Do Option Markets Correctly Price the Probabilities of Movement of The

Total Page:16

File Type:pdf, Size:1020Kb

Do Option Markets Correctly Price the Probabilities of Movement of The Journal of Econometrics 102 (2001) 67}110 Do option markets correctlyprice the probabilities of movement of the underlying asset? Yacine AmK t-Sahalia *, Yubo Wang, Francis Yared Department of Economics, Princeton University, Princeton, NJ 08544-1021, USA Fixed Income Research, J.P. Morgan Securities Inc., New York, NY 10017, USA Lehman Brothers International (Europe), London EC 2M7HA, UK Received 4 January1999; received in revised form 21 August 2000; accepted 2 October 2000 Abstract We answer this question bycomparing te risk-neutral densityestimated in complete markets from cross-section of S&P 500 option prices to the risk-neutral densityinferred from the time series densityof the S&P 500 index. If investors are risk-averse, the latter densityis di !erent from the actual densitythat could be inferred from the time series of S&P 500 returns. Naturally, the observed asset returns do not follow the risk-neutral dynamics, which are therefore not directly observable. In contrast to the existing literature, we avoid making anyassumptions on investors ' preferences, bycomparing two risk-adjusted densities, rather than a risk-adjusted densityfrom option prices to an unadjusted densityfrom index returns. Our onlymaintained hypothesisis a one-factor structure for the S&P 500 returns. We propose a new method, based on an empirical Girsanov's change of measure, to identifythe risk-neutral densityfrom the observed unadjusted index returns. We design four di!erent tests of the null hypothesis that the S&P 500 options are e$cientlypriced given the S&P 500 index dynamics,and reject it. Byadding a jump component to the index dynamics,we are able to partlyreconcile the di!erences between the index and option-implied risk-neutral densities, and propose a peso-problem interpretation of this evidence. 2001 Elsevier Science S.A. All rights reserved. JEL classixcation: C14; G13 * Corresponding author. Tel.: #1-609-258-4015; fax: #1-609-258-0719. E-mail address: [email protected] (Y. AmK t-Sahalia). 0304-4076/01/$ - see front matter 2001 Elsevier Science S.A. All rights reserved. PII: S 0 3 0 4 - 4 0 7 6 ( 0 0 ) 0 0 0 9 1 - 9 68 Y. An(t-Sahalia et al. / Journal of Econometrics 102 (2001) 67}110 Keywords: State-price densities; Risk-neutral densities; Densitycomparison; Arbitrage relationships; Girsanov's Theorem; Implied volatilitysmile; Jump risk; Peso problem 1. Introduction Do investors rationallyforecast future stock price distributions when they price options? Provided that markets are dynamically complete, arbitrage arguments tie down option prices to the prices of primaryassets. We may therefore expect that option prices will accuratelyre #ect the risk implicit in the stochastic dynamics of their underlying assets } and nothing else. Is this the case empirically, at least within the framework of a given class of models? An arbitrage-free option pricing model can be reduced to the speci"cation of a densityfunction assigning probabilities to the various possible values of the underlying asset price at the option's expiration. This densityfunction is named the state-price density(SPD), due to its intimate relationship to the prices of Arrow}Debreu contingent claims. A number of econometric methods are now available to infer SPDs from option prices. These methods deliver SPD esti- mates which either relax the Black}Scholes (1973) and Merton (1973) log-normal assumption in speci"c directions, or explicitlyincorporate the deviations from the Black}Scholes model when estimating the option-implied SPD and pricing other derivative securities. One of the main attractions of the latter methods is that theyproduce direct estimates of the Arrow }Debreu state prices implicit in the market prices of options. Their main drawback is that theyempirically ignore the evidence contained in the observed time series dynamics of the underlying asset } which, in theory, should indeed be redundant information. The goal of this paper is to examine whether the information contained in the cross-sectional option prices and the information contained in the time series of underlying asset values are empirically consistent with each other, i.e., whether option prices are rationallydetermined, under the maintained hypothesisthat the onlysource of risk in the economyis the stochastic nature of the asset price. More concretely, does the S&P 500 option market correctly price the S&P 500 index risk? It is certainlytempting to answer this question simplybycomparing features of the SPD implied byS&P 500 option prices to features of the observable time series of the underlying asset price. See Ross (1976), Banz and Miller (1978), Breeden and Litzenberger (1978) and Harrison and Kreps (1979). See Cox and Ross (1976), Merton (1976), Jarrow and Rudd (1982), Bates (1991), Goldberger (1991), Longsta! (1995) and Bakshi et al. (1997). See Shimko (1993), Derman and Kani (1994), Dupire (1994), Rubinstein (1994), Stutzer (1996), Jackwerth and Rubinstein (1996), AmKt-Sahalia and Lo (1998) and Dumas et al. (1998). Y. An(t-Sahalia et al. / Journal of Econometrics 102 (2001) 67}110 69 In fact, previous studies in the literature have always compared the observed option data to the observed underlying returns data, i.e., a risk-neutral density to an actual density. Naturally, in the case where all the Black}Scholes assumptions hold, the comparison between the option-implied and the asset-implied SPDs, both log-normal with the same mean, reduces to a comparison of implied volatilities, assumed common across the cross-section of options, to the index's time series realized volatilityover the life of the option. More generally, the well-documented presence in option prices of an &implied volatilitysmile ',whereby out-of-the-moneyput options are more expensive than at-the-moneyoptions, directlytranslate into a negativelyskewed option-implied SPD. At the same time, there is evidence in the S&P 500 time series of time-varying volatility, generally negativelycorrelated with the index changes, as well as jumps; both of these e !ects can give rise to a negativelyskewed SPD. We argue in this paper that no conclu- sions regarding the rationalityof option prices should be drawn from putting these two pieces of evidence together. The distribution of the underlying asset values that can be inferred from its observed time series, and the SPD implied by option prices, are not comparable without assumptions on investors' preferences. In fact, it is possible to use the exact same data to determine the representative preferences that are implicit in the joint observations on option and underlying asset prices. In other words, the extra degree of freedom introduced byprefer- ences can &reconcile' anyset of option prices with the observed time series dynamics of the underlying asset (up to suitable restrictions). Thus it is always possible to conclude that the options are rationallypriced from a comparison of the option-implied SPD and the actual densityof index returns, when prefer- ences (albeit strange ones) can be found that legitimize the observed option prices. Yet verylittle is known about aggregate investors ' preferences } even within the class of isoelastic utilityfunctions, there is wide disagreement in the literature regarding what constitutes a reasonable value of the coe$cient of relative risk aversion: is the coe$cient of relative risk aversion equal to 5 or 250? Therefore there is no reason a priori to compare the dynamics of the underlying asset that are implied by the option data to the dynamics implied by the actual time series, unless for some reason one holds a strong prior view on preferences. Consequently, the combination of the facts that the observed S&P 500 returns are negativelyskewed and that there exists a persistent implied volatilitysmile, cannot be used as evidence either in favor or against the rationalityof option prices. See Chiras and Manaster (1978), Schmalensee and Trippi (1978), Macbeth and Merville (1979), Rubinstein (1985), Dayand Lewis (1988, 1990), Engle and Mustafa (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), and for a studyof the e !ect of institutional features on these comparisons Harveyand Whaley(1992). See AmKt-Sahalia and Lo (2000) and Jackwerth (2000). See for example Mehra and Prescott (1985) and Cochrane and Hausen (1992). 70 Y. An(t-Sahalia et al. / Journal of Econometrics 102 (2001) 67}110 In fact, the two SPDs need not even belong to the same parametric family, meaning that comparisons of their variances alone, as would be appropriate under the Black}Scholes assumptions, can lead to type-II errors (if the variances happen to be equal but other features of the densities are distinct) and/or type-I errors (if the SPDs are in fact equal but the variance estimates are inconsistent due to misspeci"cation of the assumed parametric form). For instance, Lo and Wang (1995) give an example of misspeci"ed variance estimates in a simpler context. The di$cultyat this point is that we do not observe the data that would be needed to infer directlythe time-series SPD, since we onlyobserve the actual realized values of the S&P 500, not its risk-neutral values. The main noveltyin this paper is to show that it is nevertheless possible to use the observed asset prices to infer indirectlythe time-series SPD that should be equal to the option-implied cross-sectional SPD. We relyon Girsanov 's charac- terization of the change of measure from the actual densityto the SPD: the di!usion function of the asset's dynamics is identical under both measures, only the drift needs to be adjusted. This fact is of course not surprising from a theoretical point of view, but had not been exploited empirically. Our econo- metric strategyis to start byestimating the di !usion function from the observed S&P 500 index returns. Then byGirsanov 's Theorem, this is the same di!usion function as the di!usion function of the risk-neutral S&P 500 returns.
Recommended publications
  • Differences Between Financial Options and Real Options
    Lecture Notes in Management Science (2012) Vol. 4: 169–178 4th International Conference on Applied Operational Research, Proceedings © Tadbir Operational Research Group Ltd. All rights reserved. www.tadbir.ca ISSN 2008-0050 (Print), ISSN 1927-0097 (Online) Differences between financial options and real options Tero Haahtela Aalto University, BIT Research Centre, Helsinki, Finland [email protected] Abstract. Real option valuation is often presented to be analogous with financial options valuation. The majority of research on real options, especially classic papers, are closely connected to financial option valuation. They share most of the same assumption about contingent claims analysis and apply close form solutions for partial difference equations. However, many real-world investments have several qualities that make use of the classical approach difficult. This paper presents many of the differences that exist between the financial and real options. Whereas some of the differences are theoretical and academic by nature, some are significant from a practical perspective. As a result of these differences, the present paper suggests that numerical methods and models based on calculus and simulation may be more intuitive and robust methods with looser assumptions for practical valuation. New methods and approaches are still required if the real option valuation is to gain popularity outside academia among practitioners and decision makers. Keywords: real options; financial options; investment under uncertainty, valuation Introduction Differences between real and financial options Real option valuation is often presented to be significantly analogous with financial options valuation. The analogy is often presented in a table format that links the Black and Scholes (1973) option valuation parameters to the real option valuation parameters.
    [Show full text]
  • Forward Contracts and Futures a Forward Is an Agreement Between Two Parties to Buy Or Sell an Asset at a Pre-Determined Future Time for a Certain Price
    Forward contracts and futures A forward is an agreement between two parties to buy or sell an asset at a pre-determined future time for a certain price. Goal To hedge against the price fluctuation of commodity. • Intension of purchase decided earlier, actual transaction done later. • The forward contract needs to specify the delivery price, amount, quality, delivery date, means of delivery, etc. Potential default of either party: writer or holder. Terminal payoff from forward contract payoff payoff K − ST ST − K K ST ST K long position short position K = delivery price, ST = asset price at maturity Zero-sum game between the writer (short position) and owner (long position). Since it costs nothing to enter into a forward contract, the terminal payoff is the investor’s total gain or loss from the contract. Forward price for a forward contract is defined as the delivery price which make the value of the contract at initiation be zero. Question Does it relate to the expected value of the commodity on the delivery date? Forward price = spot price + cost of fund + storage cost cost of carry Example • Spot price of one ton of wood is $10,000 • 6-month interest income from $10,000 is $400 • storage cost of one ton of wood is $300 6-month forward price of one ton of wood = $10,000 + 400 + $300 = $10,700. Explanation Suppose the forward price deviates too much from $10,700, the construction firm would prefer to buy the wood now and store that for 6 months (though the cost of storage may be higher).
    [Show full text]
  • Valuation of Stock Options
    VALUATION OF STOCK OPTIONS The right to buy or sell a given security at a specified time in the future is an option. Options are “derivatives’, i.e. they derive their value from the security that is to be traded in accordance with the option. Determining the value of publicly traded stock options is not a problem as the market sets the price. The value of a non-publicly traded option, however, depends on a number of factors: the price of the underlying security at the time of valuation, the time to exercise the option, the volatility of the underlying security, the risk free interest rate, the dividend rate, and the strike price. In addition to these financial variables, subjective variables also play a role. For example, in the case of employee stock options, the employee and the employer have different reasons for valuation, and, therefore, differing needs result in a different valuation for each party. This appendix discusses the reasons for the valuation of non-publicly traded options, explores and compares the two predominant valuation models, and attempts to identify the appropriate valuation methods for a variety of situations. We do not attempt to explain option-pricing theory in depth nor do we attempt mathematical proofs of the models. We focus on the practical aspects of option valuation, directing the reader to the location of computer calculators and sources of the data needed to enter into those calculators. Why Value? The need for valuation arises in a variety of circumstances. In the valuation of a business, for example, options owned by that business must be valued like any other investment asset.
    [Show full text]
  • Modeling the Steel Price for Valuation of Real Options and Scenario Simulation
    Norwegian School of Economics Bergen, December, 2015 Modeling the Steel Price for Valuation of Real Options and Scenario Simulation Master thesis in Finance Norwegian School of Economics Written by: Lasse Berggren Supervisor: Jørgen Haug This thesis was written as a part of the Master of Science in Economics and Business Administration at NHH. Please note that neither the institution nor the examiners are responsible | through the approval of this thesis | for the theories and methods used, or results and conclusions drawn in this work. 1 Summary Steel is widely used in construction. I tried to model the steel price such that valuations and scenario simulations could be done. To achieve a high level of precision this is done with a continuous-time continuous-state model. The model is more precise than a binomial tree, but not more economically interesting. I have treated the nearest futures price as the steel price. If one considers options expiring at the same time as the futures, it will be the same as if the spot were traded. If the maturity is short such that details like this matters, one should treat the futures as a spot providing a convenience yield equal to the interest rate earned on the delayed payment. This will in the model be the risk-free rate. Then I have considered how the drift can be modelled for real world scenario simu- lation. It involves discretion, as opposed to finding a convenient AR(1) representation, because the ADF-test could not reject non-stationarity (unit root). Given that the underlying is traded in a well functioning market such that prices reflect investors attitude towards risk, will the drift of the underlying disappear in the one-factor model applied to value a real-option.
    [Show full text]
  • The Promise and Peril of Real Options
    1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix.
    [Show full text]
  • Pricing of Index Options Using Black's Model
    Global Journal of Management and Business Research Volume 12 Issue 3 Version 1.0 March 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4588 & Print ISSN: 0975-5853 Pricing of Index Options Using Black’s Model By Dr. S. K. Mitra Institute of Management Technology Nagpur Abstract - Stock index futures sometimes suffer from ‘a negative cost-of-carry’ bias, as future prices of stock index frequently trade less than their theoretical value that include carrying costs. Since commencement of Nifty future trading in India, Nifty future always traded below the theoretical prices. This distortion of future prices also spills over to option pricing and increase difference between actual price of Nifty options and the prices calculated using the famous Black-Scholes formula. Fisher Black tried to address the negative cost of carry effect by using forward prices in the option pricing model instead of spot prices. Black’s model is found useful for valuing options on physical commodities where discounted value of future price was found to be a better substitute of spot prices as an input to value options. In this study the theoretical prices of Nifty options using both Black Formula and Black-Scholes Formula were compared with actual prices in the market. It was observed that for valuing Nifty Options, Black Formula had given better result compared to Black-Scholes. Keywords : Options Pricing, Cost of carry, Black-Scholes model, Black’s model. GJMBR - B Classification : FOR Code:150507, 150504, JEL Code: G12 , G13, M31 PricingofIndexOptionsUsingBlacksModel Strictly as per the compliance and regulations of: © 2012.
    [Show full text]
  • Negative Rates in Derivatives Pricing. Theory and Practice Agustín Pineda
    Negative Rates in Derivatives Pricing. Theory and Practice Agustín Pineda García Trabajo de investigación 021/017 Master en Banca y Finanzas Cuantitativas Tutores: Dr. Manuel Moreno Fuentes Gregorio Vargas Martínez Universidad Complutense de Madrid Universidad del País Vasco Universidad de Valencia Universidad de Castilla-La Mancha www.finanzascuantitativas.com Negative rates in derivatives pricing. Theory and Practice A MSc Thesis submitted to the Complutense University of Madrid in partial fulfilment of the requirements for the degree Master’s degree in Banking and Quantitative Finance July, 2017 Agust´ın Pineda Garcia† Academic supervisor: Manuel Moreno Fuentes†† Industry supervisor: Gregorio Vargas Mart´ınez‡‡ †[email protected] ††Associate Professor at University of Castilla-La Mancha ‡‡Market Risk Manager at EY Acknowledgments To my supervisors, Gregorio and Manuel, for their constant guidance and support. Your selfless help has been one of the main pillars of this project. To Alvaro,´ Alberto and Samu, who needed between 5 to 7 minutes to find and down- load those non-standard volatilities I had previously been searching for too many days. You are stars. To my friends, for su↵ering my bad mood when things just would not work. Wherever I am, you are always with me. Alba, Tamara, Fran, Miguel, Rober, Rub´en,Carlos, Joan, Ferran:Ideservenoneofyou,sothankyouall. To Eli, for an unforgettable journey full of laughter and companionship. Late-night discussions about quantile regression, friends, Archimedean copulae, life, martingale rep- resentation theorem and less important topics made my day. Everyday. To Dani, for assuming the role of being the best friend one could only imagine. You played it nicely, as every time you are on the stage.
    [Show full text]
  • Numerical Valuation of European and American Options Under Kou's
    Numerical Valuation of European and American Options under Kou’s Jump-Diffusion Model∗ Jari Toivanen† Abstract Numerical methods are developed for pricing European and American op- tions under Kou’s jump-diffusion model which assumes the price of the un- derlying asset to behave like a geometrical Brownian motion with a drift and jumps whose size is log-double-exponentially distributed. The price of a Eu- ropean option is given by a partial integro-differential equation (PIDE) while American options lead to a linear complementarity problem (LCP) with the same operator. Spatial differential operators are discretized using finite differ- ences on nonuniform grids and time stepping is performed using the implicit Rannacher scheme. For the evaluation of the integral term easy to implement recursion formulas are derived which have optimal computational cost. When pricing European options the resulting dense linear systems are solved using a stationary iteration. For American options two ways to solve the LCPs are de- scribed: an operator slitting method and a penalty method. Numerical experi- ments confirm that the developed methods are very efficient as fairly accurate option prices can be computed in a few milliseconds on a PC. Keywords: option pricing, jump-diffusion model, partial integro-differential equa- tion, linear complementarity problem, finite difference method, operator splitting method, penalty method 1 Introduction The amount of financial option trading has grown to enormous scale since the pio- neering work by Black and Scholes
    [Show full text]
  • The Valuation of Volatility Options
    99s-43 The Valuation of Volatility Options Jérôme Detemple, Carlton Osakwe Série Scientifique Scientific Series Montréal Décembre 1999 CIRANO Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations- membres, d=une subvention d=infrastructure du ministère de la Recherche, de la Science et de la Technologie, de même que des subventions et mandats obtenus par ses équipes de recherche. CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research activities are funded through fees paid by member organizations, an infrastructure grant from the Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its research teams. Les organisations-partenaires / The Partner Organizations $École des Hautes Études Commerciales $École Polytechnique $Université Concordia $Université de Montréal $Université du Québec à Montréal $Université Laval $Université McGill $MEQ $MRST $Alcan Aluminium Ltée $Banque Nationale du Canada $Banque Royale du Canada $Bell Québec $Développement des ressources humaines Canada (DRHC) $Egis $Fédération des caisses populaires Desjardins de Montréal et de l=Ouest-du-Québec $Hydro-Québec $Imasco $Industrie Canada $Microcell Labs inc. $Raymond Chabot Grant Thornton $Téléglobe Canada $Ville de Montréal © 1999 Jérôme Detemple et Carlton Osakwe. Tous droits réservés. All rights reserved. Reproduction partielle permise avec citation du document source, incluant la notice ©. Short sections may be quoted without explicit permission, provided that full credit, including © notice, is given to the source. Ce document est publié dans l=intention de rendre accessibles les résultats préliminaires de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions.
    [Show full text]
  • What Drives Index Options Exposures?* Timothy Johnson1, Mo Liang2, and Yun Liu1
    Review of Finance, 2016, 1–33 doi: 10.1093/rof/rfw061 What Drives Index Options Exposures?* Timothy Johnson1, Mo Liang2, and Yun Liu1 1University of Illinois at Urbana-Champaign and 2School of Finance, Renmin University of China Abstract 5 This paper documents the history of aggregate positions in US index options and in- vestigates the driving factors behind use of this class of derivatives. We construct several measures of the magnitude of the market and characterize their level, trend, and covariates. Measured in terms of volatility exposure, the market is economically small, but it embeds a significant latent exposure to large price changes. Out-of-the- 10 money puts are the dominant component of open positions. Variation in options use is well described by a stochastic trend driven by equity market activity and a sig- nificant negative response to increases in risk. Using a rich collection of uncertainty proxies, we distinguish distinct responses to exogenous macroeconomic risk, risk aversion, differences of opinion, and disaster risk. The results are consistent with 15 the view that the primary function of index options is the transfer of unspanned crash risk. JEL classification: G12, N22 Keywords: Index options, Quantities, Derivatives risk 20 1. Introduction Options on the market portfolio play a key role in capturing investor perception of sys- tematic risk. As such, these instruments are the object of extensive study by both aca- demics and practitioners. An enormous literature is concerned with modeling the prices and returns of these options and analyzing their implications for aggregate risk, prefer- 25 ences, and beliefs. Yet, perhaps surprisingly, almost no literature has investigated basic facts about quantities in this market.
    [Show full text]
  • Derivative Securities
    2. DERIVATIVE SECURITIES Objectives: After reading this chapter, you will 1. Understand the reason for trading options. 2. Know the basic terminology of options. 2.1 Derivative Securities A derivative security is a financial instrument whose value depends upon the value of another asset. The main types of derivatives are futures, forwards, options, and swaps. An example of a derivative security is a convertible bond. Such a bond, at the discretion of the bondholder, may be converted into a fixed number of shares of the stock of the issuing corporation. The value of a convertible bond depends upon the value of the underlying stock, and thus, it is a derivative security. An investor would like to buy such a bond because he can make money if the stock market rises. The stock price, and hence the bond value, will rise. If the stock market falls, he can still make money by earning interest on the convertible bond. Another derivative security is a forward contract. Suppose you have decided to buy an ounce of gold for investment purposes. The price of gold for immediate delivery is, say, $345 an ounce. You would like to hold this gold for a year and then sell it at the prevailing rates. One possibility is to pay $345 to a seller and get immediate physical possession of the gold, hold it for a year, and then sell it. If the price of gold a year from now is $370 an ounce, you have clearly made a profit of $25. That is not the only way to invest in gold.
    [Show full text]
  • Derivatives: a Twenty-First Century Understanding Timothy E
    Loyola University Chicago Law Journal Volume 43 Article 3 Issue 1 Fall 2011 2011 Derivatives: A Twenty-First Century Understanding Timothy E. Lynch University of Missouri-Kansas City School of Law Follow this and additional works at: http://lawecommons.luc.edu/luclj Part of the Banking and Finance Law Commons Recommended Citation Timothy E. Lynch, Derivatives: A Twenty-First Century Understanding, 43 Loy. U. Chi. L. J. 1 (2011). Available at: http://lawecommons.luc.edu/luclj/vol43/iss1/3 This Article is brought to you for free and open access by LAW eCommons. It has been accepted for inclusion in Loyola University Chicago Law Journal by an authorized administrator of LAW eCommons. For more information, please contact [email protected]. Derivatives: A Twenty-First Century Understanding Timothy E. Lynch* Derivatives are commonly defined as some variationof the following: financial instruments whose value is derivedfrom the performance of a secondary source such as an underlying bond, commodity, or index. This definition is both over-inclusive and under-inclusive. Thus, not surprisingly, even many policy makers, regulators, and legal analysts misunderstand them. It is important for interested parties such as policy makers to understand derivatives because the types and uses of derivatives have exploded in the last few decades and because these financial instruments can provide both social benefits and cause social harms. This Article presents a framework for understanding modern derivatives by identifying the characteristicsthat all derivatives share. All derivatives are contracts between two counterparties in which the payoffs to andfrom each counterparty depend on the outcome of one or more extrinsic, future, uncertain event or metric and in which each counterparty expects (or takes) such outcome to be opposite to that expected (or taken) by the other counterparty.
    [Show full text]