<<

PETROLEUM REPORT SERIES PR4878

Title Biostratigraphy, Sr isotope chronology and chronostratigraphy of the Late – earliest Miocene Group, Basin,

Operator

Author Peter J.J. Kamp, Anand R.P. Tripathi, Campbell S. Nelson and Austin J.W. Hendy

Date 2014

Summary This report reviews and synthesises the biostratigraphy of the Te Kuiti Group based on existing sample data archived in the Fossil Record Electronic Database (FRED). Based on these faunal and floral data, New Zealand biostratigraphic stages for the Late Eocene to Early Miocene are assigned to the formations and members within the group. Analytical strontium (Sr) data and resulting numerical ages are reported here for 26 new macrofossil samples from the Te Kuiti Group, but they do not improve the accuracy of the biostratigraphy and the age information that can be derived from it. The identification of unconformity-bound sequences, the boundaries of which align with the formation contacts within the group, provide an important set of time planes within the group. The integration of the biostratigraphy and sequence stratigraphy produces a robust chronostratigraphy for the Te Kuiti Group.

This report has been compiled from material submitted to the New Zealand Government under legislation or voluntarily by exploration companies. An acknowledgement of this work in the following bibliographic format would be appreciated:

Kamp, P.J.J., Tripathi A.R.P., Nelson, C.S and Hendy, A.J.W. 2014: Biostratigraphy, Sr isotope chronology and chronostratigraphy of the Late Eocene – earliest Miocene Te Kuiti Group, Wai- kato – King Country Basin, New Zealand. Ministry of Business, Innovation and Employment, New Zealand, unpublished Petroleum Report PR4878, 31 p.

Contents

Introduction ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 1

Constraints on determination of Te Kuiti Group biostratigraphy ��������������������������������������������������������������������� 2

New Zealand Late Eocene--Early Miocene biostratigraphic stages ��������������������������������������� 4

Assignment of biostratigraphic stages to Te Kuiti Group formations and members ��������������������� 8

Kaiatan Stage (Ak) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 8 Runangan Stage (Ar) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 8 Whaingaroan Stage (Lwh) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 8 Lower Whaingaroan (lower Lwh) ����������������������������������������������������������������������������������������������������������������������������������������������������������������� 9 Upper Whaingaroan (upper Lwh) ������������������������������������������������������������������������������������������������������������������������������������������������������������� 11 Duntroonian Stage (Ld) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 13 Waitakian Stage (Lw) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 14 Discussion ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 15

Comment on assignment of biostratigraphic stages to Te Kuiti Group formations and members ������������������� 15 Comment on the age of the Whaingaroan Stage at Estuary, Raglan/Whaingaroa Harbour, versus the age of Whaingaroa Formation south of Raglan ���������������������������������������������������������������������������������������������������� 16 Strontium isotope dating results ��������������������������������������������������������������������������������������������������������������������������������������������������������� 17

Strontium (87Sr/86Sr) isotope-derived numerical ages for the Te Kuiti Group �������������������������������������������������������������� 17 Methods ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 18 Analytical results ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 18 Stable oxygen and carbon isotope analysis ����������������������������������������������������������������������������������������������������������������������������������������� 19 Stable oxygen and carbon isotope results �������������������������������������������������������������������������������������������������������������������������������������������� 19 Sr dating results for formations ������������������������������������������������������������������������������������������������������������������������������������������������������������������ 19 Mangakotuku Formation ������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 19 Formation ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 20 Whaingaroa Formation ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 20 Aotea Formation ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 20 Orahiri Formation, and Te Akatea Formation ���������������������������������������������������������������������������� 21 Te Hara �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 21 Discussion of Sr dating results �������������������������������������������������������������������������������������������������������������������������������������������������������������������� 21 Chronostratigraphy for the Te Kuiti Group ���������������������������������������������������������������������������������������������������������������������������� 21

Waikato Coal Measures and Mangakotuku Formation: TK1 ��������������������������������������������������������������������������������������������������� 22 Glen Massey Formation: TK2 ���������������������������������������������������������������������������������������������������������������������������������������������������������������������� 22 Whaingaroa Formation: TK3 ���������������������������������������������������������������������������������������������������������������������������������������������������������������������� 22 Aotea Formation: TK4 ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 22 Orahiri Formation and Te Akatea Formation: TK5 ����������������������������������������������������������������������������������������������������������������������� 22 Otorohanga Limestone and Te Akatea Formation: TK6 ������������������������������������������������������������������������������������������������������������� 23 Discussion ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 23 Summary ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 24

Acknowledgements ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 25

References �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 25

i List of Figures

Fig. 1: Map of central-western showing the distribution of the Te Kuiti Group and other units. Note the lo- cation of key stratigraphic columns. �������������������������������������������������������������������������������������������������������������������������������������������������������������� 1

Fig. 2: A new chronostratigraphic scheme for the Te Kuiti Group and the transition to the Waitemata and Groups, Note the occurrence of six unconformity-bound sequences (TK 1 – TK6). ������������������������������������������������������������������ 3

Fig. 3: Late Eocene to Early Miocene New Zealand Series and Stages correlated with the Global Geochronological Scale (Berggren et al. 1995). The boundary-defining event for each stage is shown and the boundary stratotype section and point (SSP), or a reference section in brackets, are indicated. Formal SSPs are indicated by solid triangles and informal SSPs by open triangles. From Cooper et al. (2004). ��������������������������������������������������������������������������������������������������������������� 4

Fig. 4: Stratigraphic ranges of selected biostratigraphically useful planktic (a) and benthic (b) foraminifera. From Cooper et al. (2004). ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 5

Fig. 5: (following pages) Biostratigraphic correlations for the Te Kuiti Group, and lowermost parts of the Mahoenui and Waitemata Groups in the field area. Formations and members are rescaled to show the distribution of time with- in them based on assignment of faunal and floral sample data (FRED sample numbers) to the New Zealand stages within the Late Eocene to Late Oligocene. The biostratigraphically most important taxa only are shown. The po- sition of the samples against the composite stratigraphic columns is approximate as most are not serial samples and rather have been correlated onto the composite columns from diverse locations in their vicinity. ������������������������������� 5

Fig. 6: Calibration curve relating 87Sr/86Sr isotope ratio in marine fossil shells to numerical age for the Late Eocene to Early Miocene (after Oslick et al. 1994). �������������������������������������������������������������������������������������������������������������������������������������������������� 17

Fig. 7: Plot of 87Sr/86Sr isotope age versus stratigraphic position of macrofossil samples from within the Te Kuiti Group and basal units of the Waitemata Group. �������������������������������������������������������������������������������������������������������������������������������������������������� 18

Fig. 8: Strontium (87Sr/86Sr) isotope ages of macrofossil samples from various individual Te Kuiti Group and Waitemata Group formations plotted against the New Zealand biostratigraphic stages assigned to them (between dashed lines). See text for discussion. ����������������������������������������������������������������������������������������������������������������������������������������������������������������������� 19

Fig. 9: Cross-plot of stable oxygen isotope versus carbon isotope values (%0) for macrofossil samples from the Te Kuiti Group and basal units of the Waitemata Group for which Sr isotope ratios were also determined. Dashed line separates the parts of the isotope field regarded as not having undergone post-depositional alteration (majority of data points) versus likely post-depositional re-equilibration of the isotope systems, probably during diagenesis. ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 20

Fig. 10: Two biostratigraphic models for the Te Kuiti Group, one by White & Waterhouse (1993) and the other proposed here. ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 24

Appendix I : δ18O and δ13C isotope data and 87Sr/86Sr isotope ratio derived ages for macrofossil samples from the Te Kuiti Group and basal units of the Waitemata Group. ������������������������������������������������������������������������������������������������������������������������������������ 28

ii Introduction Waikato – King Country Basin east of northern Taranaki Basin (Fig. 1). This succession marks The Te Kuiti Group is a Late Eocene to earliest regional marine inundation about the same time Miocene mixed siliciclastic-carbonate fluvial similar successions accumulated in many other (including coal measures) to shelf to upper parts of New Zealand (Northland, Westland, bathyal succession that accumulated in the 174°40'0"E Canterbury, Southland). This report reviews the

175°0'0"E 37°20'0"S DH-9053

DH-8064 Hunua Ranges

DH-8374 1

Port Waikato

PW-5 PW-6 PW-1 Wairamarama

PW-1A P PW-1B o Matakitak r i Rd t PW-2 PW-7

Waikawau Beach W a Glen Murray i k PW-8 a PW-11 to

- W DH-8436 DH-8171 a Kaawa Beach i PW-4 k Rd a ell r thw

PW-3 e Bo DH-8394 t

u

R

PW-12 d Rd DH-8082 DH-7271 y lle a ing V Hether ton

u R ret d ika Wa PW-10 PW-13 DH-8048 PW-9 HUNTLY

TA-2 TA-1 Waikorea i Valle TA-6 Glen Afton Valley Rd a y R im d a Pukemiro TA-16 TA-3 W Waimai Stream TA-5 Dunphail 37°40'0"S Bluffs TA-4 TA-8 Te Akatea d TA-17 TA-3a R

o r TA-9 a TA-18 TA-7 g NGARUAWAHIA n i

T a Gibsons Beach e Glen Te Akau

A W k Massey a TA-10 d u R

TA-11 C o r 1 o WAIKATO a a g Carters Beach s n t TA-13 i

R a d S19 W Tauterei Stream mouth - BASIN TA-12 Rd u giti k Te Hara Point n U a Legend e 26 M Te Kotuku CreekT Rothery Rd TA-19 Waingaroa Landing

TARANKI TA-14 Waitetuna Estuary Alexandra Raglan Harbour TA-20 23 HAMILTON BASIN Patikirau Bay RAGLAN TA-15 Volcanic Group Okete Bay 23 Neogene strata 1 Ak-6 Karamu lat P eau Ak-15 3 Castle Craig Ak-3 Subgroup S18 Te Pahu Ak-2 CAMBRIDGE Ak-1 Landing Ak-4

Group Makaka Te Kuiti Te Ruaweke Ak-7 Okoko Subgroup S17 Point S16 Orotangi d Mt Pirongia Cliffs R n Waiteika Station Taranaki Point la g PIRONGIA Ak-5 a Ak-8 38°S Aotea R Murihiku Terrane Harbour TE AWAMUTU Okapu Ak-8a DH-8501 DH-8691 KIHIKIHI Kawhia Rd Kawhia Basement Waipapa Terrane S15 DH-8672 Kawhia S4 Harbour S6 S2Awaroa S10 31 Te Rauamoa S14 Kawhia Rd Ak11 31 S5 3 S12 C4 Kihi Rd 94-55 Rakanui S13 Tihiroa S8 S7 Hautapu Hill Fault S3 S9 Kaimango Rd C25 S11 Honikiwi Rd DH-8587 Whanuapo C-8 31 Hill Honikiwi S1 Ak-3 Stratigraphic column Ak-14 C-24 C14 Te Raumauku d name & location R y C28 lle OTOROHANGA C17 Va d o R m Drill hole name & ito e Wa DH-8691 ho location Ma C32

Te Anga Kokakoroa Rd T e C-40 3 Rd Ang C47 a Rd Kai ri m C-50 DH-8508 u DH-6796 Marokopa R

d C-51 DH-8570 C-121 C-119 Oparure 94-26 Townships C-56 Ngapaenga TE KUITI BH-502 Mangaohae N C-125 g a C61 d 94-24 p RdC-68 a C-113 R Beros C-78 enga C-117 Localities s r Quarry 38°20'0"S Whakarotorua Stm Mairoa e p o 3 94-35 ro C-130 C-94 C-97 T 1 Highways 94-39 Mangaohae Stm C-85 tm S Mangaotaki i Secondary roads ikih ih

K

C-145 30

i

Lakes k

a

t 94-64 o 4 a PIOPIO / streams Puketiti g C-154 n Station a M 94-61 C-166 Mangapehi C-184 MangaotakiC-174 3 Bridge C-185A

Herangi RangeC-186 Mahoenui Fig. 1: Map of central-western North Manganui Fault River C-191 Awakino Tunnel Island showing the distribution of the C-193 Awakino Awakino Bexley KING COUNTRY Te Kuiti Group and other units. Note Gorge Station BASIN the location of key stratigraphic col- C-194 umns. 3 0 10 20 30 40 50

38°40'0"S 4 km

1 biostratigraphy of the Te Kuiti Group based mainly Constraints on determination of Te upon previously reported microfossil data, and Kuiti Group biostratigraphy presents and interprets new geochronological data (strontium (Sr) ages) for macrofossils The lithostratigraphy of the Te Kuiti Group be- collected from the group. The Te Kuiti Group tween and Awakino has recently succession has been extensively sampled for been rationalised and reported in Tripathi et al. its floral and faunal content for more than 100 (2008). This has resulted in the definition and years. The resulting microfossil and macrofossil correlation of seven formations, each containing collections are held at the New Zealand Institute mulitple members. They have been grouped into of Geological and Nuclear Sciences, as well as in six (TK1 -TK6) unconformity bound sequences the Geology Department at University, (Fig 2). data for all of them accessible via the New Zealand Fossil Record Electronic Database (FRED). No single fossil group is ubiquitous within all of the stratigraphic units within the group. In non- The biostratigraphy of the Te Kuiti Group was marine sequences, such as the Waikato Coal developed principally from Kear & Schofield’s Measures, spores and pollens are the most useful (1959) fossil collections from formations and fossil groups. In the overlying marginal marine members of the group cropping out between to shallow marine Mangakotuku Formation, a Papakura (southern Auckland) and combination of spores and pollen, ostracods, (King Country). The formations within the group molluscs, and occasionally foraminifera were assigned New Zealand biostratigraphic have proved to be useful. As the water depth stages based mainly upon N. Hornibrook’s increased upward in the group to shelfal depths, foraminiferal identifications (Hornibrook et al. foraminifera, dinoflagellates and calcareous 1989). Significant gaps in fossil collections from nannofossils are the most widely used fossil the Te Akau and Waitomo areas were filled by groups for stage determination, especially in Kear (1963) and Nelson (1978). Waterhouse the calcareous sequences of the Te Kuiti Group. & White (1994) made important additional Although molluscs are common in the group, fossil collections in the Raglan-Kawhia area and they are mainly fragmental and are of lower reported their interpretation. utility than most microfossils due to: (i) the paucity of age diagnostic macrofauna; (ii) their Despite the advances made in prior investigations, common aragonitic composition, which has led understanding about the biostratigraphy of to dissolution; and (iii) the physical limitation the Te Kuiti Group has remained problematic of working with fragmented taxa cemented in because of a combination of few biostratigraphic rocks and the difficulty of separating macrofossil events during the Oligocene and the difficulty of (and microfossil) specimens for identification. separating foraminifera from tightly cemented Consequently, the majority of the useful limestone and barren sandstone facies. Our biostratigraphic datums within the group are interest in reviewing the biostratigraphy for derived from planktic foraminiferal bio-events, the Te Kuiti Group and obtaining numerical Sr the samples having been sourced from the more ages from macrofossils follows the development muddy lithologies. Molluscs are however useful of a revised lithostratigraphic framework for for the assignment of biostratigraphic age in the the group (Tripathi et al. 2008) and our wish to Orahiri Formation and Otorohanga Limestone. develop a robust chronostratigraphic template to These limestone formations contain large calcite help interpret the paleogeographic development bivalves (oysters, pectinids), brachiopods and the of the region (Kamp et al. 2014). No new epitoniid gastropod Cirsotrema, all reasonably microfossil determinations have been made well preserved. Foraminiferal identifications here, but a key element of the review has been are hard to make within these tightly cemented reconstruction of the correct stratigraphic unit, limestone units as they contain few larger in terms of our revised lithostratigraphy, from foraminifera, and planktic species are usually rare which the fossil samples were originally collected. and difficult to extract (Hornibrook et .al 1989).

2 TK 6 TK 5 TK 4 TK 3 TK 2 TK 1 SEQ TKG - SOUTH Awakino Lst Awakino Dunphail Zst Ngapaenga Zst Mangaotaki Lst Elgood Lst (truncation) Erosional unconformity Erosional Ahirau Sst Ahirau Taumatamaire Mst Taumatamaire Lst Anga Te Piopio Lst Piopio Pakeho Lst Pakeho Awaroa Lst Awaroa Waitanguru Lst Waitanguru Hauturu Sst Waitomo Sst Waitomo Kihi Sst hiatus t Depositional No outcrops angiti Ss angiti M Elgood Lst Raglan Lst Patikirau Zst Patikirau Sst Waikaretu st Te Akau Lst Te Te Hara Sst Hara Te mai L Wai Glen Afton Clst Glen Afton Carter Zst Pukemiro Sst Pukemiro Sst Waikawau hiatus Zst Rotowaro Dunphail Zst Ahirau Sst Ahirau Kotuku Zst Depositional

NORTH

Waikorea Sst

Fm Otorohanga Limestone Otorohanga Fm Orahiri

aroa Fm aroa Measures

kotuku

Aotea Fm Aotea Fm Massey Glen

Whaing- Waikato Coal Waikato Te Akatea Fm Akatea Te

Manga-

GROUP

/MAHOENUI

P CASTLE CRAIG SUBGROU CRAIG CASTLE P OKOKO SUBGROU OKOKO IGRAPHY WAITEMATA MESOZOIC BASEMENT LITHOSTRAT- Lw Po Ld Ak 21.7 25.2 Ar 27.3 34.3 36.0 37.0 / AGES Lower Lwh Upper NZ STAGE A new chronostratigraphic scheme for the Te Kuiti Group and the transition to the Waitemata and Mahoenui Groups, Note the occurrence of six uncon the occurrence of Note Groups, Mahoenui and the Waitemata to the transition and Group Kuiti the Te for scheme A new chronostratigraphic

Ma 22 24 26 28 30 32 34 36 Aquitanian Chattian Rupelian Priabonian

OLIGOCENE EOCENE LATE EARLY MIOCENE EARLY 2: Fig. (TK 1 – TK6) . sequences formity-bound AGE INTNL

3 Planktic foraminifera are extremely impor- Kuiti Group, except for the Whaingaroan-Dun- tant taxa for the biostratigraphy of the Te Kuiti troonian boundary (Fig. 3), have been laid out Group, especially for samples derived from cal- and described by Cooper et al. (2004), to which careous siltstone facies. Benthic foraminifera are readers are referred for details. The fossil samples taxonomically and morphologically more diverse used here for the assignment of biostratigraphic than planktic species, but are facies dependent. stages to Te Kuiti Group formations and mem- Benthic foraminifera have limited use in biostra- bers are depicted on the composite stratigraphic tigraphy because of the occurrence of fewer bio- columns in Fig. 5. Because of our revisions in events compared with planktic bio-events that the correlations and nomenclature for lithostrati- mark the (lower and upper) Whaingaroan Stage graphic units following the collection of all of the and Duntroonian Stage boundaries (Cooper et fossil samples and their processing onto the fossil al. 2004). record database, a critical part of this review has been establishing the correct stratigraphic units New Zealand Late Eocene-Oligo- for the samples (collected by many other people) cene-Early Miocene biostratigraphic and the plotting of them on the stratigraphic col- stages umns in Fig. 5. Although we are confident that the fossil samples are associated with the correct The basis for defining the New Zealand biostrati- units, there is some uncertainty in the height we graphic stages within the Late Eocene to Early have plotted them within those members in rep- Miocene, when the Te Kuiti Group accumulated, resentative columns in Fig. 5. This leads to a lev- is summarised in Figs 3 & 4. Type and reference el of uncertainty in the assignment of biostrati- sections for these stages, all of them outside the Te graphic stage to some members.

New Zealand Global Geochronological Ma Boundary events, SSPs & Scale Series Stages Ma reference sections Pareora Otaian Po Early 21.7+0.2 LO Ethrenbergina marwicki group, Aquitanian Bluecliffs, Otaio River, south Miocene Waitakian Canterbury 23.8+<0.1 Lw 25 25.2+0.1 LO Globoquadrina dehiscens (Otiake, Waitaki Valley) Chatian Duntroonian

Late Ld 27.3+0.1 LO Notorotalia spinosa Landon (Waitetuna Estuary, Raglan Harbour) 28.5+0.1 Oligocene upper

30 30.0 Rupelian Whaingaroan

Early Lwh lower 33.7+0.1 34.3+0.2 HO Globigraptis index, coastal 35 cliffs, Point Elizabeth, Westland Priabonian Runangan Ar

Late Late 36.0+0.2 LO Bolivina pontis, coastal cliffs Arnold Kaiatan Ak Point Elizabeth, Westland Eocene 37.0+0.1 37.0+0.2 Bortonian Ab LO Chiasmolithus oamaruensis

Fig. 3: Late Eocene to Early Miocene New Zealand Series and Stages correlated with the Global Geochronological Scale (Berg- gren et al. 1995). The boundary-defining event for each stage is shown and the boundary stratotype section and point (SSP), or a reference section in brackets, are indicated. Formal SSPs are indicated by solid triangles and informal SSPs by open triangles. From Cooper et al. (2004).

4 (a)

GGS NZ Stages Planktic foraminiferal species ranges Acquit MIOCENE 22 EARL Globigerina brazieri anian Globigerina connect

23 Y Waitakian 24 Globigerina woodi Cat Globigerina ciperoensis Globigerina juvenilis ap

25 Chattian sydrax dissimilis Globoquadrina dehiscens LA Globorot 26 a TE

Duntroonian Globigerina euapertura Globorot Globorot 27 Chiloguembelina cubensis aloides test S Globoquadrina trip treptochilus pristinus OLIGOCENE

upper T enuitella munda

28 Paragloborot aloides suteri Ant alia Kugleri arcticella zeaocenica

29 arugosa Chiloguembilitria triseriat Globigerinella obesa Rupelian

30 alia nana artit EARL Whaingaroan Globigerina lebiacrassat Globorot a

31 Globigerina ampliapertura Y Chiloguembelina otot Subbotina angiporoides minim

32 alia opim a Subbotina angiporoides T urborot T T Globigerina brevis lower T est runcorot a Hantkenina alabamensis enuitella gemma 33 Pseudohastigerina micra Praetenuitella insolit T acarinat Zeauvigrina zelandica est T Hantkenina australis Subbotina linapert alia cerroazulensis Globigerap urborot acarinat

34 Acarinina primitiva Zeauvigerina p aloides collactea Priabonian a a inconspicua LA EOCENE ara alia centralis

35 TE Runangan a aculeat sis index 36 a arri a a Kaiatan a 37

(b)

NZ Stages Benthic foraminiferal species ranges MIO Cibicides karreriformis V Waitakian Rectobolivina maoriella ulvulina pennatula

Ro Notorot

ta

liatina sulgicera V aginulinop Rectuvigerina rerensis Rectuvigerina ongleyi Lenticulina mamiligera Uvigerina picki alia st Ehrenbergina cf. bicornis V Semivulvilinacapit Sphaeroidina bulloides aginulipop Gyroidinoides allani achei

Duntroonian Lenticulina t Bulimina miolaevis Halkyardia bartrumi Uvigerina maynei Haeuslerella textilariformis Bulimina forticost sis rect Rectuvigerina postprandia Siphonina australis Semivulvilina wait Panulina catilla Buliminoides chattonensis Notorot Globocassidulina cuneat Bueningia creeki Zeaflorilus st Rectuvigerina striatissima sis cristellat OLIGOCENE V a aginulinop aettowat at upper alia spinosa Reussella Finlayi Cibicides thiara a Cibicides maculatus a Bolivina pontis a achei V a V eginulinop sis interrupt aginulinop Whaingaroan akia Uvigerina bortot Cibicides p Anomalinoides semiteres a sis hochstetteri sis spinulosus a T V app ulvulina bortonica Anendosaria antipoda Sphaeroidina variabilis

lower anina olsoni Rectuvigerina prisca arki Gaudryina proreussi ara EOCENE

Runangan tholus Cibicides

Kaiatan

Fig. 4: Stratigraphic ranges of selected biostratigraphically useful planktic (a) and benthic (b) foraminifera. From Cooper et al. (2004).

Fig. 5: (following pages) Biostratigraphic correlations for the Te Kuiti Group, and lowermost parts of the Mahoenui and Waitemata Groups in the field area. Formations and members are rescaled to show the distribution of time within them based on assignment of faunal and floral sample data (FRED sample numbers) to the New Zealand stages within the Late Eocene to Late Oligocene. The biostratigraphically most important taxa only are shown. The position of the samples against the composite stratigraphic columns is approximate as most are not serial samples and rather have been correlated onto the composite columns from diverse locations in their vicinity.

5 N Port Waikato - Mangiti Road- Waikaretu Valley Raglan Harbour e.g. TA-11, TA-12

AIAN e.g. PW-1, PW-9 R14/f6812-6813 O T (Po) 21.7 R13/f6579-6580

Globigerina semivera P P P P G . woodi Tu Th R14/f6570-6571, f6573

G . woodi Wt R13/f6576 R14/f6568 R14/f6519 Bulimina pupula

Elphidium subrotatum G G Gyroidinoides allani Gyroidinoides allani Bulimia pupula Elphidium ornatissimum Elphidium subrotatum R13/f6551 R13/f6534, f6554 Globigerina connecta J J J J Rectuvigerina rerensis Spiroculina novozealandica Cibicides novozelandica Glen Massey- Notorotalia spinosa Rotowaro e.g. TA-16, TA-17

AKIAN Ct

AI T (Lw) W Ct Ct Globigerina brazieri R14/f6739-6743 R15/f6551

Globoquadrina dehiscens R14/f6589 R14/f6587 Globoquadrina dehiscens R14/f6586 R15/f6550

Globoquadrina dehiscens R14/f6591 Haeuslerella hectori Marginlinopsis allani Anomalinoides fasciatus R13/f8558 R14/f6590 25.2 Cibicides thiara Rg P P P R14/f6559 Gyroidinoides allani ? ? G G G

Pk *Pk Pk G J G R14/f94 G J S14/f7539 ? DUNTROONIAN (Ld) R14/f93 G J G R14/f92

27.3 Notorotalia spinosa R13/f8557 S14/7525 -f7525A ? Notorotalia cf. spinosa R14/f60-f61 Orotangi Cliff- Notorotalia cf. spinosa R14/f50-f55 Rotaliatina sulcigera e.g. AK-5, AK-8 aginulinopsis hochstettari Notorotalia stachei V Haeuslerella textilariformis R14/f6546-6549 Upper Wm Hu Mi Mi

Wk Kt Kt R14/f8500 R14/f44, f47, f48, f50 S14/ Te Pahu Kt R13/8539 f7553 R14/6545 - Karamu R14/6526 e.g AK-6, AK-15 aginulinopsis interrupta Globigerina euapertura Globigerina euapertura Globigerina euapertura S14/ R14/6524-6525 ? Rotaliatina sulcigera V Rectuvigerina striatissima f7552 Semivulvulina capitata 30.0 J P J P R13/8511 J J G J S15/f6509 R13/8588 Ah

S14/f7532 R14/f6544 Ah R15/8703-8705 Ah Ah Ah Notorotalia stachei S15/f6508

WHAINGAROAN (Lwh) R15/f86-90 aginulinopsis interrupta aginulinopsis cristellata Melonis maorica V Notorotalia stachei V aginulinopsis cristellata

Cibicides thiara R15/f8550-8651 Rotaliatina sulcigera Rectuvigerina striatissima V Cibicides thiara Euuvigerina maynei Rotaliatina sulcigera Globigerina angiporoides Gaudryina reussi Dn

Lower Globigerina angiporoides aginulinopsis cristellata Globigerina angiporoides

Globigerina angiporoides Dn V S15/f6507 Dn Dn Globigerina angiporoides El S14/f7551 Dn R15/f8503 El Bolivina pontis G G R15/f8501 Karreriella novozealandica Melonis dorreeni Euuvigerina maynei El G El El Arenodosaria antipoda

Rotaliatina sulgicera -8502 S15/f6505 Semivulvulina capitata Ws R13/f8512 Rw S14/f7557-7559 Ws R14/f6541 Ws S15/f6527 MB -6542 G G Pm S13/f9599 MB G G MB Cibicides vortex Arenodosaria antipoda Criborotalia tainuia S14/f7671 Criborotalia okokoensis 34.3 Cancris lateralis Criborotalia keari Ga MB Criborotalia okokoensis auraensis

S14/f574, f632, Stratigraphic abbreviations f634, f639, Ahirau Sandstone f646-650, Glen Massey Ah f653-655, f661, Dn Dunphail Siltstone f663-664 Fm Zone EL Elgood Limestone WCM Waikaretu Sandstone RUNANGAN (Ar) Ws Nothofagidites ma t Mangakotuku Rw Rotowaro Siltstone 36.0 Fm Pm Pukemiro Sandstone Ga Glen Afton Claystone AN Waikato Coal Measures

T WCM S14/f7630, f7631, f7633, MB Mesozoic Basement f7658 Haloragacidites harrisii Zone 37.0 KAI A (Ak) MB

6 Okoko - Honikiwi Ngapaenga Te Kuiti-Beros Awakino- Mahoenui - Waitomo Valley - Marokopa Limestone Quarry - Mangaotaki Bridge S e.g. C-32, C-25 e.g. C-50, C-68 e.g. 94-24 e.g. C-166, C-191

TM TM R18/f6808 R16/f8720 R17/f8809 TM S16/f8561 S16/f8500 -f8721 G . woodi R17/f6678 -f8563 S16/f8516-f8518 TM G . woodi R17/f8542

OTC OT

OTB OTC Haeuslerella hectori

Bueningia creeki S16/f8502, f8507, f8514 Rectuvigerina rarensis

ulvulina pennatula OT V OTA Mt Globoquadrina dehiscens Globoquadrina dehiscens

Hautapu Hill- Globoquadrina dehiscens Kawhia Road OTA Ta e.g. C-4, S-13 Rectuvigerina rarensis Cibicides novozealandicus Notorotalia spinosa Wst S16/f6520 Mt Mt Ta S16/f6014-6015 G J G S16/f6521 S15/f8506 G J G Kh G J G S16/f6539-f6542 S16/f6011 Kh Semivulvulina capitata Notorotalia spinosa Semivulvulina waitakia aginulinopsis cristellata V Rectuvigerina striatissima S16/f6536-f6537 R15/f8509-8510 Hu Hu Hu S16/f6525

R16/f7559 Wm Haeuslerella textilariformis Semivulvulina capitata Cibicides maculatus

Ng S 186 ?, S 130 R15/f8533 Ng S 125 ?, S 177 ? S164 ?, S 167 ? Notorotalia stachei Aw Haeuslerella textilariformis R17/f8705 Aw aginulinopsis hochstetteri aginulinopsis interrupta Cibicides thiara V V R15/f8508 Rectuvigerina striatissima Globigerina euapertura R15/f8507 S16/f6524 ? Ah Ah S16/f8522 Ah R16/f8060-8062

R17/f8706 Dn R17/f6681 R16/f8614 R16/8704 R16/8702 Melonis maorica Rotaliatina sulcigera Notorotalia stachei Gyroidinoides allani

Dn aginulinopsis interrupta V Dn R16/f8700 Dn Rotaliatina sulcigera Globigerina angiporoides Globigerina angiporoides Rectuvigerina striatissima R15/f8531-8532 Globigerina angiporoides R16/f8060 R16/f6935 R16/f6077 Globigerina angiporoides R16/9519 R16/f8613 aginulinopsis cristellata aginulinopsis cristellata Cibicides thiara V

Karreriella novozealandica S16/f6018-6019 Karreriella novozealandica El V El El S16/f6607

MB MB MB MB

Wst Waitomo Sandstone Mahoenui Gp TM Taumatamaire Siltstone P Phosphate Orahiri Fm Te Anga Limestone Ta Wt Waikawau Sandstone G Glaucony Mt Mangaotaki Limestone Waitemata Gp Tu Te Akau Limestone J Burrows Pk Patikirau Siltstone Th Te Hara Sandstone Kh Kihi Sandstone Otorohanga OTC Piopio Limestone Reworked fauna Aotea Fm Hu Hauturu Sandstone Waitanguru Limestone Mangiti Sandstone OTB Mi Limestone (OT) OTA Pakeho Limestone Interval missing / Wm Waimai Limestone Carter Siltstone no outcrops Ngapaenga Siltstone Ct Ng Te Akatea Fm Rg Raglan Limestone Prominent erosional Whaingaroa Aw Awaroa Limestone contact Waikorea Sandstone Fm Wk Top eroded Kt Kotuku Siltstone

7 Assignment of biostratigraphic to basal Waikato Coal Measures in the Rotowaro stages to Te Kuiti Group formations Coalfield and in the northeastern part of Hunt- and members ly Coalfield (Edbrooke et al. 1994). Four samples (S14/f7630, f7631, f7633 and f7658) containing In the following section, under subheadings of palynofloras of Arnold (Ab-Ak) age were report- the successive Late Eocene and Oligocene bi- ed by Kear & Schofield (1978) from the Rotowaro ostratigraphic stages, relevant microfossil sam- area (Fig. 5). Although these samples derive from ples are assigned to formations and members, unmeasured sections, the collections are signifi- emphasising the key taxa within samples and the cant as the oldest in the study area. related age (stage) determination. This section is highly descriptive but deserving given the need to Runangan Stage (Ar) extract as much information as possible from ex- isting processed samples. Most of the samples we The lowest occurrence ofBolivina pontis, refer to here (FRED numbers on Fig. 5) carry di- Sphaeroidina bulloides replacing S. variabilis, agnostic biostratigraphic information, but many and the lowest occurrence of Rectuvigerina of the entries in FRED for the Te Kuiti Group do postprandia, replacing R. prisca, are all used not and are not referred to in this report. as primary criteria for identifying the base of the Runangan Stage (Pocknall 1991). B. pontis Kaiatan Stage (Ak) is now routinely adopted for defining the base of this stage (Morgans et al. 2004). The lowest Hornibrook et al. (1989) summarised the fo- occurrence of Reticulofenstra reticulata, an event raminiferal basis for the Kaiatan Stage. The dated at 36.1 Ma (Berggren et al. 1995), is a useful base of the stage is primarily recognised by the planktic proxy for the base of the Runangan. disappearance of Nuttallides truempyi, Bulimi- na subbortonica, and Cibicides tholus. Sphaer- TheNothofagidites matauraensis Assemblage Zone oidina variabilis ranges through the Kaiatan. No in the Waikato region spans the Runangan and the planktic events mark either the base or top of the lower part of the Whaingaroan. This assemblage, Kaiatan. The best defined planktic event is the dominated by Nothofagus, is subdivided into highest occurrence of Acarinina primitiva. No a lower Myrtaceidites Subzone predominantly nannofossil event coincides with the base of the of Runangan age, and an upper Araucariacites stage, although the lowest occurrence of Reticu- australis Subzone of upper Runangan to lower lofenestra bisecta lies near, and above, the base of Whaingaroan age (Pocknall & Mildenhall 1984; the Kaiatian. The lowest occurrence ofIsmolithus Pocknall 1991). These age assignments are based recurvus, an event dated at 36.0 Ma (Berggren et on microfaunal assemblages reported from al. 1995), is extremely useful for correlating the marine strata overlying the coal measures in the upper Kaiatan with the international time scale. Ngaruawahia Subdivision (Hornibrook in Kear & Schofield 1978). Palynoflora characteristic of Most of the rocks of Kaiatan age in the study the Myrtaceidites Subzone have been identified area (i.e. lower parts of the Waikato Coal Meas- in samples from the Drury, Maramarua, Huntly, ures) are inferred to be of non-marine (alluvial and Rotowaro coalfields. to coastal plain) origin (Edbrooke et al. 1994), and any age diagnostic microfossils are uncom- mon. Pocknall (1991) investigated and proposed Whaingaroan Stage (Lwh) the type of vegetation that grew during Waikato The Whaingaroan has a duration of 7 m.y. and Coal Measures accumulation, and its subdivision is informally subdivided into lower and up- into biozones, based on abundance levels of the per divisions (Hornibrook et al. 1989; Morgans major palynomorphs. The lowermost spore and et al. 1996; Cooper et al. 2004). The base of the pollen zone of the Waikato Coal Measures is his Whaingaroan has previously been regarded as Haloragacidites harrisii Zone, which corresponds equivalent to the base of the Oligocene. Recent to the upper part of the Kaiatan (Pocknall 1991). correlations indicate that the base may be about Palynofloras of theH. harrisii Zone are restricted 0.5 to 1.1 m.y. older than the base of the Oligo-

8 cene (Morgans et al. 1996; Nelson et al. 2004). scarcity of planktics makes it difficult to assign Cooper et al. (2004) have the base of the Whain- an age to the Pukemiro Sandstone; however garoan at 34.3 Ma, some 0.6 m.y. older than the the microfauna that are there favour a basal base of the Oligocene. Finlay (1939) proposed Whaingaroan age. Only Criborotalia keari the Whaingaroan Stage for the interval associ- indicates a more precise upper Kaiatan - lower ated with accumulation of the Kotuku Siltstone Whaingaroan age range. Sample S14/f7671, at Raglan Harbour (Whaingaroa Harbour). The reported in Kear & Schofield (1978), was original faunal definition used by Finlay (1939) collected above the top of Glen Afton Claystone and Finlay & Marwick (1940) to define the base near the type Pukemiro locality (Fig. 5), and it of the Whaingaroan Stage has changed and this contains abundant Ammobaculites, suggesting a is currently defined by the highest occurrence Runangan - lowermost Whaingaroan age range. of the planktic foraminifera Globigerapsis index Sample S13/f9599 collected from Pukemiro (Morgans et al. 2004). The highest occurrence Sandstone in DH 1768, about 21 m above the of G. index is given an age of 34.3 Ma (Berggren coal measures, contains Haplophragmoides, et al. 1995). The molluscs within the Whain- Elphidium, and Cancris lateralis, indicating a garoan Stage are of low diversity, dominated by lowermost Whaingaroan age (Fig. 5). calcitic taxa such as oysters and pectinidids, and are of little use for biostratigraphy. Nothofagid- The Rotowaro Siltstone contains plentiful ites matauraensis dominated palynoflora of the foraminifera in places and assemblages are N. matauraensis Assemblage continue into the typically dominated by an abundance of Whaingaroan. The top of this zone is defined by Arenodosaria, Elphidium, Criborotalia keari, the lowest occurrence of Rubipollis oblatus (Mor- C. okokoensis, Asterigerina cyclops, and gans et al. 2004). Hornibrook et al. (1989) pro- Cancris lateralis minima (Hornibrook et al. posed an informal subdivision of the Whainga- 1989), indicating a lowermost Whaingaroan roan into lower and upper divisions. age. Samples S14/f7557-7559 collected from the Dunphail Bluff type locality (TA-17) for Lower Whaingaroan (lower Lwh) Rotowaro Siltstone (Fig. 5), yielded lowermost Whaingaroan age microfauna, however samples The lower Whaingaroan is defined as those beds S14/f7558 and S14/f7559 contain a macrofaunal lacking G. index and containing Subbotina an- assemblage indicating a lowermost Whaingaroan giporoides and Globigerina ampliapertura. This - Duntroonian age range, which seems too substage was established by Jenkins (1966, 1971) young. The abundance ofCriborotalia keari based on the upper part of the Globigerina brevis and C. okokoensis favours an upper Ak - lower zone together with the Globigerina angiporoides Whaingaroan age. Sample S12/f9566 collected Zone, the top of which defines the lower - upper from drill cuttings (DH4996) near Mercer Whaingaroan boundary. Shallow water assem- provides microfauna of no definite age range. blages, lacking planktic foraminifera, are difficult Samples S12/f9554 and S12/f9555 collected from to differentiate from Runangan assemblages. a drill hole in Whangape west of , yielded microfaunas containing Notorotalia In the Huntly Coalfield the Waikato Coal Measures stachei and rare Criborotalia keari, indicating are overlain by members of the Mangakotuku a Whaingaroan age range, but there is a strong Formation (Fig. 2). Glen Afton Claystone contains probability of contamination from the upper the brachiopod Lingula, but no foraminifera parts of the hole, and a lowermost Whaingaroan (Penseler 1930). The upper deeper-water parts age is favoured. of Pukemiro Sandstone contain Cyclammina, Flabellammina, Semivulvulina, Gaudryina, The Waikaretu Sandstone is a variably muddy Arenodosaria, Quinqueloculina, Lenticulina, fine to coarse sandstone usually overlying Polymorphinids, Operculina, Trifarina, Reussella Mesozoic basement. Sample R13/f8512 collected finlayi, Criborotalia keari, Melonis, Amphistegina, from its type locality (TA-9) on Waikaretu Valley Anomalinoides fasciatus, Cibicides vortex and Road (Fig. 5) contains a microfaunal assemblage rare planktics (Hornibrook et al. 1989). The including Cibicides vortex and Criborotalia

9 tainuia of lowermost Whaingaroan age. Samples than that of the underlying Mangakotuku For- R13/8514 and 8515 collected from Waikorea Road mation (Fig. 5). Sample S14/f7532 collected from contain Notorotalia stachei, Rotaliatina sulcigera Ahirau Sandstone exposures along and Vaginulinopsis hochstetteri, suggesting a Road and north of Glen Massey village (Fig. 5), Whaingaroan age. Samples R14/6541-6542 include the microfauna Cibicides pronovozelan- collected from north of Waingaro Landing (Fig. dicus, Karreriella novozealandica, Cibicides thi- 5) contain a microfaunal assemblage including ara, Vaginulinopsis cristellata, Gaudryina reussi, Melonis maorica, Asterigerina cyclops, Elphidium Rotaliatina sulcigera, Notorotalia stachei, Rectu- ingressans, and Cibicides vortex of lowermost vigerina striatissima, Globocassidulina subglobosa Whaingaroan age. Sample S15/6527, reported and Globigerina reticulata, indicating a Whain- in Kear & Schofield (1978) from the lowest garoan age. Sample R13/f8511 collected from exposed parts of Waikaretu Sandstone in the Te Ahirau Sandstone exposed along the Waikare- Pahu Mine (Fig. 5), contains Ammobaculites, tu Valley Road (Fig. 5) contains Cibicides thiara, Haplophragmoides, and Elphidium suggesting a Gaudryina reussi and Rotaliatina sulcigera. An- lowermost Whaingaroan age. Another sample other sample (R13/f8558) collected from Kokon- (S15/f6505) collected about 17 m above the ga East Road (Fig. 5) contains Gaudryina reussi, previous sample contains Arenodosaria antipoda, Rotaliatina sulcigera and Uvigerina maynei, in- Arenodosaria, Operculina, and Criborotalia dicating a Whaingaroan age. Sample R14/f6544 okokoensis, giving a lowermost Whaingaroan collected from Mangiti Road (Fig. 5) includes age. Sample R16/8701 (C-51), collected from fauna common in Glen Massey Formation (e.g., Kairimu Road south of Awamarino, is inferred to Arenodosaria antipoda, Melonis maorica, Vagi- be of Whaingaroan age. nulinopsis cristellata, Gaudryina reussi, Notorota- lia stachei and Gyroidinoides allani), indicating a Foraminifera are difficult to extract from the Whaingaroan age. well-cemented lithology of Glen Massey Forma- tion, however the microfaunal assemblage indi- Samples R15/f8501-8502 collected from the cates deepening from shelfal to upper bathyal “basal facies” of Glen Massey Formation exposed water depths. The common microfauna with- along the Mangaora Stream in Kawhia (Fig. in Glen Massey Formation include Arenodosar- 5), contain Arenodosaria antipoda, Rotaliatina ia antipoda, Gaudryina reussi, Melonis maorica, sulcigera, Notorotalia stachei, Melonis dorreeni, Vaginulinopsis cristellata, Rectuvigerina striatissi- Semivulvulina capitata and the key planktic ma, Uvigerina maynei, Melonis dorreeni, Bolivi- Globigerina angiporoides, indicating a lower na reticulata, Globocassidulina subglobosa, Rotal- Whaingaroan age. Sample R15/f8503 collected iatina sulcigera, Notorotalia stachei (abundant), from the formation farther to the north along the Cibicides pronovozelandicus, Semivulvulina cap- Raglan-Kawhia Road (Fig. 5) contains Melonis itata, Karreriella novozealandica and Cibicides dorreeni and Vaginulinopsis interrupta, with thiara. Planktics are moderately common, espe- an uncertain age. Another set of three samples cially Globigerina angiporoides and G. ampliaper- (R15/f8703-8705) collected from the Glen tura, indicating a lower Whaingaroan age (Horn- Massey Formation exposed along the Raglan- ibrook et al. 1989). Kawhia Road (Fig. 5) contain the middle to outer shelf species Semivulvulina capitata and other inferred mid-Whaingaroan microfauna. The sample (S14/f7551) collected from Dunphail Samples R15/8650 and 8651 collected from Siltstone (3 m above Elgood Limestone) at its Dunphail Siltstone exposed in the lower part type locality of Dunphail Bluffs (Fig. 5), yielded of Orotangi Cliff at Aotea Harbour (Fig. 5) Gaudryina reussi, Notorotalia stachei, Uvigerina contain the planktics Globigerina ampliapertura maynei, Gyroidinoides allani, Bolivina pontis, Ci- (f8650-651) and G. angiporoides, inferred to be bicides thiara, Cancris compressus, Globocassid- of lower Whaingaroan age, whereas samples ulina subglobosa and Globigerina angiporoides, R15/8652 and 8653 contain mid-Whaingaroan suggesting a lower Whaingaroan age and a deep- microfaunas. Another set of five samples (R15/ er water, more open marine depositional setting f86-90) reported by Waterhouse & White

10 (1994) from Glen Massey Formation exposed ple R16/f8702 from Dunphail Siltstone west of at Orotangi cliff (Fig. 5) contain Nodosaria Mairoa (Fig. 5) contains mainly shelfal fauna longiscata, Sigmoilina tenuis, and the deeper (e.g. Notorotalia stachei, Rectuvigerina striatissi- water species Semivulvulina capitata, Karreriella ma) and is inferred to be of Whaingaroan age. novozealandica and Globigerina angiporoides, Sample R16/f8704 collected from Mangaohae indicating a lower Whaingaroan age. Samples Stream exposure (C-56, Fig. 5) contains Semi- R15/f8531 and 8532 collected from massive vulvulina capitata and Vaginulinopsis interrupta, calcareous siltstone at 20 and 6 m, respectively, indicating a Whaingaroan to possibly Duntroo- above basement exposed along Kihi Road nian age range, which seems too young. Sample (R15/813428) (Fig. 5), contain Globigerina R16/9519 collected from the lowermost exposed angiporoides and other lower Whaingaroan calcareous siltstone (Dunphail Siltstone) along microfauna. Sample R15/8507 collected from the Mairoa-Te Kuiti Road near Pakeho (Fig. 5) near the top of Glen Massey Formation exposed contains Globigerina angiporoides and is inferred at the lower level of Hautapu Hill (C-4) (Fig. 5) to be of lower Whaingaroan age. Sample R16/ also contains Globigerina angiporoides and is f6077 (Fig. 5) collected from probably the basal inferred to be of lower Whaingaroan age. facies near Waitere and Road intersec- tion (R16/677316) contains abundant Globigeri- Sample S16/f8503 collected from 6 m above the na angiporoides and another sample R16/f6935 base of the Dunphail Siltstone in the Okoko collected from the same area contains Globigeri- Coalmine area (Fig. 5) contains Globigerina na sp. and is of lower Whaingaroan age. Sam- angiporoides and is inferred to be of lower ple R17/ 8706 collected from the same unit ex- Whaingaroan age. Samples S16/f6018-6019 posed in Mangaorongo Road (Fig. 5), contains reported from near basal facies of Glen Massey Rotaliatina sulcigera, Rectuvigerina striatissima Formation overlying basement exposed along and Globigerina angiporoides indicating a low- Tapuae Road near Honikiwi (Fig. 5) contains er Whaingaroan age. Sample R17/f6681 collect- Cibicides thiara, Vaginulinopsis cristellata, ed from Puketiti Station (Fig. 5), south of Man- Karreriella novozealandica, and abundant gaotaki, contains Globigerina angiporoides and is Globigerina angiporoides (f6018), indicating a inferred to be of lower Whaingaroan age. Three lower Whaingaroan age. samples (R17/f656-658) collected from Dunphail Siltstone exposed along SH3 near Bexley Station (C-193) contain lower Whaingaroan foraminif- Samples R16/f8061-8062 collected from Glen era. From these data the whole of the Glen Mas- Massey Formation exposed near the bridge on sey Formation is inferred to be of lower Whain- Mangapohue Stream on Te Anga Road (Fig. 5) garoan age. contains Melonis maorica, Rotaliatina sulcig- era and Notorotalia stachei. Sample f8060 con- tains Globigerina angiporoides of lower Whain- Upper Whaingaroan (upper Lwh) garoan age, whereas samples (f8061-8062) have The fauna described by Stache (1864) from Wait- no age diagnostic faunas. Sample R16/f8700 col- etuna Estuary (Raglan Harbour) are representa- lected from Dunphail Siltstone exposed along tive of upper Whaingaroan fauna. The sub-stage the Kairimu Stream south of Awamarino (C-51) is defined as strata lackingSubbotina angiporoides (Fig. 5) contains Rotaliatina sulcigera, and the and containing Notorotalia stachei. In Taranaki deep-water species Karreriella novozealandica, Basin, the uppermost Whaingaroan is defined on Vaginulinopsis cristellata, and Globigerina ang- the highest occurrence of the benthic foraminif- iporoides indicating a lower Whaingaroan age. era Rotaliatina sulcigera, a useful and ubiquitous Another set of samples R16/8613-8614 (Fig. 5) event. The co-occurrence of Globigerina euaper- collected 2.5 m above Elgood Limestone in Dun- tura and R. sulcigera is usually a reliable guide to phail Siltstone and in the base of Ahirau Sand- the upper Whaingaroan in deeper water settings, stone contain Notorotalia stachei, Gyroidinoides while in shallow water and restricted environ- allani and Globigerina angiporoides (f8613), in- ments Notorotalia stachei is a key taxon (Morgans dicating a lower Whaingaroan age range. Sam- et al. 2004). Jenkins (1966, 1971) correlated the

11 upper Whaingaroan with the lower part of the Sample R15/f8508 was reported from the “bored Globigerina euapertura zone. The highest occur- contact” between the Glen Massey Formation rence of the planktic foraminifer Subbotina an- and Awaroa Limestone at Kihi Road (Fig. 5) and giporoides defines the base of the upper Whain- contains rare Globigerina angiporoides and other garoan and has been given an age of 30.0 Ma by fauna of lower Whaingaroan age. Another sam- Berggren et al. (1995) and Cooper et al. (2004). ple R15/f8533 reported from immediately above the Awaroa Limestone (Fig. 5) contains Whain- Sample R14/f6545 reported by Kear (1963) from garoan fauna. Samples S125 and S177 reported 8.5 m above the base of Kotuku Siltstone of by Stainton (1966) from massive calcareous silt- Whaingaroa Formation in Tawatahi River Valley stone (tentatively identified here as the equiva- (Fig. 5) in the northern inland part of Raglan lent of Ngapaenga Siltstone Member) in the Man- Harbour, contains typical upper Whaingaroan gaorongo Road section (Section C-183, Kamp et fauna including Cibicides thiara, Notorotalia al. 2008) (Fig. 5) is inferred to be of upper Whain- stachei, Rectuvigerina striatissima, Rotaliatina garoan age on the basis of Rectuvigerina striatis- sulcigera, and Vaginulinopsis interrupta as sima and the key planktic fauna Globigerina eua- identified by Hornibrook. Samples R14/f44, pertura. Sample S186 reported from probably the f47, f49, f50 reported by Waterhouse & White equivalent facies in the Puketiti section (C -139) (1994) from the type area of Whaingaroa is inferred to contain Whaingaroan-Duntrooni- Formation in Raglan Harbour (Column TA-14, an transition fauna (Fig. 5), which are a bit young. Kamp et al. 2008) contain most of the typical Samples S164 and S167 reported from the low- upper Whaingaroan fauna and lack Globigerina ermost exposed massive calcareous mudstone angiporoides (Fig. 5). Sample R14/f8500 reported near Ototohu Stream, Mahoenui, are inferred to from Landing (Waterhouse & White contain Whaingaroan-Duntroonian transition 1994) includes Gaudryina reussi, the deeper fauna; however S164 is more likely to be upper water species Semivulvulina capitata, and the Whaingaroan as it contains Globigerina euaper- planktic Globigerina euapertura, indicating a tura. Sample S130 reported from the stratigraph- Whaingaroan-Duntroonian age range (Fig. 5). ically equivalent facies exposed at Bexley Station These samples are reported from Glen Massey (Section C-193) contains rare Globigerina eua- Formation, but are likely to have been collected pertura and is inferred to indicate a mid or upper from Kotuku Siltstone of the Whaingaroa Whaingaroan age. Sample R17/f8705 collected Formation, as the Glen Massey Formation is from the calcareous siltstone exposed along Gib- a highly condensed unit and poorly exposed bon Road (R17/697919) near Mahoenui (Fig. 5) at this locality (Tripathi et al. 2008). Similarly, contains Vaginulinopsis interrupta, Vaginulinop- samples R14/f6524-6525 reported from Ahirau sis hochstettari, Globocassidulina subglobosa, and Sandstone north of Ohautira (Fig. 5) contain Cibicides thiara, indicating a Whaingaroan-Dun- Rotaliatina sulcigera and Notorotalia stachei, troonian age range. indicating an upper Whaingaroan age, and are more likely to have been collected from Kotuku Samples R15/f8509-8510 collected from Siltstone. Sample R14/f6526 collected 10 m Hauturu Sandstone and Kihi Sandstone of Aotea above the base of the Whaingaroa Formation at Formation exposed at Hautapu Hill (Section C-4, Ohautira contains a faunal assemblage typical of Kamp et al. 2008) (Fig. 5) are inferred to contain Whaingaroan age (Fig. 5). Samples S14/f7552- Whaingaroan-Duntroonian fauna. Sample R16/ 7553 reported from 8.5 and 42.5 m above the f7559 collected from Hauturu Sandstone 12 m Ahirau Sandstone (Fig. 5), north of Dunphail above basement (R16/879274) is inferred to be of Bluff (TA-17), containGlobigerina euapertura Whaingaroan age at Ngapaenga (Fig. 5). Samples and are inferred to be of upper Whaingaroan age. S16/f6536-6537 collected from Aotea Formation Sample R13/f8539 is reported by Kear (1963) to (tentatively identified as Kihi Sandstone) exposed have been collected from 7 m above the base of along SH31 (north of Otorohanga) (S16/025388) the Whaingaroa Formation in Waikaretu Valley have an upper Whaingaroan fauna but S16/f6536 and contains Cibicides thiara and Rotaliatina contains Semivulvulina waitakia and is possibly sulcigera and is inferred to be of Whaingaroan of Duntroonian age (Fig. 5). Sample S182 age (Fig. 5). 12 reported by Stainton (1966) from Kihi Sandstone within the Kihi Sandstone Member of Aotea For- exposed along SH3 near Mangaotaki Bridge (C- mation. Sample S16/6521 collected and reported 166) and R17/f8507 collected 12 m above the by Nelson (1978) from the top of the Kihi Sand- basement are inferred to be of Whaingaroan- stone exposed at Waitomo Valley Road (Section Duntroonian age. Sample S16/f6524 collected C-32) (Fig. 5) contains Vaginulinopsis cristella- from the base of the Kihi Sandstone in Waitomo ta and Notorotalia spinosa. Samples S16/6539- Valley is inferred to have a lower Whaingaroan 6542, all collected from Kihi Sandstone near Te age, whereas another sample S16/f6523 higher Raumauku (S16/998346) (Fig. 5), contain Rec- up in Kihi Sandstone is inferred to be of upper tuvigerina striatissima, Notorotalia spinosa, and Whaingaroan age. Samples R14/f6546-6549 Semivulvulina waitakia (S16/6541) of Duntroo- reported by Kear (1963) from the type locality of nian age. Samples S16/f6011, 6014-6015 col- Mangiti Sandstone in Aotea Formation exposed lected from the Kihi Sandstone in the vicinity of to the east of Te Kotuku Trig (Mangiti Road, Te Raumauku contain Duntroonian fauna, and TA-12) (Fig. 5) are inferred to have consistent sample S16/6014 may possibly contain Duntroo- Whaingaroan ages. Samples R14/f0050 and f0055 nian-Waitakian transition fauna (Fig. 5). Sample reported by Waterhouse & White (1994) from the S15/f8506 collected from the Kihi Sandstone on Mangiti Sandstone exposed at Haroto Bay, Raglan Kawhia Road near the intersection with Okoko Harbour (R14/827771), and samples R14/f0060- Road (S15/917439) is inferred to contain Dun- 61 from Paritata Peninsula, contain Rectuvigerina troonian fauna (Fig. 5). striatissima and Notorotalia stachei, indicating an upper Whaingaroan age (Fig. 5). Sample R14/ Samples R14/f0093-0094 reported by Waterhouse f0092 collected 1 m above the contact between & White (1994) from 12 m and 20 m, respective- Mangiti Sandstone and Patikirau Siltstone (Aotea ly, above the base of the Patikirau Siltstone at Formation) at the type locality of Patikirau Patikirau Bay (Fig. 5), contain Notorotalia spi- Siltstone at Patikirau Bay (TA-20) is inferred to nosa. Sample S14/f7539, reported to have been contain Whaingaroan-Duntroonian transition collected from the uppermost part of the Ahi- fauna (Fig. 5). Sample R13/f8557 reported by Kear rau Sandstone north of Te Akatea and along the (1963) from the seams within Waimai Limestone Glen Massey-Waingaro Road (S14/909937), con- (Aotea Formation) exposed near Kokanga East tains Notorotalia cf. spinosa and probably came Road (Fig. 5) contains Rotaliatina sulcigera and from the Patikirau Siltstone (Fig. 5). Sample Notorotalia cf. spinosa and is inferred to be of S14/f7525-7525A reported by Kear & Schofield Whaingaroan-Duntroonian age. (1978) from north of Te Akatea (S14/916951), apparently from the Carter Siltstone, yielded an Duntroonian Stage (Ld) upper Whaingaroan to Duntroonian fauna in- cluding Haeuslerella textilariformis, Vaginulinop- The Duntroonian stage is identified from the oc- sis hochstetteri, and Notorotalia stachei. These currence of diverse molluscan fauna. The large samples are likely to have been collected from the shallow-water bivalve Athlopecten athleta occurs Patikirau Siltstone (Fig. 5). in rocks of Duntroonian age. The Orahiri Forma- tion contains closely packed banks of enormous- The presence ofAthlopecten athleta in sample ly thick-shelled Flemingostrea wollastoni (Nelson, R16/f9552 from near Pakeho (R16/888131) and 1973, 1978; Morgans et al. 2004). The base of the the abundance of closely packed banks of thick Duntroonian Stage is defined by the lowest oc- shelled oysters (Flemingostrea wollastoni) from currence of the benthic foraminifer Notorotalia the Te Anga Limestone Member (Orahiri For- spinosa, which replaces the Whaingaroan index mation), indicates a Duntroonian age (Nelson N. stachei. Planktic foraminifera or calcareous 1978). Sample S16/f6520 collected from Waito- nannofossil events are not known at the base of mo Sandstone exposed near Te Raumauku Caves the Duntroonian (Morgans et al. 2004). (Section C-29) (Fig. 5) contains Haeuslerella tex- tilariformis, Semivulvulina capitata and Notorota- The lowermost stratigraphic level within the Te lia spinosa, indicating a Duntroonian to possibly Kuiti Group having Duntroonian age occurs Waitakian age (Nelson 1978). Macrofossils re-

13 ported from Raglan Limestone exposed in an in- stone of Te Akatea Formation exposed near Te land section north of Carters Beach (R14/707884) Akau (Fig. 5.) contain Waitakian fauna such as include Cirsotrema lyratum, Lentipecten huttoni Notorotalia cf. spinosa and Globoquadrina dehis- (hochstetteri), Chlamys williamsoni and Terebrat- cens. Another sample R14/f6559 from the Raglan ulina suessi (R14/f6011), indicating a Duntrooni- Limestone exposed near Te Kotuku Trig. (Mangi- an to possibly Waitakian age (Kear 1978; Water- ti Road) contains Gyroidinoides allani and is in- house & White 1994). ferred to be of Duntroonian-Waitakian age. Sam- ples R14/f6586-6588 collected 5 m, 24 m and 32 Waitakian Stage (Lw) m, respectively, above the Raglan Limestone near Te Kotuku Trig (Column TA-12) are all inferred The lowest occurrence of the planktic foraminif- to be of Waitakian age (Fig. 5). Samples R14/ era Globoquadrina dehiscens has become the most f6739-6743 reported by Waterhouse & White widely accepted criterion for defining the base of (1994) from the Carter Siltstone of Te Akatea the Waitakian Stage (Hornibrook 1974). Another Formation near Te Kotuku Trig contain Cibicides useful criterion is the disappearance of the large thiara and the planktics Globoquadrina dehiscens ribbed Vaginulinopsis at the top of the Duntroo- and Globigerina brazieri and are inferred to be of nian. The highest occurrence of the planktic fo- Waitakian age (Hornibrook 1974). Another set of raminifera Globigerina euapertura is an impor- samples R14/f6550-6551 collected 1.7 m and 17 tant intra-Waitakian event used informally to m, respectively, above the Raglan Limestone at subdivide the upper and lower Waitakian (Mor- Te Kotuku Trig contains Marginulinopsis allani, gans et al. 2004). Berggren et al. (1995) dated this Anomalinoides fasciatus, Haeuslerella hectori and event at 23.8 Ma and it serves as a proxy for the Globoquadrina subdehiscens and is inferred to Oligocene-Miocene boundary. In deeper water be of Waitakian age. Sample R13/f8558 reported facies the highest occurrence of Cibicides thiara is by Kear (1963) from basal Carter Siltstone beds an important intra-Waitakian event, especially in 5 m above the Waimai Limestone near Ohuka Taranaki Basin. Molluscan species last recorded Creek in Kokonga East Road (R13/687017) yields from Waitakian rocks include Athlopecten athle- Waitakian fauna. ta, Lentipecten huttoni (hochstetteri), Flemingos- trea wollastoni and Cirsotrema lyratum (Morgans Sample R14/f6568 reported by Kear (1978) from et al. 2004). Te Hara Sandstone (a basal unit of the Waitema- ta Group) at the southern end of Te Hara Point Not many microfauna are known from the Ora- (Fig. 5), contains Waitakian to Otaian (?) fauna hiri Formation - Otorohanga Limestone due to (Haeuslerella aff. hectori and Notorotalia spinosa). extraction difficulties from well lithified lime- Samples R14/f6570-6571 and 6573 (R14/747847) stone. Samples S16/f8502, f8507, f8514 from collected from the same unit exposed along Te Beros Limestone Quarry near Te Kuiti (Column Akau South Road are inferred to contain Waita- 94-24) (Fig. 5) contain the common Waitakian kian fauna. Samples R14/f6527-6528 collected fauna Notorotalia spinosa, Cibicides novozelan- from Te Hara Sandstone exposed in a cliff along dicus, Rectuvigerina rerensis and the planktic the coast 3.8 km south of Waimai Stream mouth Globoquadrina dehiscens (Nelson 1978). Athlo- have been inferred to be of Duntroonian-Waita- pecten athleta, a large pectinid, has been report- kian age. Sample R14/f6519 reported from the ed as widespread within Otorohanga Limestone Te Hara Sandstone exposed to the east of Carters and has been the basis to assign a Waitakian age Beach contains Otaian fauna (e.g. Cibicides no- to this unit (Nelson 1978). This large pectinid vozelandicus, Rectuvigerina rerensis, Spiroloculi- is however no longer regarded as restricted to na novozealandica). Large oysters, pectinids and the Waitakian and its lowest occurrence is now brachiopods (Crenostrea wuellerstorfi, Athlopect- known to extend into the Duntroonian (Morgans en athleta and Rhizothyris curta) occur in the Te et al. 2004). Akau Limestone exposed at Carters and Gibson Beach, indicating a Waitakian age (Kear 1978). Samples R14/f6590-91 reported by Kear (1963) Sample R14/f6812-6813 reported in Waterhouse from the top of the 8.5 m-thick Raglan Lime- & White (1994) from Gibson Siltstone (Waitema-

14 ta Group) exposed in the cliff section immediate- above the Otorohanga Limestone indicates a ly south of Te Hara Point (R14/711826) contains Waitakian age (Nelson 1973). Sample R16/f8720 the key upper Waitakian to Otaian planktics Glo- from Mahoenui Group mudstone immediately bigerina woodi and Globigerina connecta. above Otorohanga Limestone at Mangaohae River contains Globoquadrina dehiscens and A few important microfaunal samples from the abundant Globigerina woodi and is inferred to basal Waitemata Group lithologies exposed at be of Waitakian age. Sample R16/f8721 from Waikawau and Waiwiri Beach coastal sections Mahoenui Group mudstone in the vicinity of south of Port Waikato were collected and reported Waitanguru is also inferred to contain Waitakian in Hornibrook & Schofield (1963). Sample R13/ fauna. Samples S16/f8561, f8563 and f8500 f6551 collected 30 cm above Carter Siltstone in the collected from calcareous mudstone exposed base of the Waitemata Group at Waikawau Stream immediately above Otorohanga Limestone in the mouth (Fig. 5) yielded mixed fauna consisting of vicinity of Te Kuiti (Fig. 5) are inferred to contain large specimens of Elphidium ornatissimum and E. Waitakian fauna. Samples S16/f8516-f8518 subrotatum. Other species, inferred to have been collected 0.15 m, 0.3 m and 2 m, respectively, reworked from the underlying Carter Siltstone, above Otorohanga Limestone at Troopers Road include Sigmoidella kagaensis, Bulimina pupula, (S16/926123) contain Globoquadrina dehiscens and Gyroidinoides allani. Similar microfauna and are inferred to be of Waitakian age. Sample dominated by Elphidium were also recorded in R17/f6678 reported from Mahoenui Group samples R13/f6534 and f6554 from immediately mudstone exposed 0.3 m above Otorohanga above the bored zone exposed at Waiwiri Beach. Limestone at Mangaotaki Road west of Piopio Another sample R13/f6576 collected about 1.7 contains Globoquadrina dehiscens and abundant m above the base of the Waitemata Group also Globigerina sp. Sample R17/f8542 collected from yielded Elphidium subrotatum and plentiful Mahoenui Group mudstone exposed along SH3 ostrocods. Samples R13/6579-6580 collected a 2.8 km south of Mangaotaki Bridge (R17/753942) few metres above the top of Carter Siltstone and contains Globigerina woodi and Globoquadrina at the top of the “Cardita Beds“ (basal Waitemata dehiscens of Waitakian age. Group, Hornibrook & Schofield 1963) at Waiwiri Beach are dominated by large specimens of Discussion Elphidium that also occur in a Venericardia bed. The planktics include Globoquadrina dehiscens Comment on assignment of biostratigraphic and Globigerina semivera. The sudden entry and stages to Te Kuiti Group formations and dominance of large species of Elphidium in the members above samples collected from the basal facies of It has been possible to confidently assign the Waitemata Group is evidence of an abrupt biostratigraphic stage boundaries to formations shallowing. and members of the Te Kuiti Group. Within particular stages, the fossil samples for which Taken together, the microfaunal assemblages data have been reported necessarily float within from the basal Waitemata Group beds indicate the stages, which will always be the case given an uppermost Waitakian age (Hornibrook & the nature of biozones, but the uncertainty is Schofield 1963). Elphidium subrotatum along exaggerated because the samples in many cases with Bulimina pupula and Gyroidinoides allani come from dispersed outcrop sites (and have also occur in samples R14/f6570-6571 and f7673 been assembled into composite sections in Fig. collected from the Te Hara Sandstone described 5). Given the synthesis presented here (Fig. 5) earlier, and are the basis for its correlation with there is room for serial sampling at multiple the basal Waitemata Group. sections through some members to better tie their tops and bottoms to stage boundaries. To The common presence of the planktic foraminifera this end, detailed stratigraphic columns and Globoquadrina dehiscens in samples from the correlations are available for the Te Kuiti Group base of the Mahoenui Group immediately (Kamp et al. 2008). An issue that has confounded

15 this objective to date has been the paucity of pio - Aria), there is considerable difficulty in dis- planktic foraminifera in the predominantly shelf tinguishing these two formations and along with sediments and the cemented nature of limestone that any certainty about the location of the Dun- members, especially in the upper parts of the troonian – Waitakian boundary. Historically, the group. distinction between the Orahiri Formation and Otorohanga Limestone has been mapped on the There is good certainty around the Kaiatan and basis of the occurrence of large oysters, but re- Runangan Stage designations for the northern gional correlations do not hold up on this basis occurrences of the Waikato Coal Measures. The (Tripathi et al. 2008) and it has to be acknowl- Mangakotuku Formation may be as old as the edged that oyster occurrence is a facies/environ- upper part of the Runangan Stage in the Glen mental characteristic and unlikely to be a robust Massey-Rotowaro area, although this formation basis for correlation. is mainly lower Whaingaroan in age. Our synthesis based on existing sample data af- The Glen Massey Formation is exclusively low- firms previous work that the base of the Waitem- er Whaingaroan in age and the lower to upper ata Group lies within the upper part of the Waita- Whaingaroan Stage boundary lies at or near the kian Stage. The top of the Te Kuiti Group also boundary between the Glen Massey Formation – lies within the Waitakian Stage. North of Rag- Whaingaroa Formation boundary, which is un- lan Harbour the top of the Carter Siltstone Mem- conformable in the south and conformable in the ber is wave-planed and hence an erosional un- north. conformity separates the Te Kuiti Group from the Waitemata Group. We are firmly of the view The Whaingaroa Formation is upper Whainga- that previous mapping of Orahiri Formation and roan in age, as well as most of the Aotea Forma- Otorohanga Limestone north of Raglan Harbour tion, although this formation does extend into (Kear 1966; Waterhouse and White 1994) is not the Duntroonian Stage. The greatest uncertainty correct and limestone and sandstone units above in the stage designations for the Te Kuiti Group the Carter Siltstone Member are diversified basal lies in the location of the upper Whaingaroan – members of the Waitemata Group. Duntroonian boundary within the Aotea For- mation. In the southern part of central-western To help confirm or further constrain the assign- North Island there has been marked erosion of ment of biostratigraphic stages to the Te Kuiti the top of the Aotea Formation and we regard the Group formations and members, we have applied Hauturu Sandstone Member as being wholly of strontium isotope geochronology to macrofossils upper Whaingaroan age. In the northern part of in the hope of reducing the uncertainties out- central-western North Island the top of the Aotea lined above and to help develop an absolute chro- Formation is highly condensed (glauconitic and nology for the group. We detail the results of this phosphate nodules occur in firm carbonate mud- undertaking below. stone) and the stage boundary probably lies with- in this condensed interval. In central parts of the Comment on the age of the Whaingaroan Te Kuiti Group outcrop area, the upper Whain- Stage at Waitetuna Estuary, Raglan/Whain- garoan – Duntroonian boundary probably lies garoa Harbour, versus the age of Whainga- within the Patikirau Siltstone, possibly its lower roa Formation south of Raglan part, or within the upper part of the Kihi Sand- stone Member (Fig. 5). Siltstone members of the Te Kuiti Group be- tween Raglan Harbour and Waitomo – Kawhia The Duntroonian – Waitakian boundary in the areas have been miscorrelated in the past. The southern part of the Te Kuiti Group outcrop area 30 - 40 m of massive calcareous siltstone exposed is assigned to the boundary between the Orahi- in Waitetuna Estuary, Raglan Harbour (“Whain- ri Formation and Otorohanga Limestone. Out- garoa Siltstone” in the original work by Kear & side of the Waitomo area, and in particular to the Schofield (1959)), was nominated by Findlay south (Mangaotaki and Awakino) and east (Pio- (1939) as the stratotype for the Whaingaroan

16 Stage. Subsequently, Hornibrook et al. (1989) fractionation between the ocean water and identified the planktic fauna from this unit as be- contemporary skeletal material. ing characteristic of Jenkins (1966) Globigerina euapertura Zone, assigned to the upper Whain- The rate of change of the 87Sr/ 86Sr ratio in marine garoan. However, the planktic fauna identified biogenic carbonate forming from ocean waters from “Whaingaroa Siltstone” south of Raglan in was especially high during the Oligocene to Early the Aotea – Kawhia areas are characteristic of Jen- Miocene (36-16 Ma), enabling determination kins (1966) Globigerina brevis and Subbotina an- of numerical ages to within 0.5 m.y. resolution giporoides Zones assigned to the lower Whainga- during this interval (Fig. 6). Although planktic roan (Hornibrook et al. 1989). The two siltstone foraminifera are preferred for the calibration units cannot therefore be correlatives and this is of ocean water curves, there is no convincing recognised in the rationalised lithostratigraphy evidence that marine macrofossils have of Tripathi et al. (2008): the siltstone exposed significantly different 87Sr/86Sr values from at Waitetuna Estuary is now mapped as Kotuku contemporary planktic taxa, provided the fossils Siltstone of the Whaingaroa Formation, whereas are well preserved and diagenetic effects are the siltstone in the Aotea – Kawhia region is now minimal (Oslick et al. 1994). mapped as Dunphail Siltstone Member of Glen Massey Formation (Tripathi et al. 2008). Strontium (87Sr/86Sr) isotope-derived Strontium isotope dating results numerical ages for the Te Kuiti Group Strontium isotope ratios are an increasingly com- The strontium isotope method has previously mon means of determining the numerical age of been applied to molluscan and brachiopod shell fossiliferous marine successions of Cenozoic age samples from the Te Kuiti Group and from the Alma/Otekaike Group in South Island (Nelson (McArthur 1994; Veizer et al. 1999). The ap- 87 86 proach is based on the following assumptions: et al. 2004). The Sr/ Sr ratio data reported for 77 macrofossil samples by Nelson et al. (2004) 1. At any point in time, the 87Sr/86Sr ratio of have helped to constrain the age of several mid- seawater is homogenous throughout the Cenozoic stage boundaries. Of the 77 samples, world’s oceans because the 43 samples derived from the Te Kuiti Group and residence time of Sr (2 - 4 m.y.) in sea water is longer than the mixing time of the oceans (about 1000 years).

2. The influx of Sr to the oceans from various sources, each with its own characteristic 87Sr/86Sr ratio, varies over geological time. The 87Sr/86Sr ratio of incoming strontium is counterbalanced by its removal from seawater mainly via co-precipitation in biogenic carbonate.

3. The87 Sr/ 86Sr ratio in fossil skeletons is identical to that 87 86 of the seawater in which Fig. 6: Calibration curve relating Sr/ Sr isotope ratio in marine fossil shells to numerical age for the Late Eocene to Early Miocene (after Oslick the fossil organisms lived; et al. 1994). that is, there is no biological

17 are incorporated here with seven new samples adjusted to the SRM standard, which has the sourced from the group in the Aotea Harbour value: SRM987 = 0.710230. Four runs of a area previously reported by Carter (2003), laboratory standard (EN-1, a recent coral and with 26 new samples collected during this from the Pacific) established the composition investigation (Appendix I). of modern seawater ranged from 0.709154- 0.709184, averaging 0.709168 + 26 (2 SD). Age Methods assignments were made for each sample analysis after adjusting87 Sr/86Sr ratios by +0.000029 to be Twenty six samples of unweathered shell mate- consistent with the SRM987 value of 0.710248 rial, mainly from pectinids, brachiopods and (Hmc = 0.709175) used in the Howarth & oysters, were collected from multiple localities McArthur (1997) calibration. The 87Sr/86Sr ages within the study area. In all cases the lithostrati- were derived using the detailed look-up tables graphic units bearing the fossil samples were as- available from Howarth & McArthur (1997). certained by careful field correlation and have as- signed to them a New Zealand biostratigraphic Analytical results stage based on microfossil content at correlative sites. Close microscope examination of the shell The 87Sr/86Sr results are presented in Appendix material was undertaken to check for any visible I. The absolute ages derived from the87 Sr/86Sr signs of weathering or diagenetic alteration. After isotope ratios are plotted in Fig. 7 in relation to extensive and careful cleaning to remove surficial the New Zealand time scale (Cooper et al. 2004). impurities or rock matrix, the shell material was The sample data show a broad trend of decreasing extracted by a scraper. age from the Bortonian to Otaian Stages. The few discrepant ages (e.g. AU2045 53.36 Ma; sample All Sr measurements were undertaken on 39) falling outside the general trend could result small aliquots containing 2000-10000 ng Sr, from either undetected shell alteration or the using an automated Finnegan MAT262 mass sample host having grown in marginal marine spectrometer at the University of Melbourne. conditions (Nelson et al. 2004). Figure 8 shows Data were normalised to 88Sr/86Sr = 8.375209 the ages plotted for each of the Te Kuiti Group using exponential law. Normalised data were formations.

Fig. 7: Plot of 87Sr/86Sr isotope age versus stratigraphic position of macrofossil samples from within the Te Kuiti Group and basal units of the Waitemata Group.

18 (a) (b) ages t ages t Mangakotuku Formation Sr age GlenGlen MasseyMassey Formation Sr Sr age age NZ S NZ S 30 Po 20 22 e 32 Lw 24 Lwh Ld 26 34 u 28 Ar 30 36 Lwh l 32 Ak 34 Ar 36 38 Ak 38 Ab 40 Ab 40 42 44 42 46 48 50 52 ages (c) t WhaingaroaWhaingaroa Formation Sr Srage age 54 NZ S 27 Ld 27.5 (e)

28

ages Orahiri Formation/Otorohanga Limestone - Te Akatea Formation and

t Orahiri/Otorohanga- Te Akatea Formation Sr age u 28.5 Lwh basal Waitemata Group Sr age NZ S 29 20 Po 29.5 22 30 Lw 24 ages

(d) t AoteaAotea Formation Formation Sr Sr age age 26 NZ S Ld 25

Ld 28 27 u Lwh u 30 Lwh 29 l 31 Lwh 32 l Lwh 33

35 Ar

Fig. 8: Strontium (87Sr/86Sr) isotope ages of macrofossil samples from various individual Te Kuiti Group and Waitemata Group formations plotted against the New Zealand biostratigraphic stages assigned to them (between dashed lines). See text for discussion.

Stable oxygen and carbon isotope analysis Stable oxygen and carbon isotope results

To test whether or not the host shell material ana- All δ18O and δ13C values of the shell samples are lysed for 87Sr/86Sr had been affected by significant presented in Appendix I. The 13δ C values range diagenetic alteration, including weathering, the between -10.36 and 2.91, and δ18O values range oxygen (δ18O) and carbon (δ13C) isotope com- between -2.52 and 1.09. A cross-plot of the stable positions of subsamples of the fossil shell mate- oxygen versus carbon isotope data is presented in rial were also determined using standard meth- Fig. 9. According to criteria established by Nel- ods for stable oxygen and carbon isotope analysis son & Smith (1996), the values plotting to the left (Cooke et al. 2008). The samples were reacted (AU2014, WU023) of the dashed line may have in the Europa CAPS system in the Department been diagenetically altered. The more negative of Earth and Ocean Sciences (The University of δ13C of a few samples (AU2438, AU12890, WU01 Waikato) using the individual acid dosing meth- and WU021) suggests growth in a marginal ma- od. After the reactions were completed, the sam- rine environment. ple CO2 was introduced to the Europa Geo 20- 20 mass spectrometer. The isotope ratios are Sr dating results for formations expressed relative to Vienna PeeDee Belemnite Mangakotuku Formation (VPDB), and have an external precision better than 0.05 %0 for both carbon and oxygen. The numerical ages of four shell samples from the Mangakotuku Formation range between 39.85 - 32.91 Ma (Fig. 8a). Three of these ages conform

19 -3.00

-2.50

-2.00

-1.50

-1.00

-0.50 -13.00 -11.00 -9.00 -7.00 -5.00 -3.00 -1.00 1.00 3.00 5.00 0.00 d13C (VPDB) 0.50 d18O

1.00 (VPDB) 1.50

2.00

Fig. 9: Cross-plot of stable oxygen isotope versus carbon isotope values (%0) for macrofossil samples from the Te Kuiti Group and basal units of the Waitemata Group for which Sr isotope ratios were also determined. Dashed line separates the parts of the isotope field regarded as not having undergone post-depositional alteration (majority of data points) versus likely post-deposi- tional re-equilibration of the isotope systems, probably during diagenesis. to the upper Runangan to lower Whaingaroan age of 38.77 Ma, both ages being much older than age of this formation. However the oldest expected. These samples both came from basal data point (39.85 Ma) is from an oyster shell facies of Glen Massey Formation where it rests on (AU12890) collected from the Kopuku Coalmine Mesozoic basement, and both samples may have at Maramarua and it is much older than the therefore incorporated “old strontium” into their expected stratigraphic age. Based on its δ13C shells (Nelson et al. 2004). Sample WU04, with value (-4.96%) (Appendix I) this sample could an age of 21.59 Ma is well outside the biostrati- have a marginal marine origin and therefore graphic age of the formation, whereas sample not have a Sr ratio that reflected a well mixed AU4173, with an age of 34.13 Ma, and sample contemporary seawater Sr composition. On AHR04, with an age of 29.42 Ma, are just outside the other hand, sample WU01 collected from the expected age range. Waikaretu Sandstone Member near Waikoha Road, yielded a -10.36 δ13C value and may also Whaingaroa Formation be of marginal marine origin, but surprisingly, The numerical ages for two samples from the shows a predictable stratigraphic age of 32.91 Ma. Whaingaroa Formation are in the range 29.66 -

28.44 Ma (Fig. 8c). Sample WU010, with an age Glen Massey Formation of 28.43 Ma, is younger than the upper Whainga- The numerical ages for 22 samples from the roan age assigned to the Whaingaroa Formation. Glen Massey Formation fall within the range 53.36 - 21.59 Ma. Eighteen of these ages con- Aotea Formation form to the expected stratigraphic age (lower The numerical ages for 16 samples from the Whaingaroan) (Fig. 8b). One brachiopod shell Aotea Formation lie in the range 35.4 - 26.67 (AU2045) collected from south of Kawhia yield- Ma (Fig. 8d). Eight sample ages conform to the ed an age of 53.36 Ma and another brachiopod expected stratigraphic age range of the formation shell (AU9529) collected from the north end of (upper Whaingaroan to Duntroonian) given the Huriwai Beach south of Port Waikato yielded an biostratigraphic assignments made above. Seven

20 samples (AU1330, AU1087, AU1536, WU011, expected age range of the biostratigraphic stages WU013, WU018 & WU019) are marginally for the respective sample host formations and older than the upper Whaingaroan age (~30 Ma) members, and neither do the data on their own inferred for the formation. One sample (M8) make sense at face value because of clear overlaps from the upper part of Kihi Sandstone Member in age range between adjacent formations. A few in the Mangaotaki Bridge section is markedly of the samples, as described above, are clearly older (35.4 Ma) than expected. outliers and can be eliminated as useful data. About a third of the data points lie just outside the Orahiri Formation, Otorohanga Limestone and Te expected biostratigraphic age ranges, especially Akatea Formation for the Aotea Formation and Orahiri Formation, Otorohanga Limestone and Te Akatea Formation, The numerical ages for 28 samples from the although they seem to be analytically good data. Orahiri Formation, Otorohanga Limestone and Given this situation (Fig. 9), it is difficult to give Te Akatea Formation fall in the range 32.37 - full credibility to the Sr age results that do lie 21.24 Ma (Fig. 8e). Of the 28 sample ages, nine within the expected age range for each formation. lie outside the age range of biostratigraphic stages The main pattern is that the measured Sr ages are assigned to these formations (i.e. Duntroonian too old for the biostratigraphic stage(s) of each to upper Waitakian). Eight of them show formation and there is no basis to independently lower to upper Whaingaroan ages, which seem determine the lower age boundary of acceptable unreasonably old. One age, the youngest at ages. Consequently the Sr age data set reported 21.24 Ma, relates to fossil shell (WU017) from here can only be regarded as broadly confirming the “Coquinite Beds” in the Orahiri Formation the biostratigraphic results derived from the at Bexley Station tunnel (Nelson 1978) and this faunal and floral content within the formations. age is clearly too young, possibly affected by the porous nature of the host facies. Chronostratigraphy for the Te Kuiti Group Te Hara Sandstone The intention for our review and synthesis of An oyster sample (WU021) collected from biostratigraphic data for the Te Kuiti Group and the lower part of Te Hara Sandstone has stable the determination of Sr ages for macrofossils carbon and oxygen values of -2.84 δ13C and from its various formations and members has -1.61 δ18O, suggesting it may have been affected been to establish a robust chronostratigraphy for by diagenetic alteration, and its numerical age the group. A stratigraphic feature that integrates (23.88 Ma) is 2 m.y. older than expected. well with the biostratigraphy and carries useful time value is the occurrence of unconformities Discussion of Sr dating results between formations in the group. In Fig. 5, the formations and members have been rescaled The intention of undertaking Sr geochronology from a thickness to a time-stratigraphic scale for of macrofossil material from the Te Kuiti Group a series of composite stratigraphic columns based was to help develop an improved chronology on the available biostratigraphic data. In Fig. 2 this for the group. Having outlined and interpreted approach has been extended to the development the Sr results, the key question is to what extent of a north – south time-stratigraphic panel for the they have actually improved the chronology for group using the occurrence of unconformities the Group beyond that determined by biostrati- and estimating the amount of time missing on graphic means? them between subjacent formations where this is substantial. What falls out of this exercise We have shown all of the Sr data obtained in is the occurrence of six unconformity-bound this study in Appendix I and in Figs. 7 and 8. formations that have many of the characteristics While most of these data, analytically, are of of unconformity-bound sequences. We have high quality, the difficulty we have faced is that named these sequences TK 1 to TK 6 (Fig. 2). a proportion of them lie outside the reasonably

21 Waikato Coal Measures and Mangakotuku Aotea Formation: TK4 Formation: TK1 The base of the Aotea Formation is marked by The Waikato Coal Measures is a fluvial succes- a significant erosional unconformity, which sion that started to onlap basement in the north- probably formed initially through subaerial ern part of the field area during the Kaiatan and erosion but was subsequently modified by wave became more extensive during the Runangan planation that gave rise to the sharp planar surface (Fig. 2). This deposition was driven by the start observed in most areas (Tripathi et al. 2008). of regional subsidence of the underlying lith- Aotea Formation spans the upper Whaingaroan osphere and led to gradual marine incursion - Duntroonian boundary (Fig. 5). The lower into the Waikato Basin. The marine facies over- part of the formation lies within the upper part stepped the non-marine deposits onto basement of the Whaingaroan Stage but this is difficult to as shown for example by the distribution of the demonstrate, as planktic foraminfera are difficult Waikaretu Sandstone Member (Tripathi et al. to recover from the inner shelf facies of the 2008) (Fig. 5). Hauturu Sandstone Member and the Waimai Limestone Member. The upper Whaingaroan Glen Massey Formation: TK2 is identified by the occurrence of Rectuvigerina striatissima and occurs in the Mangiti Sandstone The Glen Massey Formation accumulated dur- Member near its type locality north of Raglan ing the Globigerina angiporoides Zone and hence Harbour. Kihi Sandstone in the Waitomo- it lies within the lower Whaingaroan Stage (Fig. Honikiwi area records the first appearance of 5). The base of this formation throughout much Notorotalia spinosa and Semivulvulina waitakia, of its extent is an unconformity. This is marked which are good indicators of Duntroonian age. by a wave-planed surface of erosion (transgres- Good Duntroonian fauna also occur in the sive surface of erosion, TSE) across Waikato Coal Patikirau Siltstone Member in Raglan Harbour Measures (in the south) or basement. In north- sections, and possible Duntroonian faunas have ern parts of the basin the contact is conforma- been reported from the condensed facies of ble over Waikato Coal Measures (Fig. 2). The Patikirau Siltstone overlying Waimai Limestone formation shows many of the classic features of and Mangiti Sandstone in the northern region. a sequence, with transgressive (TST), highstand (HST) and falling stage (FSST) systems tracts. Aotea Formation shows many of the character- istics of a mixed carbonate-siliciclastic sequence Whaingaroa Formation: TK3 (Fig. 2). As noted above, it has an unconformable lower sequence boundary, which is overlain by The Whaingaroa Formation in our lithostrati- transgressive (TST) facies (Hauturu Sandstone; graphic framework (Tripathi et al. 2008) com- Wamai Limestone), which pass upward into HST prises basal TST limestone facies in places deposits (Mangiti Sandstone; Kihi Sandstone; Pa- (Awaroa Limestone Member), HST deposits tikirau Sandstone). In central and northern parts (Kotuku Siltstone Member) and FSST deposits of the field area the upper part of the HST de- (Waikorea Sandstone Member) and hence con- posits are very condensed and marked by a pro- forms to a typical mixed carbonate – siliciclastic nounced greensand horizon (e.g. Kihi Sandstone sequence. Its lower boundary is unconforma- in Waitomo Valley) and phosphate nodules with- ble and wave-planed in the southern part of the in glauconitic calcareous mudstone (Patikirau field area, but conformable in the north. This se- Siltstone near Port Waikato). quence accumulated during the upper Whainga- roan, the boundary with the lower Whaingaroan lying in the contact with the Glen Massey Forma- Orahiri Formation and Te Akatea Forma- tion. The Whaingaroa Formation is extensively tion: TK5 eroded and in some areas is completely missing Orahiri Formation is regarded as having accu- such that Aotea Formation rests upon Glen Mas- mulated within the upper part of the Dntroonian sey Formation (Fig. 2). Stage (Figs 2 & 5). This is based upon macro-

22 fossil content as planktic foraminifera are diffi- Waitakian microfauna have been reported cult to extract from the limestone facies. There is from the siliciclastic interflags within limestone an abundance of Flemingostrea wollastoni in the at Beros Quarry near Te Kuiti, including Te Anga Limestone Member in the Waitomo-Te Notorotalia spinosa, Cibicides novozelandicus, Anga area, taken as an indicator of Duntroonian Rectuvigerina rerensis and the planktic species age. Duntroonian molluscan fauna such as Cirso- Globoquadrina dehiscens (Fig. 5). The lower trema lyratum and Lentipecten huttoni (hochstet- boundary of Otorohanga Limestone is locally teri) are also reported from the Raglan Limestone unconformable south of Kawhia and along the Member in exposures north of Raglan Harbour. eastern margin of the Herangi Range (Nelson 1973, 1978). This boundary passes northward The base of Orahiri Formation is a sharp pla- into a correlative conformity in Carter Siltstone nar unconformity in southern parts of the field Member (Fig. 2). In the carbonate shelf facies area (e.g. Mangaotaki, Awakino Tunnel) formed characterising Otorohanga Limestone it is through subaerial and subsequent wave ero- difficult to distinguish TST from HST divisions. sion of the Hauturu Sandstone and Kihi Sand- An important observation is that in outcrops in stone members (Tripathi et al. 2008). This ero- the Kawhia area the upper part of the formation sion affected mid-shelf deposits (Kihi Sandstone becomes micritic, suggestive of deepening of the Member) indicating substantial sea level lower- depositional paleoenvironment. This implies ing preceding accumulation of lower parts of the a retrogradation stratal pattern signaling and Orahiri Formation. In northern parts of the field heralding the subsequent marked deepening (shelf area, particularly where the upper part of the un- to bathyal) across the conformable boundary derlying Aotea Formation has condensed faci- from Otorohanga Limestone into Taumatamaire es, the lower boundary of Te Akatea Formation Formation (Mahoenui Group) (Fig. 2). North (Carter Siltstone Member) is conformable. Ora- of Raglan Harbour Waitemata Group overlies hiri Formation is dominated by carbonate sedi- Carter Siltstone Member, and this contact is ments and within them the expression of systems marked by a sharp planar erosion surface caused tracts is rather subtle. The Mangaotaki Lime- by wave planation. Hence accumulation of Te stone Member is too thick to be regarded as a Kuiti Group in the north was brought to an end TST, but its yellow sandstone content, probably by uplift of upper bathyal facies into shoreface sourced from erosion of the Hauturu Sandstone, environments, which contrasts with the marked indicates contemporary wave erosion in the subsidence in the south where Mahoenui Group south concurrent with (re)deposition on the ad- overlies Otorohanga Limestone (Fig. 2), both jacent shelf. These sandy carbonate shelf depos- features indicating more pronounced and rapid its pass upward in the sequence into more pure impact of plate boundary tectonics on the and macrofossiliferous limestone facies (Te Anga sedimentation patterns. Limestone Member). The mixed micritic-skel- etal limestone facies within Raglan Limestone Discussion Member indicates the development of a ramp sourcing carbonate skeletons and mud into deep- Figure 10 illustrates a new and robust chrono- er (upper bathyal) water to the north where lower stratigraphy for the Te Kuiti Group. The parts of the Carter Siltstone Member accumulat- identification of unconformity-bound sequences ed as marl comprised of micrite derived from the within the group throughout its central-western breakdown of skeletons on the carbonate shelf to North Island extent follows from the rationalised the south, admixed with planktic foraminifera lithostratigraphic framework for the group, which (Fig. 2). reasonably correlates the various formations and members throughout the basin (Tripathi et al. 2008). It is noted that the sequence boundaries Otorohanga Limestone and Te Akatea For- coincide with formation contacts, reflecting mation: TK6 marked changes in lithofacies resulting from Otorohanga Limestone is regarded as having changes in base level and hence paleogeography. accumulated during the Waitakian Stage as These basin-wide sequence boundaries provide

23 Biostratigraphy: White & Waterhouse (1993) Biostratigraphy : This study

Age NZ Stage N S Age NZ Stage N S Po Waitemata Gp - Mahoenui Gp Po Waitemata Gp - Mahoenui Gp Mio Mio Otorohanga Lst Otorohanga Lw Lw Lst Waitomo Sst Te Akatea Fm (incl. Carter Zst Mbr) Orahiri Fm Te Akatea Fm Orahiri Lst (incl. Waitomo Sst Mbr) Ld (incl. Carter Zst Mbr) Ld T T e Kuiti Gp e Kuiti Gp

Aotea Formation Aotea Formation (incl. Waimai Lst Mbr) upper (incl. Waimai Lst Mbr) upper

Oligocene Lwh Whaingaroa Fm Oligocene (Incl. Kotuku Zst Mbr) Lwh Whaingaroa Fm Glen Massey Fm Whaingaroa Fm Glen Massey Formation (incl. Elgood Lst Mbr, lower (incl. Awamarino Lst Mbr) lower (incl. Elgood Lst Mbr, Dunphail Zst Mbr) Lwh Dunphail Zst Mbr) Mangakotuku Fm Lwh Mangakotuku Fm Waikato Coal Waikato Coal Eo Ar Measures Eo Ar Measures

No outcrop Basement

Fig. 10: Two biostratigraphic models for the Te Kuiti Group, one by White & Waterhouse (1993) and the other proposed here. time-planes useful for partitioning the group time within the various stratigraphic units to be into six time intervals, TK1 to TK6 (Fig. 2). plotted, which essentially involves assignment of We note that the foraminiferal and macrofossil the Late Eocene to earliest Miocene New Zealand biozones and the associated biostratigraphic biostratigraphic stages to the formations and stages independently align with these sequences members. in some cases and parallel them in others, thus calibrating the TK sequences to the mid-Cenozoic Analytical Sr data and resulting numerical ages timeframe. The resulting chronostratigraphy are reported here for 26 new macrofossil samples (Fig. 2) provides a sound basis to interpret the from the Te Kuiti Group. While the Sr ages are paleogeographic development of the basin for in broad agreement with the ages inferred for the time horizons within and between sequences Te Kuiti Group formations from the boundaries (Kamp et al. 2014). of the biostratigraphic stages, a proportion of the Sr ages lie outside the expected age range of the Summary formations implied by the biostratigraphy. There is also significant overlap in the Sr ages for sub- This report reviews and synthesises the jacent formations. Hence not a lot of confidence biostratigraphy of the Te Kuiti Group based can be taken from the Sr ages and they mainly on existing sample data archived in the Fossil do not improve the accuracy of the biostratigra- Record Electronic Database (FRED) and presents phy and the age information that can be derived the results of new Sr ages for macrofossil samples. from it. A rationalised lithostratigraphy for the group provides the framework to relate faunal and flora The identification of unconformity-bound data for samples from a great diversity of locations sequences, the boundaries of which align with the of mainly outcrop occurrences of the Te Kuiti formation contacts within the group, provide an Group. It has proved useful to plot the faunal important set of time planes from which intervals and floral samples onto composite stratigraphic can be derived and compared soundly with the columns for different areas, which has required boundaries of the assigned biostratigraphic some judgment to be made about the relative stages. The integration of the biostratigraphy and order of samples within formations and members. sequence stratigraphy produces a robust chrono- This exercise has enabled the distribution of stratigraphy for the Te Kuiti Group. The utility

24 of this chronostratigraphy lies in the confidence References with which the Late Eocene – earliest Miocene paleogeographic development of the Waikato – Berggren, W.A., Kent, D.V., Swisher, C.C. and Aubry, King Country Basin can be inferred for multiple M.P. 1995: A revised Cenozoic geochronology intervals during accumulation of the Te Kuiti and chronostratigraphy. In: Geochronology, time Group (Kamp et al. 2014). scales and stratigraphic correlation (Ed. Berggren, W.A., Kent, D,V., Aubry, M.P., Hardenbol, J.). Society of Economic Paleontology and Acknowledgements Mineralogy (Society for Sedimentary Geology) Special Publication 54: 129-212. We acknowledge the Geosciences Society of New Carter, M.J. 2003: The mid-Tertiary Te Kuiti Group Zealand and GNS Science for helpful access to in the Aotea Harbour region: a re-evaluation of the Fossil Record Electronic Database. We thank stratigraphic relationships and nomenclature, Betty-Ann Kamp for cartographic assistance. We Unpublished MSc thesis, lodged in the Library, acknowledge the New Zealand Ministry for Busi- University of Waikato, Hamilton, New Zealand. ness, Innovation and Employment for research funding (Contract: UOWX0902). Cooke, P.J., Nelson, C.S. and Crundwell, M. P. 2008: Miocene isotope zones, paleotemperatures, and carbon maxima events at intermediate water- depth, site 593, Southwest Pacific. New Zealand Journal of Geology and Geophysics 51, 1-22.

Cooper, R.A., Agterberg, F.P., Alloway, B.V., Beu, A.G., Campbell, H.J., Cooper, R.A., Crampton, J.S., Crounch, E.M., Crundwell, M.P., Graham, I.J., Hollis, C.J., Jones, C.M., Kamp, P.J.J.K., Mildenhall, D.C., Morgans, H.E.G., Naish, T.R., Raine, J.I., Roncaglia, L., Sadler, P.M., Schioler, P., Scott, G.H., Strong, C.P., Wilson, G.J. and Wilson, G.S. 2004. In: The New Zealand Geological Timescale (Ed. Cooper, R.A.). Institute of Geological & Nuclear Sciences Monograph 22: 284 p.

Edbrooke, S.W., Sykes, R. and Pocknall, D.T. 1994: Geology of the Waikato Coal Measures, Waikato Coal Region, New Zealand. Institute of Geological & Nuclear Sciences Monograph 6. Institute of Geological & Nuclear Sciences Ltd, Lower Hutt, New Zealand: 236 p.

Finlay, H.J. 1939: New Zealand Foraminifera: key species in stratigraphy No. 1. Royal Society of New Zealand, Transactions and Proceedings 68: 504-533.

Finlay, H.J. and Marwick, J. 1940: The divisions of the Upper Cretaceous and Tertiary in New Zealand. Transactions of the Royal Society of New Zealand 70: 77-135.

Hornibrook, N. de B. 1974: Globigerinoides (Foraminifera) in the Waitakian Stage (mid Tertiary) Raglan Harbour, New Zealand. New Zealand Journal of Geology and Geophysics 17: 500-508.

25 Hornibrook, N. de B. and Schofield, J.C. 1963: McArthur, J.M. 1994: Recent trends in strontium Stratigraphic relations in the Waitemata Group isotope stratigraphy. Terra Nova 6: 331-358. of the Lower . New Zealand Journal of Geology and Geophysics 6: 38-51. Morgans, H.E.G., Scott, G.H., Beu, A.G., Graham, I.J., Mumme, T.C., George, W. St. and Strong, C.P. Hornibrook, N. de B., Brazier, R.C. and Strong, C.P. 1996: New Zealand Cenozoic timescale (version 1989: Manual of New Zealand Permian to 11/96). Lower Hutt, Institute of Geological & Pleistocene Foraminiferal Biostratigraphy. New Nuclear Sciences Report 96/38: 12 p. Zealand Geological Survey Paleontological Bulletin 56. 175 p. Morgans, H.E.G., Beu, A.G., Cooper, R.A., Crouch, E.M., Hollis, C.J., Jones, C.M., Raine, J.I., Strong, Howarth, R.J. and McArthur, J.M. 1997: Statistics C.P., Wilson, G.J. and Wilson, G.S. 2004: In: The for strontium isotope stratigraphy: a robust New Zealand Geological Timescale (Ed. Cooper LOWESS fit to the marine Sr-isotope curve for RA). Institute of Geological & Nuclear Sciences 0 to 206 Ma, with look-up table for derivation of Monograph 22. numeric ages. Journal of Geology 105: 441-456. Nelson, C.S. 1973: Stratigraphy and sedimentology of Jenkins, D.G. 1966: Planktonic foraminiferal zones the Te Kuiti Group in Waitomo County, South and taxa from Danian to Lower Miocene of New Auckland. Unpublished PhD thesis, lodged in Zealand. New Zealand Journal of Geology and the Library, University of Auckland, Auckland, Geophysics 10: 1064-1078. New Zealand.

Jenkins, D.G. 1971: New Zealand Cenozoic planktonic Nelson, C.S, 1978: Stratigraphy and paleontology of foraminifera. New Zealand Geological survey the Oligocene Te Kuiti Group, Waitomo County, Paleontological Survey Bulletin 42: 278 p. South Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 21: 553-594. Kamp, P.J.J., Tripathi, A.R.P. and Nelson, C.S. 2008. Stratigraphic columns and correlations for the Nelson, C.S. and Smith, A.M. 1996: Stable oxygen and Late Eocene - Oligocene Te Kuiti Group, central- carbon isotope compositional fields for skeletal western North Island, New Zealand. Ministry and diagenetic components in New Zealand of Economic Development, New Zealand, Cenozoic nontropical carbonate sediments and unpublished Petroleum Report PR3901, 257 p. limestone: a synthesis and review. New Zealand Journal of Geology and Geophysics 39: 93-107. Kamp, P.J.J., Tripathi, A.R.P. and Nelson, C.S. 2014: Paleogeography of the Late Eocene to earliest Nelson, C.S., Lee, D., Maxwell, P., Mass, R., Kamp, P.J.J. Miocene Te Kuiti Group, central-western North and Cooke, S. 2004: Strontium isotope dating Island, New Zealand. New Zealand Journal of of the New Zealand Oligocene. New Zealand Geology and Geophysics, DOI:10.1080/0028830 Journal of Geology and Geophysics 47: 719-730. 6.2014.904384 Oslick, J.S., Miller, K.G., Feigenson, M.D., and Kear, D. 1963: Geology of the Te Akau District, Wright, J.D., 1994 : Oligocene-Miocene west Auckland, New Zealand, and its regional strontium isotopes: stratigraphic revisions and implications. Unpublished PhD thesis, lodged in correlations to an inferred glacioeustatic record. the Libraray, University of London, London, UK. Paleoceanography, 9:427-443.

Kear, D. and Schofield, J.C. 1959: Te Kuiti Group. New Penseler, W.H.A. 1930: Stratigraphy of the Pukemiro Zealand Journal of Geology and Geophysics 2: District, Waikato Coalfield. New Zealand 685-717. Journal of Science and Technology 12: 129-141.

Kear, D. and Schofield, J.C. 1966: Sheet N56– Pocknall, D.T. 1991: Palynostratigraphy of the Te Kuiti Ngaruawahia. Geological map of New Zealand Group (late Eocene-Oligocene), Waikato Basin, 1:63,360. Department of Scientific and Industrial New Zealand. New Zealand Journal of Geology Research. , New Zealand. and Geophysics 34: 407-417.

Kear, D. and Schofield, J.C. 1978: Geology of the Pocknall, D.T. and Mildenhall, D.C. 1984: Late Ngaruawahia subdivision. New Zealand Geology Oligocene - Early Miocene spores and pollen Survey Bulletin 88. from Southland, New Zealand. New Zealand Geological Survey Paleontological Bulletin 51: 61 p. + 26 plates.

26 Stache, G. 1864: Die Foraminiferen der Tertiaren Mergel des Whaingaroa-Hafens (Provinz Auckland). Paleontologie von Neu-Seeland Novara-Expedition, Geologischer Theil 1 (2): 159-304.

Stainton, P.W. 1966: The Mangaotaki and Te Kuiti Formations of the North Wanganui Basin: A Sedimentological Study. Shell, B.P. and Todd Oil Services Ltd. Wellington, NZ Geological Report No. 63: 6 p.

Tripathi, A.R.P., Kamp, P.J.J. and Nelson, C.S. 2008: Te Kuiti Group (Late Eocene – Oligocene) lithostratigraphy east of Taranaki Basin in central-western North Island, New Zealand. Ministry of Economic Development, New Zealand, unpublished Petroleum Report PR3900, 70 p.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. and Strauss, H. 1999: 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161: 59-88.

Waterhouse, B.C. and White, P.J. 1994: Geology of the Raglan-Kawhia area. Scale 1:50 000. Institute of Geological & Nuclear Sciences geological map 13. 48 p, 1 sheet. Institute of Geological & Nuclear Sciences Lower Hutt, New Zealand.

White, P.J. and Waterhouse, B.C. 1993: Litho- stratigraphy of the Te Kuiti Group: a revision. New Zealand Journal of Geology and Geophysics 36:255-266.

27

e g ) a a r e ( M H & McA (1997) A v 4 5 2 6 2 3 3 7 3 8 6 9 6 5 9 7 2 2 2 6 4 7 7 1 . 8 5 3 7 4 1 7 2 4 9 8 4 6 4 0 3 2 7 9 7 6 3 6 ) 5 ......

a 3 9 4 3 2 3 4 8 3 2 1 1 1 0 0 2 9 8 7 9 9 6 1 2 e 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 A g ( M H & McA (1997) . 4 3 2 4 8 9 7 0 6 0 5 0 1 6 9 8 9 5 1 1 4 4 5 4 0 1 2 j 1 2 9 8 0 6 3 7 0 3 4 8 0 0 2 5 6 0 1 5 7 8 9 1 7 3 7 d 6 7 5 7 7 8 8 6 8 7 8 8 9 9 9 9 9 9 0 0 0 9 9 1 7 9 8 6 a 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 7 7 8 7 7 7

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r + 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 S ...... b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l a 87/86 7 6 8 2 3 1 4 0 4 9 4 5 0 3 2 3 9 5 5 8 8 9 8 4 5 6 8 9 0 7 7 9 5 1 6 8 1 2 6 9 9 1 4 4 8 9 3 5 6 7 9 5 1 5 r 5 7 5 7 6 8 8 6 7 7 8 8 8 8 9 9 9 8 9 0 0 9 9 0 7 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 7 7 8 7 7 7 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ...... 87/86 l a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 3 6 4 9 8 9 2 6 5 7 7 5 4 5 0 2 8 4 9 8 0 5 8 2 6 7 3 5 2 4 4 6 3 8 6 2 4 2 7 0 8 0 8 3 6 0 7 9 3 3 2 9 8 7 6 2 5 1 4 8 2 4 5 4 0 3 0 6 2 0 0 7 8 4 O 1 0 5 8 ...... 1 8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 ------δ 7 1 9 4 4 5 0 4 1 0 9 6 7 6 7 1 5 5 1 2 1 7 0 9 4 4 3 0 6 2 3 4 4 1 9 1 4 9 5 7 2 3 8 8 8 3 1 2 0 1 6 3 8 1 7 9 2 2 5 2 9 1 2 7 4 8 2 2 8 3 2 9 7 6 1 0 7 7 6 1 4 ...... C 4 4 0 1 1 1 1 2 1 0 1 1 1 2 0 2 1 2 1 1 1 2 0 1 1 1 1 - - 13 δ r e d r o m t . o a t t r S B o 1 d d d d e o o o o p p p p p ia ia e i o i o i o i o t y r c r c r r

nid nid nid nid nid nid nid nid nid nid nid nid nid nid nid nid nid nid l v l a st e st e m a m a e y y ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i h S O O E u E u Br ac h P P Bi v P P P P P Br ac h P P P P P P P Br ac h P Br ac h P P P e g ) d t a ( ? L - - + S h h h h h h h h h h h h h h h h h h h h h h d d d d d N Z L w L w L w L w L w L w L w L w L w L w L w L w L w L w L w L w L w L w L w L w L w L L L L w L L y d ) st b 2 Zst Zst Zst Zst -

st i

S o Zst Zst Zst Zst u u u u a L

y y

k k k k a a a a A e e m d st n i Zst Zst t u t u t u t u st st st st

o r o r o r o r o a s s L o o o o o st st st ( st st st st st i l i l a a a a L L L L a a

i ti o k k k k a a g g g g g S S S S S S S S W a

a a a a a - h h ir i ir i M M i n i n i n i n g g g g E l p p m m

h h a a a a oo d oo d i n n n n n n te a te a te a te a te a te a te a te a r b Ak h h h h a g g a a a a le n le n o o o o o o o o e u Sr isotope ratio derived ages for macrofossil samples from the Te Kuiti Group and basal units of the Waitemata Group the Waitemata basal of units and Group Kuiti the Te from samples macrofossil for ages derived ratio isotope Sr F o M M M M W W W W S E l E l D u D u G G W A A A A A A A T A Or a Or a 86 Sr/ 87 ) i i i ( 0 to )

ta k ta k ta k a ) ) b 8 3 9 5 7 5 8 6 9 0 3 1 o o o ) ) ) ) ) ) ty 9 7 9 0 0 8 4 4 7 5 3 0 1 1 4 i k a a a 10 ) 3 7 13 ) 7 6 4 6 l i a ( ( ( ( ( ( ( ( g g g ( 1 ( 1 ( 1 / 8 / 6 / 7 / 7 / 6 / 5 / 9 / 6 / 6 / 6 / 7

a / Q

n n n 3 2 1 1 1 4 3 4 4 4 1 3 3 3 3 3 3 3 5 c W 2 5 4 5 a a a t 1 1 1 1 L o P S R 1 S N 7 N 8 N 9 N 9 R 1 R 1 R 1 N 5 S R 1 S R 1 N 6 N 7 N 7 N 7 N 7 N 9 R 1 R 1 M M M C isotope data and and data C isotope 13 ) 2 e 7 l 43 8 289 0 4 842 b 04 5 09 0 09 2 17 3 52 9 46 8 99 8 46 0 33 1 00 3 33 0 03 7 974 ( a 97 8 97 9 99 1 08 7 53 6 44 1 00 0 p 76 O and δ O and m : 8 7 5 18 U 2 U 1 U 6 U 7 U 2 U 1 U 1 U 4 U 9 U 2 U 8 U 2 U 1 U 8 U 1 U 3 U 1 U 1 U 1 U 1 U 1 U 1 U 2 U 2

a S A A A A A A A A A A A A A A A A A A A A A A A A M M M : δ le s p m a . S 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 l N o 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 t a * T o Appendix I Appendix

28 7 9 9 4 5 9 . . . 9 1 7 2 2 2 8 1 9 4 2 7 8 6 5 8 6 8 1 7 1 4 7 7 6 2 9 7 2 4 9 70 80 10 7 9 5 8 5 0 8 0 6 0 3 9 2 9 9 4 4 3 8 7 2 7 6 1 9 ...... 2.00 6 4 5 9 6 2 7 0 6 2 4 4 5 4 5 0 2 2 9 9 1 1 7 8 7 0 9 9 3 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 3 2 2

5 9 8 0 2 6 4 9 4 6 3 8 4 4 3 5 5 6 4 5 5 4 1 4 4 8 8 4 2 9 9 7 7 6 3 1 0 5 8 1 8 3 4 7 0 7 5 5 0 0 5 7 5 7 0 5 1 8 9 0 8 0 9 1 3 1 2 1 2 1 2 1 9 2 7 8 7 8 7 8 8 8 8 8 8 8 8 8 7 8 8 3 7 8 7 8 8 0 8 0 8 3 8 0 8 0 8 0 7 9 7 9 8 0 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 9 3 2 4 6 0 8 3 8 0 7 2 8 8 7 9 9 0 8 9 9 5 5 6 8 8 2 2 0 7 8 6 5 4 2 9 9 3 7 9 7 1 2 5 8 3 2 1 6 6 2 3 1 3 6 2 8 6 9 0 8 0 9 1 2 0 2 1 1 1 2 1 9 1 7 8 7 8 7 8 8 8 8 8 8 8 8 8 7 8 7 8 7 8 7 9 7 9 83 8 3 8 0 8 0 8 0 7 8 7 9 7 9 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ...... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 4 0 0 8 0 3 4 3 3 7 9 9 0 3 4 2 7 1 1 5 3 8 3 5 9 1 8 4 1 3 2 0 1 1 4 3 9 9 7 0 5 7 3 0 0 1 9 5 1 4 ...... 1 3 7 2 2 1 4 9 6 2 2 0 7 1 3 2 ...... 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 ------0 1 0 0 0 0 ------7 5 4 3 4 7 7 5 6 1 9 2 2 7 9 4 1 8 4 4 1 1 6 8 6 8 2 9 4 8 6 7 40 3 0 9 8 4 6 4 8 1 7 5 9 1 4 1 6 ...... 0 5 0 8 0 0 0 4 9 4 3 5 5 5 2 3 . 1 1 1 2 2 1 1 1 ...... 0 1 1 1 1 1 1 1 1 0 0 2 2 2 2 2 - - 10 . le d i d se se

p m a a - x x x x x r t o b b le le le le le r o r o r o r o r o r r r d d d d d p p p p p a a a p w e i d i d i d i d i d p p p p p o o T A m N e A m A m L A m N e A m N e 2 d d d d d rm rm o o o o o e e p p p p p d d e i o i o i o i o i o o o r r r r r n id nid n id n id n id n id n id n id n id n id n id n id l v i n i n a st e st e st e st e st e y y y y y ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i P O O O P Br ac h O Br ac h Ec h Ec h Br ac h Br ac h P P Br ac h P O Bi v P P P P P P P h h h h h h w d d d L L w L w L w L w L w L L L w

r - - - e y y y y y w L w h h h - - - p w w w w w w w d d d d d d d d d p L L L L L L L L L L L L L L L L ea r l ea r l L w ea r l L w L w ea r l ea r l u st st st st st L L L L L st st

st Zst Zst Zst a a a a a S S

st g g g g g st st st st st st st S st st L t u t u st n n n n n o

L L L L L L L te a te a te a

a a a a a S S a r e r e st st st a a a m h h h h h a a S S S ir i ir i ir i ir i ir i ir i o r o r o r o r o r o i i i r o h h h h h h a oo d i t i k i k A k A k A k ira u ira u rter Z

o a a a g t t o h h e e e Or a Or a Or a Or a Or a Or a C a T T T W Ot o O Ot o Ot o O W W Ki h A Ki h Ki h E l A A w

y

e d d l d a a d a a to a

a a V R o o a

R o g

tu

i k n o a R a r e h t u ia R o m i ae n a o ou r e W h o od p i k i t 6 o i k i t a r b w ta k r t a a a a 6 8 9 5 3 8 9 3 7 8 5 7 g o ) o ) ) 6 0 0 1 4 7 0 6 5 5 5 0 a 5 2 6 W H a K a W N g P W W E l ( ( ( g

/ 5 / 7 / 7 / 7 / 7 / 6 / 1 / 5 / 5 / 5 / 5 / 8 / / / / / / / / / n 4 2 2 2 1 1 1 4 3 3 3 1 4 3 5 3 3 5 5 4 6 4 6 4 a 1 1 1 M N 7 N 8 N 8 N 8 N 9 R 1 N 5 N 5 R 1 R 1 N 7 N 8 N 8 N 8 N 9 S R 1 S R 1 R 1 R 1 S R 1 R 1 1 2 3 3 4 4 5 6 6 7 8 9 9 05 3 00 7 01 4 08 8 298 a 18 4 17 9 38 7 99 5 05 0 02 8 02 9 02 6 03 9 200 8 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 1 U 2 U 2 U U 2 U 1 U 1 U 4 U 4 U 6 U 7 U 2 U 2 U 2 U 2 U 2 M A A A A A A A A A A A A A A A W W W W W W W W W W W W W

at at at

at

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 8 9 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 # Rep e 3 rep e 4 rep e 6 rep e

29 e g ) 3 6 1 1 5 8 a . a 6 3 5 7 6 r 0 . . . . . e 3 9 3 3 9 6 2 2 2 2 2 ( M H & McA (1997) A v 6 3 2 9 9 7 1 4 9 8 4 9 8 8 4 1 9 1 2 8 1 5 )

8 4 8 6 5 5 5 5 7 1 4 7 8 8 2 0 1 0 8 5 1 2 a e ...... 9 8 0 7 9 0 0 0 7 3 3 2 3 3 1 0 9 9 0 1 7 6 2 2 3 2 2 3 3 3 2 2 2 2 2 2 2 3 2 2 3 3 2 2 A g ( M H & McA (1997) j

9 6 3 5 0 2 4 3 1 0 7 7 4 4 1 3 6 3 5 3 5 8 d 6 8 4 5 7 0 6 6 6 7 0 8 1 6 6 8 8 1 2 9 2 9 2 a

1 r + 7 9 8 0 7 9 8 0 8 0 7 9 7 9 7 9 8 0 8 3 8 2 8 3 8 2 8 2 8 3 7 9 8 0 8 0 7 9 7 9 8 0 8 1 S b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l a 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 87/86

5 0 7 9 4 8 0 9 2 1 3 8 0 0 2 4 7 4 1 4 6 9 r 5 1 1 3 6 3 3 2 4 7 6 8 4 3 5 5 8 9 7 9 6 9 S 7 9 8 0 7 9 8 0 7 9 7 9 7 9 7 9 8 0 8 2 8 2 8 2 8 2 8 2 8 3 7 9 7 9 7 9 7 9 7 8 8 0 8 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87/86 l a 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 9 6 2 5 5 6 6 8 2 4 9 O 6 1 4 2 5 4 2 5 4 2 0 ...... 1 8 0 0 0 1 0 0 0 0 0 0 1 δ ------4 3 1 5 7 9 6 8 5 3 8 5 4 5 4 3 3 6 8 0 2 6 ...... C 1 1 1 0 1 1 2 1 1 2 1 13 δ r e le d d r o i d se p m t . a x - a r t o b r r le e e ro r r t r d p p p a a w e S i d p o N e L U p A m U p N e 3 e p t y

e l r e n id n id n id n id n id n id n id n id n id l v h a st e S y ec ti ec t i ec t i ec t i ec t i ec t i ec t i ec t i ec t i P P Bi v P P P P O P P P e g h t a w h d d d L S L L L w r - - - L w

e L h h h - p N Z i d d d d d d d p u L L m L w L L L L w L w L n U/C Zst

st

t st a st st s ti o Zst st S ir i st st

g S L L L a

o h L L L

i i i

m m r u a a a ae n r ira u ir i o Or a m m m t u p la n la n k h i i i i t - a u g g t i F o a a a a a tea N g P H a W R a R a Or a W W W o A

y d e a n ou r m l o a i r b R o V d tati

tre a tu ri

ta k a B eac h o H a

o

S o a S o r e a m a a k a nu i R g o a w la n le y a i ty i k i m n k i t a g rter s x k h la a a l i a a a a s u K a K i W R a C a B e W R a M M c W

/ / / / / / / / / / / i n 7 3 5 3 4 4 7 5 5 5 6 n L o e 1 R 1 R 1 S R 1 R 1 R 1 R 1 R 1 R 1 R 1 R 1 P e l p 0 1 2 3 3 3 3 4 5 5 6 6 6 7 8 8 8 8 9 0 0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 m a S U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 W W W W W W W W W W W W W W W W W W W W W W .

N o

at at at at at at at at at at at 0 1 2 3 4 5 6 7 8 9 0 2 1 2 3 1 1 2 1 * # 1 1 1 1 # # # 1 1 # 1 # # 1 1 18 18 # 1 2 20 Rep e Rep e Rep e Rep e Rep e Rep e Rep e Rep e Rep e Rep e Rep e

30 7 8 . 8 2

7 9 8 2 1 5 7 8 3 1 4 8 2 8 2 9 8 9 5 80 . 6 . 4 . 6 . 4 . 6 . 8 . 8 ...... 3 7 8 8 1 6 1 3 1 3 0 3 0 2 9 3 2 3 0 3 1 2 2 2 2 2 2 2

7 4 1 0 5 7 6 9 5 8 7 4 2 0 6 9 2 3 5 4 1 1 6 5 0 7 5 1 8 2 8 0 8 0 8 0 8 3 8 3 8 1 7 9 7 9 7 9 8 0 7 8 7 9 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7

5 2 8 6 6 8 7 3 9 2 1 8 6 4 3 6 9 0 2 1 8 9 3 3 8 4 2 8 8 2 8 0 7 9 8 0 8 3 8 3 8 0 7 8 7 9 7 9 7 9 7 8 7 9 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 3 2 1 1 6 2 1 8 2 4 2 6 4 . . . 6 2 5 4 1 6 6 2 0 2 ...... 0 0 0 - - 1 0 2 1 0 0 0 0 0 0 ------4 9 7 7 5 1 3 4 2 2 9 9 2 8 1 4 1 2 0 9 2 0 3 5 1 3 ...... 2 2 0 1 0 2 0 1 1 1 0 2 1 - se se se

p p p p a a a x x r r b t o t o b b t o t o r le le e r o r o r r r r r r r d d p p p a a a a a a a w e w e i d i d p p o o N e N e N e N e N e N e A m N e L U p A m L 4 d d d o o o p p p i o i o i o r n id st e y ec t i Br ac h O Br ac h Br ac h P 04). h h h h h h h L w L w L w L w L w L w L w o o o

P P P y y y y y y y l. (2 0 - - - a w w w w d L L L L L ea r l ea r l ea r l ea r l ea r l ea r l ea r l 2003) r ( rt e e lson et a n st st o C d L N e te n e st st st/ a r a a Zst Zst Zst g st st

L L L e st st st S

n

i l i l i l L L u u u m

a a S S S a a a a a a r h h h h l o ir i p p p g r o h oo d A k A k A k H a M7, se e 77, s e n n n ira u ira u ira u n

g h h h e e e e – – T Ot o T T T C o Or a E l D u A A D u A D u r M1 rs 36 d a r bou

d d d d a R o

ri a a a a

n B eac h B eac h B eac h B eac h mb e mb e e

o a ia H a t u n n n R o R o R o R o nu i e h a ea u s o s o s o i m i t w rter s k ea ea ea ea l t la a a i b i b i b a h h h h n s u ry C a W G G G R a K a W S S S S P o a / / / / / / / / / / / / / i n 4 5 4 4 4 5 5 5 5 5 5 4 5 n e tati R 1 R 1 S R 1 R 1 R 1 R 1 P R 1 R 1 R 1 R 1 R 1 R 1 Est u R 1 sample n u sample n u o r o r F F 1 2 3 3 4 5 6 1 2 3 4 5 6 7 2 2 2 2 2 2 2 * * U 0 U 0 U 0 U 0 U 0 U 0 U 0 HR 0 HR 0 HR 0 HR 0 HR 0 HR 0 HR 0 W W W W W W W A A A A A A A

at 1 2 3 4 5 6 7 1 2 3 4 5 6 1 2 2 2 # 2 2 2 M M M M M M M Rep e

31