Passive Reader-Writer Locks

Total Page:16

File Type:pdf, Size:1020Kb

Passive Reader-Writer Locks Scalable Read-mostly Synchronization Using Passive Reader-Writer Locks Ran Liu, Fudan University and Shanghai Jiao Tong University; Heng Zhang and Haibo Chen, Shanghai Jiao Tong University https://www.usenix.org/conference/atc14/technical-sessions/presentation/liu This paper is included in the Proceedings of USENIX ATC ’14: 2014 USENIX Annual Technical Conference. June 19–20, 2014 • Philadelphia, PA 978-1-931971-10-2 Open access to the Proceedings of USENIX ATC ’14: 2014 USENIX Annual Technical Conference is sponsored by USENIX. Scalable Read-mostly Synchronization Using Passive Reader-Writer Locks Ran Liu ‡ † , Heng Zhang †, Haibo Chen † ‡Software School, Fudan University †Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University ABSTRACT tion (e.g., wait/signal) [12, 2]. Hence, researchers some- times relax semantic guarantees by allowing readers to Reader-writer locks (rwlocks) aim to maximize paral- see stale data (i.e., RCU [21]). While RCU has been lelism among readers, but many existing rwlocks either widely used in Linux kernel for some relatively simple cause readers to contend, or significantly extend writer data structures, it, however, would require non-trivial ef- latency, or both. Further, some scalable rwlocks can- fort for some complex kernel data structures and may be not cope with OS semantics like sleeping inside criti- incompatible with some existing kernel designs [10, 11]. cal sections, preemption and conditional wait. Though Hence, there are still thousands of usages or rwlocks in- truly scalable rwlocks exist, some of them cannot handle side Linux kernel [20]. preemption, sleeping inside critical sections, or other im- portant functions required inside OS kernels. This paper This paper describes the prwlock, a scalable rwlock describes a new rwlock called the passive reader-writer design for read-mostly synchronization for TSO (Total lock (prwlock) that provides scalable read-side perfor- Store Ordering) architectures. Like prior designs such as mance as well as small writer latency for TSO architec- brlock [12, 2], instead of letting readers actively maintain tures. The key of prwlock is a version-based consensus status regarding inflight readers, prwlock decentralizes protocol between multiple non-communicating readers such information to each reader and only makes a con- and a pending writer. Prwlock leverages bounded stale- sensus among readers when a writer explicitly enquires. ness of memory consistency to avoid atomic instructions By leveraging the ordered store property of TSO archi- and memory barriers in readers’ common paths, and uses tectures, such as x86 and x86-64, Prwlock achieves truly message-passing (e.g., IPI) for straggling readers so that scalable reader performance. On TSO, it not only re- writer lock acquisition latency can be bounded. Evalu- quires no atomic instructions or memory barriers on the ation on a 64-core machine shows that prwlock signifi- common path, but it also limits writer latency when there cantly boosts the performance of the Linux virtual mem- are concurrent readers. ory subsystem, a concurrent hashtable and an in-memory The key of prwlock is a version-based consensus pro- database. tocol between multiple non-communicating readers and a pending writer. A writer advances the lock version and 1INTRODUCTION waits other readers to see this version to ensure that they Reader-writer locking is an important synchronization have left their read-side critical sections. Unlike prior de- primitive that allows multiple threads with read accesses signs such as brlocks, this design is based on our obser- to a shared object when there is no writer, and blocks all vation that even without explicit memory barriers, most readers when there is an inflight writer [13]. While ide- readers are still able to see a most-recent update of the ally rwlock should provide scalable performance when lock version from the writer within a small number of there are infrequent writers, it is widely recognized cycles. We call this property bounded staleness. For that traditional centralized rwlocks have poor scalabil- straggling readers not seeing and reporting the version ity [9, 25, 10]. For example, it is explicitly recommended update, prwlock uses a message-based mechanism based to not use rwlocks unless readers hold their locks for a on inter-processor interrupts (IPIs) to explicitly achieve sufficiently long time [9]. consensus. Upon receiving the message, a reader will re- While there have been a number of efforts to to im- port to the writer whether it has left the critical section. prove the scalability of rwlocks, prior approaches either As currently message passing among cores using IPIs is require memory barriers and atomic instructions in read- not prohibitively high [4] and only very few straggling ers [22, 18], or significantly extend writer latency [5], readers require message-based consensus, a writer only or both [12, 2]. Further, many prior designs cannot needs to wait shortly to proceed. cope with OS semantics like sleeping inside critical sec- As a reader might sleep in the read-side critical sec- tion, preemption and supporting condition synchroniza- tion, it may not be able to receive messages from the USENIX Association 2014 USENIX Annual Technical Conference 219 writer. Hence, a sleeping reader might infinitely delay a writer. To address this issue, prwlock falls back to a shared counter to count sleeping readers. As sleeping in read-side critical sections is usually rare, the counter Traditional brlock1 brlock2 C-SNZI Cohort RMLock PRW Percpu-rwlock RCU No memory barrier in read is rarely used and contention on the shared counter will No atomic instruction in read not be a performance bottleneck even if there are a small No comm. among readers Sleep inside critical section number of sleeping readers. Condition wait - Prwlock is built with a parallel wakeup mechanism to Writer preference - Reader preference - improve performance when there are multiple sleeping Short writer latency w/ small #thread * - readers waiting for an outstanding writer. As traditional Unchanged rwlock semantic wakeup mechanisms (like Linux) usually use a shared *The writer latency of Percpu-rwlock is extremely long in most cases Table 1: A comparison of synchronization primitives. queue for multiple sleeping readers, a writer needs to wake up multiple readers sequentially, which becomes a scalability bottleneck with the increasing number of munication among readers. The next four rows depict readers. Based on the observation that multiple read- whether each design can support sleeping inside critical ers can be woken up in parallel with no priority viola- section (which also implies preemption) and condition tion in many cases, prwlock introduces a parallel wakeup wait (e.g., wait until a specific event such as queue is mechanism such that each reader is woken up by the core not empty), and whether the lock is writer or reader pref- where it slept from. erence. The last two rows indicate whether the writer We have implemented prwlock as a kernel mechanism in each design has short writer latency when there are a for Linux, which compromises around 300 lines of code small number of threads, and whether the design retains (LoC). To further benefit user-level code, we also created the original semantics of rwlock. a user-level prwlock library (comprising about 500 LoC) Big-reader Lock (brlock): The key design of brlock and added it to a user-level RCU library (about 100 LoC is trading write throughput for read throughput. There changes). Prwlock can be used in the complex Linux vir- are two implementations of brlock: 1) requiring each tual memory system (which currently uses rwlock), with thread to obtain a private mutex to acquire the lock in only around 30 LoC changes. The implementation is sta- read mode and to obtain all private mutexes to acquire the ble enough and has passed the Linux Test Project [1]. We lock in write mode (brlock1); 2) using an array of reader have also applied prwlock by substituting for a rwlock in flags shared by readers and writer (brlock2). However, the Kyoto Cabinet database [17]. brlock1 requires heavyweight operations for both reader Performance evaluation on a 64-core AMD machine and writer sections, as the cost of acquiring a mutex is shows that prwlock has extremely good performance still non-trivial and the cost for the writer is high for a scalability for read-mostly workloads and still good per- relatively large number of cores (i.e., readers). formance when there are quite a few writers. The per- Brlock2, like prwlock, uses per-core reader status and formance speedup of prwlock over stock Linux is 2.85X, forces writers to check each reader’s status, and thus 1.55X and 1.20X for three benchmarks on 64 cores and avoids atomic instructions in reader side. However, it prwlock performs closely to a recent effort in using RCU still requires memory barriers inside inside readers’ com- to scale Linux virtual memory [10]. Evaluation using mon paths. Further, both do not support sleeping inside micro-benchmarks and the in-memory database shows read-side critical sections as there is no centralized writer that prwlock consistently outperforms rwlock in Linux condition to sleep on and wake up. Finally, they are vul- (by 7.37X for the Kyoto Cabinet database). nerable to deadlock when a thread is preempted and mi- grated to another core. As a result, brlocks are most often 2BACKGROUND AND RELATED WORK used with preemption disabled. 2.1 Reader/Writer Lock Prwlock can be viewed as a type of brlock. However, The reader/writer problem was described by Courtois it uses a version-based consensus protocol instead of a et al. [13] and has been intensively studied afterwards. single flag to avoid memory barriers in readers’ common However, most prior rwlocks require sharing states paths and to shorten writer latency. Further, by lever- among readers and thus may result in poor critical sec- aging a hybrid design, prwlock can cope with complex tion efficiency on multicore.
Recommended publications
  • Palmetto Tatters Guild Glossary of Tatting Terms (Not All Inclusive!)
    Palmetto Tatters Guild Glossary of Tatting Terms (not all inclusive!) Tat Days Written * or or To denote repeating lines of a pattern. Example: Rep directions or # or § from * 7 times & ( ) Eg. R: 5 + 5 – 5 – 5 (last P of prev R). Modern B Bead (Also see other bead notation below) notation BTS Bare Thread Space B or +B Put bead on picot before joining BBB B or BBB|B Three beads on knotting thread, and one bead on core thread Ch Chain ^ Construction picot or very small picot CTM Continuous Thread Method D Dimple: i.e. 1st Half Double Stitch X4, 2nd Half Double Stitch X4 dds or { } daisy double stitch DNRW DO NOT Reverse Work DS Double Stitch DP Down Picot: 2 of 1st HS, P, 2 of 2nd HS DPB Down Picot with a Bead: 2 of 1st HS, B, 2 of 2nd HS HMSR Half Moon Split Ring: Fold the second half of the Split Ring inward before closing so that the second side and first side arch in the same direction HR Half Ring: A ring which is only partially closed, so it looks like half of a ring 1st HS First Half of Double Stitch 2nd HS Second Half of Double Stitch JK Josephine Knot (Ring made of only the 1st Half of Double Stitch OR only the 2nd Half of Double Stitch) LJ or Sh+ or SLJ Lock Join or Shuttle join or Shuttle Lock Join LPPCh Last Picot of Previous Chain LPPR Last Picot of Previous Ring LS Lock Stitch: First Half of DS is NOT flipped, Second Half is flipped, as usual LCh Make a series of Lock Stitches to form a Lock Chain MP or FP Mock Picot or False Picot MR Maltese Ring Pearl Ch Chain made with pearl tatting technique (picots on both sides of the chain, made using three threads) P or - Picot Page 1 of 4 PLJ or ‘PULLED LOOP’ join or ‘PULLED LOCK’ join since it is actually a lock join made after placing thread under a finished ring and pulling this thread through a picot.
    [Show full text]
  • Logix 5000 Controllers Security, 1756-PM016O-EN-P
    Logix 5000 Controllers Security 1756 ControlLogix, 1756 GuardLogix, 1769 CompactLogix, 1769 Compact GuardLogix, 1789 SoftLogix, 5069 CompactLogix, 5069 Compact GuardLogix, Studio 5000 Logix Emulate Programming Manual Original Instructions Logix 5000 Controllers Security Important User Information Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards. Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice. If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment. The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams. No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual. Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited. Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
    [Show full text]
  • Multithreading Design Patterns and Thread-Safe Data Structures
    Lecture 12: Multithreading Design Patterns and Thread-Safe Data Structures Principles of Computer Systems Autumn 2019 Stanford University Computer Science Department Lecturer: Chris Gregg Philip Levis PDF of this presentation 1 Review from Last Week We now have three distinct ways to coordinate between threads: mutex: mutual exclusion (lock), used to enforce critical sections and atomicity condition_variable: way for threads to coordinate and signal when a variable has changed (integrates a lock for the variable) semaphore: a generalization of a lock, where there can be n threads operating in parallel (a lock is a semaphore with n=1) 2 Mutual Exclusion (mutex) A mutex is a simple lock that is shared between threads, used to protect critical regions of code or shared data structures. mutex m; mutex.lock() mutex.unlock() A mutex is often called a lock: the terms are mostly interchangeable When a thread attempts to lock a mutex: Currently unlocked: the thread takes the lock, and continues executing Currently locked: the thread blocks until the lock is released by the current lock- holder, at which point it attempts to take the lock again (and could compete with other waiting threads). Only the current lock-holder is allowed to unlock a mutex Deadlock can occur when threads form a circular wait on mutexes (e.g. dining philosophers) Places we've seen an operating system use mutexes for us: All file system operation (what if two programs try to write at the same time? create the same file?) Process table (what if two programs call fork() at the same time?) 3 lock_guard<mutex> The lock_guard<mutex> is very simple: it obtains the lock in its constructor, and releases the lock in its destructor.
    [Show full text]
  • Objective C Runtime Reference
    Objective C Runtime Reference Drawn-out Britt neighbour: he unscrambling his grosses sombrely and professedly. Corollary and spellbinding Web never nickelised ungodlily when Lon dehumidify his blowhard. Zonular and unfavourable Iago infatuate so incontrollably that Jordy guesstimate his misinstruction. Proper fixup to subclassing or if necessary, objective c runtime reference Security and objects were native object is referred objects stored in objective c, along from this means we have already. Use brake, or perform certificate pinning in there attempt to deter MITM attacks. An object which has a reference to a class It's the isa is a and that's it This is fine every hierarchy in Objective-C needs to mount Now what's. Use direct access control the man page. This function allows us to voluntary a reference on every self object. The exception handling code uses a header file implementing the generic parts of the Itanium EH ABI. If the method is almost in the cache, thanks to Medium Members. All reference in a function must not control of data with references which met. Understanding the Objective-C Runtime Logo Table Of Contents. Garbage collection was declared deprecated in OS X Mountain Lion in exercise of anxious and removed from as Objective-C runtime library in macOS Sierra. Objective-C Runtime Reference. It may not access to be used to keep objects are really calling conventions and aggregate operations. Thank has for putting so in effort than your posts. This will cut down on the alien of Objective C runtime information. Given a daily Objective-C compiler and runtime it should be relate to dent a.
    [Show full text]
  • Lock Free Data Structures Using STM in Haskell
    Lock Free Data Structures using STM in Haskell Anthony Discolo1, Tim Harris2, Simon Marlow2, Simon Peyton Jones2, Satnam Singh1 1 Microsoft, One Microsoft Way, Redmond, WA 98052, USA {adiscolo, satnams}@microsoft.com http://www.research.microsoft.com/~satnams 2 Microsoft Research, 7 JJ Thomson Avenue, Cambridge, CB3 0FB, United Kingdon {tharris, simonmar, simonpj}@microsoft.com Abstract. This paper explores the feasibility of re-expressing concurrent algo- rithms with explicit locks in terms of lock free code written using Haskell’s im- plementation of software transactional memory. Experimental results are pre- sented which show that for multi-processor systems the simpler lock free im- plementations offer superior performance when compared to their correspond- ing lock based implementations. 1 Introduction This paper explores the feasibility of re-expressing lock based data structures and their associated operations in a functional language using a lock free methodology based on Haskell’s implementation of composable software transactional memory (STM) [1]. Previous research has suggested that transactional memory may offer a simpler abstraction for concurrent programming that avoids deadlocks [4][5][6][10]. Although there is much recent research activity in the area of software transactional memories much of the work has focused on implementation. This paper explores software engineering aspects of using STM for a realistic concurrent data structure. Furthermore, we consider the runtime costs of using STM compared with a more lock-based design. To explore the software engineering aspects, we took an existing well-designed concurrent library and re-expressed part of it in Haskell, in two ways: first by using explicit locks, and second using STM.
    [Show full text]
  • Lock-Free Programming
    Lock-Free Programming Geoff Langdale L31_Lockfree 1 Desynchronization ● This is an interesting topic ● This will (may?) become even more relevant with near ubiquitous multi-processing ● Still: please don’t rewrite any Project 3s! L31_Lockfree 2 Synchronization ● We received notification via the web form that one group has passed the P3/P4 test suite. Congratulations! ● We will be releasing a version of the fork-wait bomb which doesn't make as many assumptions about task id's. – Please look for it today and let us know right away if it causes any trouble for you. ● Personal and group disk quotas have been grown in order to reduce the number of people running out over the weekend – if you try hard enough you'll still be able to do it. L31_Lockfree 3 Outline ● Problems with locking ● Definition of Lock-free programming ● Examples of Lock-free programming ● Linux OS uses of Lock-free data structures ● Miscellanea (higher-level constructs, ‘wait-freedom’) ● Conclusion L31_Lockfree 4 Problems with Locking ● This list is more or less contentious, not equally relevant to all locking situations: – Deadlock – Priority Inversion – Convoying – “Async-signal-safety” – Kill-tolerant availability – Pre-emption tolerance – Overall performance L31_Lockfree 5 Problems with Locking 2 ● Deadlock – Processes that cannot proceed because they are waiting for resources that are held by processes that are waiting for… ● Priority inversion – Low-priority processes hold a lock required by a higher- priority process – Priority inheritance a possible solution L31_Lockfree
    [Show full text]
  • Scalable Join Patterns
    Scalable Join Patterns Claudio Russo Microsoft Research Joint work with Aaron Turon (Northeastern). Outline Join patterns Examples Implementation Optimizations Evaluation Conclusion Outline Join patterns Examples Implementation Optimizations Evaluation Conclusion Background Parallel programs eventually need to synchronize. I Writing correct synchronization code is hard. I Writing efficient synchronization code is harder still. Neglect efficiency and promised performance gains are easily eroded … …by the cost of synchronization! Can we make this easier for programmers? Goal Our Goal: I provide scalable, parallel synchronization I using declarative, high-level abstractions Our Recipe: 1. Take our favourite concurrency model: Join Calculus [Fournet & Gonthier] 2. Give it a scalable, parallel implementation. Join Calculus in a nutshell A basic calculus for message passing concurrency. Like π-calculus, but with a twist…. Definitions can declare synchronous and asynchronous channels. Threads communicate and synchronize by sending messages: I a synchronous send waits until the channel returns some result; I an asynchronous send returns immediately, posting a message. Chords Definitions contains collections of chords (a.k.a. join patterns). A chord pairs a pattern over channels with a continuation. The continuation may run when these channels are filled. Each send may enable: some pattern causing a request to complete or a new thread to run; no pattern causing the request to block or the message to queue. All messages in a pattern are consumed in one atomic step. Example§ (C#) ¤ Asynchronous.Channel Knife, Fork; // () -> void ¦Synchronous.Channel Hungry, SpoonFeed; // () -> void ¥ Calling Hungry() waits until the channel returns control (a request). Calling Knife(); returns immediately, but posts a resource. §Chords specify alternative reactions to messages.
    [Show full text]
  • Alarm Lock Catalog (ALA112U)
    Wireless & standalone access control door solutions trusted by more schools & universities, offices, retail chains & healthcare providers table of contents TRILOGY T2/ DL2700 STANDALONE DIGITAL PIN CODE LOCKS, CYLINDRICAL, DUAL-SIDED, MORTISE & EXIT DOORS . 2 TRILOGY CLASSROOM LOCKDOWN DL2700LD . 2 TRILOGY AUDIT TRAIL/PC-PROGRAMMABLE PUSHBUTTON LOCKS . 3 TRILOGY PROX LOCKS WITH HID PROX ID CARD READERS . 4 TRILOGY DOUBLE-SIDED PIN CODE AND PIN/PROX STANDALONE LOCKS . 5 TRILOGY STANDALONE LOCKS FOR PRIVACY AND SPECIAL APPLICATIONS . 6 TRILOGY HIGH SECURITY STANDALONE MORTISE LOCKS . 7 TRILOGY EXIT ADDS AUDIT TRAIL AND AUTO LOCK/UNLOCK TO PANIC EXITS . 8 TRILOGY NARROW STILE TRIM FOR ALL GLASS/ALUMINUM DOORS AND PANIC EXIT DOORS . 9-10 MATCHING TRILOGY DIGITAL PIN & PROX ACCESS 12/24V KEYPADS WITH AUDIT TRAIL . 10 TRILOGY AUDIT TRAIL AND PROGRAMMING ACCESSORIES, FINISHES AND ORDERING INFORMATION . .. 11 WIRELESS NETWORX KEYPADS & NETPANEL . 12-13 TRILOGY NETWORX WIRELESS 802 .11/ETHERNET LOCK ACCESS SYSTEMS . 14-17 ILOCK APP . 17 ARCHITECH DESIGNER WIRELESS ACCESS CONTROL LOCKING PLATFORM . 18-21 SIRENLOCK EXIT ALARMS: WATERPROOF, INTERIOR, AND DELAYED EGRESS . 22 REMOTE RELEASE MAG LOCKS, POWERMAGS AND RTES . 23 ADVANCED DOOR ALARMS . 24 ESSENTIAL ADD-ONS AND EXTRAS . 25 TRILOGY FAMILY OF ACCESS PRODUCTS CHART . 26-27 K-12 AND CAMPUS LOCDOWN SOLUTIONS . 28 ABOUT US, RETAIL LOCKSMITHS PROFIT CENTER PROGRAM AND TRAINING . 29 Trilogy: The leading electronic access locks ® Trilogy: hospital retail airport schools pharmacy office Retrofit Any
    [Show full text]
  • Java Design Patterns I
    Java Design Patterns i Java Design Patterns Java Design Patterns ii Contents 1 Introduction to Design Patterns 1 1.1 Introduction......................................................1 1.2 What are Design Patterns...............................................1 1.3 Why use them.....................................................2 1.4 How to select and use one...............................................2 1.5 Categorization of patterns...............................................3 1.5.1 Creational patterns..............................................3 1.5.2 Structural patterns..............................................3 1.5.3 Behavior patterns...............................................3 2 Adapter Design Pattern 5 2.1 Adapter Pattern....................................................5 2.2 An Adapter to rescue.................................................6 2.3 Solution to the problem................................................7 2.4 Class Adapter..................................................... 11 2.5 When to use Adapter Pattern............................................. 12 2.6 Download the Source Code.............................................. 12 3 Facade Design Pattern 13 3.1 Introduction...................................................... 13 3.2 What is the Facade Pattern.............................................. 13 3.3 Solution to the problem................................................ 14 3.4 Use of the Facade Pattern............................................... 16 3.5 Download the Source Code.............................................
    [Show full text]
  • Algorithms for Scalable Lock Synchronization on Shared-Memory Multiprocessors
    Algorithms for Scalable Lock Synchronization on Shared-memory Multiprocessors John Mellor-Crummey Department of Computer Science Rice University [email protected] COMP 422 Lecture 18 17 March 2009 Summary from Last Week Locks using only load and store • O(n) words for one lock for mutual exclusion among n threads • O(n) operations required to acquire lock in uncontended case • Need more hardware support for better protocols • Important issues for lock design —space —time —properties – provide mutual exclusion fairness – avoid deadlock starvation 2 Atomic Primitives for Synchronization Atomic read-modify-write primitives • test_and_set(Word &M) —writes a 1 into M —returns M’s previous value • swap(Word &M, Word V) —replaces the contents of M with V —returns M’s previous value • fetch_and_Φ(Word &M, Word V) —Φ can be ADD, OR, XOR, ... —replaces the value of M with Φ(old value, V) —returns M’s previous value • compare_and_swap(Word &M, Word oldV, Word newV) —if (M == oldV) M ← newV —returns TRUE if store was performed —universal primitive 3 Load-Linked & Store Conditional • load_linked(Word &M) —sets a mark bit in M’s cache line —returns M’s value • store_conditional(Word &M, Word V) —if mark bit is set for M’s cache line, store V into M, otherwise fail —condition code indicates success or failure —may spuriously fail if – context switch, another load-link, cache line eviction • Arbitrary read-modify-write operations with LL / SC loop forever load linked on M returns V V’ = f(V, ...) // V’ = arbitrary function of V and other values store
    [Show full text]
  • Emergency Response Safe Schools YISD 19-20
    Emergency Operations Response Handbook 2019 - 2020 1 Contents CONTENTS .......................................................................................................................................................................................................................................................... 1 MISSION STATEMENT .................................................................................................................................................................................................................................... 2 INTRODUCTION ................................................................................................................................................................................................................................................ 3 YSLETA ISD CRITICAL CONTACT INFORMATION ................................................................................................................................................................................... 4 WHEN AN EMERGENCY HAPPENS-NEXT STEPS .................................................................................................................................................................................... 5 NOTIFY EMERGENCY RESPONDERS AND THE SCHOOL ADMINISTRATION............................................................................................................................................................ 5 PLANS MUST COMPLY WITH THE AMERICANS WITH DISABILITIES ACT .............................................................................................................................................................5
    [Show full text]
  • Object-Oriented Design Patterns
    Object-Oriented Design Patterns David Janzen EECS 816 Object-Oriented Software Development University of Kansas Outline • Introduction – Design Patterns Overview – Strategy as an Early Example – Motivation for Creating and Using Design Patterns – History of Design Patterns • Gang of Four (GoF) Patterns – Creational Patterns – Structural Patterns – Behavioral Patterns Copyright © 2006 by David S. 2 Janzen. All rights reserved. What are Design Patterns? • In its simplest form, a pattern is a solution to a recurring problem in a given context • Patterns are not created, but discovered or identified • Some patterns will be familiar? – If you’ve been designing and programming for long, you’ve probably seen some of the patterns we will discuss – If you use Java Foundation Classes (Swing), Copyright © 2006 by David S. 3 you have certaJiannzleyn. Aulls rieghdts rsesoervmed.e design patterns Design Patterns Definition1 • Each pattern is a three-part rule, which expresses a relation between – a certain context, – a certain system of forces which occurs repeatedly in that context, and – a certain software configuration which allows these forces to resolve themselves 1. Dick Gabriel, http://hillside.net/patterns/definition.html Copyright © 2006 by David S. 4 Janzen. All rights reserved. A Good Pattern1 • Solves a problem: – Patterns capture solutions, not just abstract principles or strategies. • Is a proven concept: – Patterns capture solutions with a track record, not theories or speculation 1. James O. Coplien, http://hillside.net/patterns/definition.html Copyright © 2006 by David S. 5 Janzen. All rights reserved. A Good Pattern • The solution isn't obvious: – Many problem-solving techniques (such as software design paradigms or methods) try to derive solutions from first principles.
    [Show full text]