discrete subspace of power m. -
REVERSIBLE FILTERS 1. Introduction a Topological Space X Is Reversible
REVERSIBLE FILTERS ALAN DOW AND RODRIGO HERNANDEZ-GUTI´ ERREZ´ Abstract. A space is reversible if every continuous bijection of the space onto itself is a homeomorphism. In this paper we study the question of which countable spaces with a unique non-isolated point are reversible. By Stone duality, these spaces correspond to closed subsets in the Cech-Stoneˇ compact- ification of the natural numbers β!. From this, the following natural problem arises: given a space X that is embeddable in β!, is it possible to embed X in such a way that the associated filter of neighborhoods defines a reversible (or non-reversible) space? We give the solution to this problem in some cases. It is especially interesting whether the image of the required embedding is a weak P -set. 1. Introduction A topological space X is reversible if every time that f : X ! X is a continuous bijection, then f is a homeomorphism. This class of spaces was defined in [10], where some examples of reversible spaces were given. These include compact spaces, Euclidean spaces Rn (by the Brouwer invariance of domain theorem) and the space ! [ fpg, where p is an ultrafilter, as a subset of β!. This last example is of interest to us. Given a filter F ⊂ P(!), consider the space ξ(F) = ! [ fFg, where every point of ! is isolated and every neighborhood of F is of the form fFg [ A with A 2 F. Spaces of the form ξ(F) have been studied before, for example by Garc´ıa-Ferreira and Uzc´ategi([6] and [7]). -
1. Let X Be a Non-Empty Set. Let T1 and T2 Be Two Topologies on X Such That T1 Is
A 1 1. Let X be a non-empty set. Let T1 and T2 be two topologies on X such that T1 is strictly contained in T2. If I : (X,T1) o(X, T2) is identity map, then: (1) both I and I–1 are continuous (2) both I and I–1 are not continuous (3) I is continuous but I–1 is not continuous (4) I is not continuous but I–1 is continuous 2. The connected subset of real line with usual topology are --: (1) all intervals (2) only bounded intervals (3) only compact intervals (4) only semi-infinite intervals 3. Topological space X is locally path connected space- (1) if X is locally connected at each xX (2) if X is locally connected at some xX (3) if X is locally connected at each xX (4) None of these 4. The topology on real line R generated by left-open right closed intervals (a,b) is: (1) strictly coarser then usual topology (2) strictly finer than usual topology (3) not comparable with usual topology (4) same as the usual topology 60581/A P.T.O. A 2 5. Which of the following is not first countable? (1) discrete space (2) indiscrete space (3) cofinite topological space on R (4) metric space 6. Let X = {a,b,c} and T1= {I, {a}, {b,c}, X} X* = {x, y, z} and T2 = {I, {x}, {y,z}, X*} Then which of the following mapping from X to X* are continuous? (1) f(a) = x, f(b) = y, f(c) = z (2) g(a) = x, g(b) = y, g(c) = z (3) h(a) = z, h(b) = x, h(c) = y (4) both (1) and (2) 7. -
SELECTIVE ULTRAFILTERS and Ω −→ (Ω) 1. Introduction Ramsey's
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 10, Pages 3067{3071 S 0002-9939(99)04835-2 Article electronically published on April 23, 1999 SELECTIVE ULTRAFILTERS AND ! ( ! ) ! −→ TODD EISWORTH (Communicated by Andreas R. Blass) Abstract. Mathias (Happy families, Ann. Math. Logic. 12 (1977), 59{ 111) proved that, assuming the existence of a Mahlo cardinal, it is consistent that CH holds and every set of reals in L(R)is -Ramsey with respect to every selective ultrafilter . In this paper, we showU that the large cardinal assumption cannot be weakened.U 1. Introduction Ramsey's theorem [5] states that for any n !,iftheset[!]n of n-element sets of natural numbers is partitioned into finitely many∈ pieces, then there is an infinite set H ! such that [H]n is contained in a single piece of the partition. The set H is said⊆ to be homogeneous for the partition. We can attempt to generalize Ramsey's theorem to [!]!, the collection of infinite subsets of the natural numbers. Let ! ( ! ) ! abbreviate the statement \for every [!]! there is an infinite H ! such−→ that either [H]! or [H]! = ." UsingX⊆ the axiom of choice, it is easy⊆ to partition [!]! into two⊆X pieces in such∩X a way∅ that any two infinite subsets of ! differing by a single element lie in different pieces of the partition. Obviously such a partition can admit no infinite homogeneous set. Thus under the axiom of choice, ! ( ! ) ! is false. Having been stymied in this naive−→ attempt at generalization, we have several obvious ways to proceed. A natural project would be to attempt to find classes of partitions of [!]! that do admit infinite homogeneous sets. -
Adequate Ultrafilters of Special Boolean Algebras 347
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 174, December 1972 ADEQUATEULTRAFILTERS OF SPECIAL BOOLEANALGEBRAS BY S. NEGREPONTIS(l) ABSTRACT. In his paper Good ideals in fields of sets Keisler proved, with the aid of the generalized continuum hypothesis, the existence of countably in- complete, /jf^-good ultrafilters on the field of all subsets of a set of (infinite) cardinality ß. Subsequently, Kunen has proved the existence of such ultra- filters, without any special set theoretic assumptions, by making use of the existence of certain families of large oscillation. In the present paper we succeed in carrying over the original arguments of Keisler to certain fields of sets associated with the homogeneous-universal (and more generally with the special) Boolean algebras. More specifically, we prove the existence of countably incomplete, ogood ultrafilters on certain powers of the ohomogeneous-universal Boolean algebras of cardinality cl and on the a-completions of the ohomogeneous-universal Boolean algebras of cardinality a, where a= rc-^ > w. We then develop a method that allows us to deal with the special Boolean algebras of cardinality ct= 2""". Thus, we prove the existence of an ultrafilter p (which will be called adequate) on certain powers S * of the special Boolean algebra S of cardinality a, and the ex- istence of a specializing chain fC«: ß < a\ for oa, such that C snp is /3+- good and countably incomplete for ß < a. The corresponding result on the existence of adequate ultrafilters on certain completions of the special Boolean algebras is more technical. These results do not use any part of the generalized continuum hypothesis.