Valuing Wetlands

Total Page:16

File Type:pdf, Size:1020Kb

Valuing Wetlands Wetland Futures Report 2013: The Value of Healthy Wetlands Citation Freeman, H. (2014) Wetland Futures 2013: The Value of Healthy Wetlands, Wildfowl & Wetlands Trust Steering group contributors THE TRUSTS Sponsors Front cover: wetlands discovery, Arundel photo: Heather Tait Contents Executive summary 2 Healthy wetlands for land management Jason Beedell 15 Acknowledgements 3 The benefits of healthy wetlands from a local Introduction 4 planning perspective Prof. Alister Scott 16 Keynote speech Prof. Chris Baines 5 Ripon City Quarry: a corporate ecosystem valuation Overall policy panel Delia Shannon 17 Two key sectors to engage with – agriculture & planning Constructed wetlands: a water company Alister Driver 6 perspective Dr Gabriela Dotro 18 Scotland: wetland policy challenges and opportunities The International Water Stewardship Standard Lisa Webb 7 Claire Bramley 18 Wetlands in Wales: key challenges for Natural Working with wetlands: achieving catchment Resources Wales benefits for wetlands and land managers Chris Uttley 8 on Tweed Prof. Chris Spray 19 Wetlands and agricultural panel Peat and food security The Great Fen project: the multiple benefits of Prof. Joe Morris 9 wetland restoration Kate Carver 20 Catchment Sensitive Farming James Grischeff 11 Floodplain meadows project: the multiple benefits A farming perspective Prof. David Gowing 21 Richard Murray Wells 11 Implications of an ecosystem service agenda What is the value of wetlands? for wetland conservation Dr Peter Glaves 12 Dr Richard Bradbury 22 The economics of ecosystems and Climate change and wetlands biodiversity (TEEB) for water and wetlands Dr Mike Morecroft 22 Daniela Russi 12 Introduction to the Blueprint for Water Waterlogged wealth: realising the multiple Carrie Hume 23 benefits of healthy wetlands Prof. Ed Maltby 13 The field trip – Askham bog 24 Sustainable drainage systems (SuDS) for people Conclusions, challenges and the future and wildlife: from principles to practice Dr Debbie Pain 26 Andy Graham 14 Wetland Futures Report 2013: The Value of Healthy Wetlands 1 Executive Summary Wetland Futures brings together people from a wide The speakers gave us insight into industry and private range of sectors involved in wetland management, sector perspectives and presented a number of practice and policy. It provides a forum for disseminating inspirational case studies such as the Great Fen project information, showcasing best practice, debate and and the Tweed Forum. Wetland Futures 2013 highlighted discussion, and to strengthen the delivery of wetland the importance of good and timely communications, and conservation in the UK. The 2013 event celebrated the that we’ve a long way to go in this endeavour. By using multiple benefits wetlands can provide, whilst at the same the right language, we can help other sectors such as time recognised challenges and opportunities that the land managers and planners see the benefits of healthy current political and economic climate presents us with. wetlands more clearly. We did not have all the answers and we undoubtedly face challenging times ahead, but Collectively there is much valuable expertise in Wetland Futures 2013 helped to demonstrate that there creating, managing, and restoring wetlands and effort in is also cause for optimism. The wetland community is a demonstrating how this benefits wildlife, the economy thriving, energetic place containing valuable knowledge and society in the UK. To build on this knowledge and experience, creative ideas for the future and and meet our ambitions of more and better protected great examples of partnership working. We hope that wetlands, we need to work more effectively and Wetland Futures will be a key forum through which these efficiently, in partnerships, at larger scales and with a opportunities can be seized, as well as shaped and range of stakeholders to realise the benefits wetlands influenced by our collective voice. can achieve. If you have any thoughts, comments or suggestions The conference highlighted a clear suite of challenges. regarding Wetland Futures and how it is taken forward, As an organisation committed to the conservation of please send them to [email protected] wetlands we ask the reader to work with us towards better valuing the benefits of healthy wetlands so that wetland conservation can move progressively forward over the coming year. (1) We need to create a ‘safe space’ for different sectors to work together using a ‘common language’ to identify progressive ways forward for wetland conservation that benefit all. (2) We need to better communicate case studies, new tools and good practice as examples of how we have helped make the connections between wetland values and people’s lives, communicating this in a way that different audiences understand. Taylor-Jones photo: Richard Children playing on mudflats, Llanelli (3) In two years time we need to have improved our engagement and influence with politicians and decision makers so that they understand the importance and value of water and wetlands. 2 Wetland Futures Report 2013: The Value of Healthy Wetlands Acknowledgements Planning, organising and running Wetland Futures 2013 and smooth running of the conference, Kane Brides for would not have been possible without the assistance getting all the tweeting going; Charlotte Parker, Frances of numerous individuals and organisations. First and and John Freeman; and thanks also to Debbie Pain for foremost among these are the steering group for providing us with a motivating and inspiring summing their advice, support and assistance: Ann Skinner, up of the conference; to the fundraising team at WWT, Crispin Scott, Dave Raffaelli, Helen Perkins, Joe Morris, especially to James Byron and Ellie Wise whose support Sarah Blyth, and Stewart Clarke. Thanks also to David was invaluable; the support of the Admin team at WWT Southgate (Hanson Aggregates), Mike Oxford (ALGE) for dealing with all the delegate admissions; to the Priory and Diane Mitchell (NFU) for their advice on engaging St Centre at York for such a fine venue and support; and their sectors. to Bradshaw’s catering for providing us with a superb evening meal as well as our lunches. Wetland Futures 2013 would not have been possible without the many individuals and projects that kindly We would also like to express our deep thanks for the agreed to chair and give presentations. Additional thanks financial support provided by Severn Trent Water and the to those at Yorkshire Wildlife Trust, especially Caroline NERC Biodiversity and Ecosystem Service Sustainability Thorogood and John Traill for showing us around Programme. Askham Bog and for the interesting discussions had there. Thanks also to Jeff Lunn for leading one of the And finally, thanks to everyone for attending and to all discussion groups. those who joined us on twitter. We would like to recognise the efforts of a wide range of people who gave their assistance to the organisation photo: Martin Senior Reedbed, London Wetland Centre Wetland Futures Report 2013: The Value of Healthy Wetlands 3 Introduction Wetlands are beautiful and inspiring places, important for and wildlife. The two day event offered progressive wildlife and people. They can store floodwaters, control insights into what drives and constrains the creation erosion, provide us with clean water, influence the climate, and management of healthy wetlands for a wide range and provide food, medicines, and building materials, all of stakeholders. It brought people together, forged new of which can be assigned some kind of value. It is much relationships and developed new ideas. more difficult to assign a value to the rich diversity of wildlife dependent on them. Wetlands are also important Wetland Futures 2013 aims were: to human health providing a resource for recreation and tourism, physical and mental health benefits. • Explore how wetlands add value to economy and society through a range of beneficial goods and services; Wetlands are under threat from pollution, invasive species, examine data and tools currently available to identify, the influence of climate change and our ever-increasing assess and realise their potential benefits. demand for water and land. • Draw together evidence of success and good Wetland Futures focuses on the conservation of wetlands practice in wetland management, focussing on factors in their broadest sense, from ephemeral ponds and wet that can promote wetland potential meadows to lakes, rivers and estuaries, constructed and natural, in urban and rural landscapes. We want to put in • Identify what actions are needed to help us realise place practical ideas that will help deliver healthy wetlands wider value from wetlands, including further development for people and wildlife into the long term. of tools, collaborations, funding initiatives, development, planning and policy integration. Wetland Futures 2013 was held from the 1st-2nd October 2013 in York and aimed to develop a shared This document summarises the presentations given at the understanding of the contribution healthy wetlands can conference, provides some key challenges from the event, make to the social and economic well being of people and describes next steps for Wetland Futures. photo: Hannah Freeman Delegates at the Wetland Futures Conference 4 Wetland Futures Report 2013: The Value of Healthy Wetlands Keynote speech from Chris Baines Chris Baines gave an opening keynote speech Chris went on to give an example of a Wildlife Trust highlighting the need for people to understand the managed realignment project in Essex. Within a year of restoration of habitat for catchment wide benefits. It is not growing winter wheat and the flood defences being not all bad news; otter numbers have rebounded and the breached there was a commercial crop of samphire. number of people with ponds in their garden has grown Also the creek system had re-established providing hugely. However, we must take advantage of the wakeup habitat to literally millions of fish fry, including five call that we can have drought and flood in the same commercially important species driving the argument week; that solutions aren’t easy and that cause and effect offshore.
Recommended publications
  • Riparian Vegetation Management
    Engineering in the Water Environment Good Practice Guide Riparian Vegetation Management Second edition, June 2009 Your comments SEPA is committed to ensuring its Good Practice Guides are useful and relevant to those carrying out activities in Scotland’s water environment. We welcome your comments on this Good Practice Guide so that we can improve future editions. A feedback form and details on how to send your comments to us can be found at the back of this guide in Appendix 1. Acknowledgements This document was produced in association with Northern Ecological Services (NES). Page 1 of 47 Engineering in the Water Environment Good Practice Guide: Riparian Vegetation Management Second edition, June 2009 (Document reference: WAT-SG-44) Contents 1 Introduction 3 1.1 What’s included in this Guide? 3 2 Importance of riparian vegetation 6 3 Establishing/creating vegetation 8 3.1 Soft or green engineering techniques 8 3.2 Seeding and planting of bare soil 10 3.3 Creating buffer strips 11 3.4 Planting trees and shrubs 15 3.5 Marginal vegetation 18 3.6 Urban watercourses 21 4 Managing vegetation 24 4.1 Management of grasses and herbs 24 4.2 Management of heath and bog 27 4.3 Management of adjacent wetlands 28 4.4 Management of non-native plant species 29 4.5 Management of scrub and hedgerows 31 4.6 Management of individual trees 31 4.7 Management of trees – riparian woodland 33 4.8 Management of trees – conifer plantations 35 4.9 Large woody debris 37 4.10 Marginal vegetation 37 4.11 Urban watercourses 40 4.12 Use of herbicides 40 4.13 Environmental management of vegetation 41 4.14 Vegetation management plans 41 5 Sources of further information 42 5.1 Publications 42 5.2 Websites 44 Appendix 1: Feedback form – Good Practice Guide WAT-SG-44 45 Page 2 of 47 1 Introduction This document is one of a series of good practice guides produced by SEPA to help people involved in the selection of sustainable engineering solutions that minimise harm to the water environment.
    [Show full text]
  • A Unique Raised Bog at Urbana, Ohio.*
    A UNIQUE RAISED BOG AT URBANA, OHIO.* ROBERT B. GORDON, Ohio State University. Located just north of the Champaign County Fair Grounds at Urbana, Ohio, is a unique dome-shaped bog, covered with shrubby vegetation for the most part, in which the center is raised at least ten feet above the margins. An old road crosses the bog. I have been told that it was once the main thorofare from Urbana to Columbus. Horses and wagons passed over it, I suppose, the drivers never realizing that a mat of fibrous roots less than one foot thick was all that held them over a body of water twelve feet in depth. Raised bogs, called "high moors" and "Hochmoore" in foreign literature, have long been known throughout Europe. N. S. Shaler is credited by Nichols with being the first to call attention to these peculiar swamps in North America, in 1888-89. Those which Shaler observed were "mostly limited to the eastern portion of Maine, near the shores of the Bay of Fundy," but some of lesser magnitude were reported for New Hampshire, northern Michigan, and Minnesota. Similar bogs, with centers about 13 feet above their margins, have been reported in the province of New Brunswick by Ganong (1897). Nichols (1919) described bogs of this type encountered in Maine, in which the elevation of the center above the margin varied from 2 or 3 feet to as high as 18 feet (e. g., Denbo Heath, covering several square miles in area). He asserts: "(1) that in the state of Maine raised bogs, in so far as they constitute a distinctive swamp type, are virtually restricted to the proximity of the seacoast; and (2) that in other portions of New England and of the eastern United States this type of bog is practically absent, although in occasional swamps it is possible to detect a slight elevation of the surface above the level of permanent ground water." Warming (1909) has summarized concisely the characteristic features of "Hochmoore." They owe their development to the growth of sphagnum mosses which absorb water that falls in the form of rain or snow.
    [Show full text]
  • National Water Summary Wetland Resources: Maine
    National Water Summary-Wetland Resources 213 Maine Wetland Resources M aine is rich in wetland resources. About 5 million acres, or one­ System Wetland description fourth of the State, is wetland. Maine has a wide variety of wetlands, Palustrine .................. Nontidal and tidal-freshwater wetlands in which ranging from immense inland peatlands to salt marshes and mud vegetation is predominantly trees (forested wet­ flats along the coast. lands); shrubs (scrub-shrub wetlands); persistent Wetlands are an integral part of Maine's natural resources. or nonpersistent emergent, erect, rooted herba­ ceous plants (persistent- and nonpersistent­ Wetlands provide essential habitat for certain types of wildlife and emergent wetlands); or submersed and (or) vegetation, including rare and endangered species. They are used floating plants (aquatic beds). Also, intermit­ for timber and peat; hunting, fishing, and shellfishing; education tently to permanently flooded open-water bod­ and research; and bird, wildlife and plant observation, all of which ies of less than 20 acres in which water is less than 6.6 feet deep. boost tourism and the general economy. Wetlands also provide flood control, bank and shoreline-erosion control, sediment retention, lacustrine ................. Nontidal and tidal-freshwater wetlands within an intermittently to permanently flooded lake or water fi ltration, and nutrient uptake. In recognition of the impor­ reservoir larger than 20 acres and (or) deeper tance of wetlands, many government and private organizations have than 6.6 feet. Vegetation, when present, is pre­ worked to preserve wetlands and educate the public about wetland dominantly nonpersistent emergent plants (non­ values. For example, the Maine Department of Conservation owns persistent-emergent wetlands), or submersed and (or) floating plants (aquatic beds), or both.
    [Show full text]
  • This Document Was Withdrawn on 6 November 2017
    2017. November 6 on understanding withdrawn was water for wildlife document This Water resources and conservation: the eco-hydrological requirements of habitats and species Assessing We are the Environment Agency. It’s our job to look after your 2017. environment and make it a better place – for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are makingNovember your environment cleaner and healthier. 6 The Environment Agency. Out there, makingon your environment a better place. withdrawn was Published by: Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870document 8506506 Email: [email protected] www.environment-agency.gov.uk This© Environment Agency All rights reserved. This document may be reproduced with prior permission of the Environment Agency. April 2007 Contents Brief summary 1. Introduction 2017. 2. Species and habitats 2.2.1 Coastal and halophytic habitats 2.2.2 Freshwater habitats 2.2.3 Temperate heath, scrub and grasslands 2.2.4 Raised bogs, fens, mires, alluvial forests and bog woodland November 2.3.1 Invertebrates 6 2.3.2 Fish and amphibians 2.3.3 Mammals on 2.3.4 Plants 2.3.5 Birds 3. Hydro-ecological domains and hydrological regimes 4 Assessment methods withdrawn 5. Case studies was 6. References 7. Glossary of abbreviations document This Environment Agency in partnership with Natural England and Countryside Council for Wales Understanding water for wildlife Contents Brief summary The Restoring Sustainable Abstraction (RSA) Programme was set up by the Environment Agency in 1999 to identify and catalogue2017.
    [Show full text]
  • Wind Turbines, Sensitive Bird Populations and Peat Soils
    Charity No. 229 325 Wind Turbines, Sensitive Bird Populations and Peat Soils: A Spatial Planning Guide for on-shore wind farm developments in Lancashire, Cheshire, Greater Manchester and Merseyside. July 2008 For more details, contact Tim Youngs [email protected] or Steve White [email protected] Produced by the RSPB and The Wildlife Trust for Lancashire, Manchester & North Merseyside (LWT), in partnership with Lancashire County Council, Natural England and the Merseyside Environmental Advisory Service (EAS) 1 Contents Section Map Annex Page Background 2 How to use the alert maps 4 Introduction 4 Key findings 5 Maps showing ‘important populations’ of ‘sensitive bird 1-5 6- 10 species’ and deep peat sensitive areas in Lancashire, Cheshire, Greater Manchester and Merseyside Legal protection for birds and habitats 11 Methodology and definitions 12- 15 Caveats and notes 16 Distribution of Whooper Swan, Bewick’s Swan and Pink- 17- 22 footed Goose in inland areas of Lancashire, Cheshire, Greater Manchester and Merseyside Thresholds for ‘important’ populations’ (of sensitive species) 1 23 Definition of terms relating to ‘sensitive species’ of bird 2 24 Background The Inspectors who carried out the Examination in Public of the draft NW Regional Spatial Strategy (RSS) between December 06 to February 07, proposed that 'Maps of broad areas where the development of particular types of renewable energy may be considered appropriate should be produced as a matter of urgency and incorporated into an early review of RSS'. This proposal underpins the North West Regional Assembly’s (NWRA) research that is being carried out by Arup consultants. The Secretary of State's response is 'In line with PPS22, we consider that an evidence-based map of broad locations for installation of renewable energy technologies would benefit planning authorities and developers.
    [Show full text]
  • Questioning Ten Common Assumptions About Peatlands
    Questioning ten common assumptions about peatlands University of Leeds Peat Club: K.L. Bacon1, A.J. Baird1, A. Blundell1, M-A. Bourgault1,2, P.J. Chapman1, G. Dargie1, G.P. Dooling1,3, C. Gee1, J. Holden1, T. Kelly1, K.A. McKendrick-Smith1, P.J. Morris1, A. Noble1, S.M. Palmer1, A. Quillet1,3, G.T. Swindles1, E.J. Watson1 and D.M. Young1 1water@leeds, School of Geography, University of Leeds, UK 2current address: Centre GEOTOP, CP 8888, Succ. Centre-Ville, Montréal, Québec, Canada 3current address: Geography, College of Life and Environmental Sciences, University of Exeter, UK _______________________________________________________________________________________ SUMMARY Peatlands have been widely studied in terms of their ecohydrology, carbon dynamics, ecosystem services and palaeoenvironmental archives. However, several assumptions are frequently made about peatlands in the academic literature, practitioner reports and the popular media which are either ambiguous or in some cases incorrect. Here we discuss the following ten common assumptions about peatlands: 1. the northern peatland carbon store will shrink under a warming climate; 2. peatlands are fragile ecosystems; 3. wet peatlands have greater rates of net carbon accumulation; 4. different rules apply to tropical peatlands; 5. peat is a single soil type; 6. peatlands behave like sponges; 7. Sphagnum is the main ‘ecosystem engineer’ in peatlands; 8. a single core provides a representative palaeo-archive from a peatland; 9. water-table reconstructions from peatlands provide direct records of past climate change; and 10. restoration of peatlands results in the re-establishment of their carbon sink function. In each case we consider the evidence supporting the assumption and, where appropriate, identify its shortcomings or ways in which it may be misleading.
    [Show full text]
  • Burns Bog Ecological Conservancy Area Management Plan May 2007
    Burns Bog Ecological Conservancy Area Management Plan May 2007 BURNS BOG ECOLOGICAL CONSERVANCY AREA MANAGEMENT PLAN TABLE OF CONTENTS 1.0 INTRODUCTION................................................................................................... 1 1.1 Public Acquisition and Management of Lands........................................... 1 1.2 Planning Process....................................................................................... 2 2.0 BACKGROUND .................................................................................................... 3 2.1 Formation of Burns Bog............................................................................. 3 2.2 Significance of Burns Bog ......................................................................... 4 2.3 Cultural History .......................................................................................... 4 2.4 Recent Bog History.................................................................................... 5 3.0 MANAGEMENT CONTEXT .................................................................................. 5 4.0 THE BOG LANDS AND THE GVRD .................................................................... 7 5.0 VISION AND OBJECTIVES.................................................................................. 7 5.1 Vision – 100 Year Timeframe .................................................................... 7 5.2 Mission ...................................................................................................... 8 5.3 Management
    [Show full text]
  • Assessment on Peatlands, Biodiversity and Climate Change: Main Report
    Assessment on Peatlands, Biodiversity and Climate change Main Report Published By Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen First Published in Electronic Format in December 2007 This version first published in May 2008 Copyright © 2008 Global Environment Centre & Wetlands International Reproduction of material from the publication for educational and non-commercial purposes is authorized without prior permission from Global Environment Centre or Wetlands International, provided acknowledgement is provided. Reference Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva , T., Silvius, M. and Stringer, L. (Eds.) 2008. Assessment on Peatlands, Biodiversity and Climate Change: Main Report . Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. Reviewer of Executive Summary Dicky Clymo Available from Global Environment Centre 2nd Floor Wisma Hing, 78 Jalan SS2/72, 47300 Petaling Jaya, Selangor, Malaysia. Tel: +603 7957 2007, Fax: +603 7957 7003. Web: www.gecnet.info ; www.peat-portal.net Email: [email protected] Wetlands International PO Box 471 AL, Wageningen 6700 The Netherlands Tel: +31 317 478861 Fax: +31 317 478850 Web: www.wetlands.org ; www.peatlands.ru ISBN 978-983-43751-0-2 Supported By United Nations Environment Programme/Global Environment Facility (UNEP/GEF) with assistance from the Asia Pacific Network for Global Change Research (APN) Design by Regina Cheah and Andrey Sirin Printed on Cyclus 100% Recycled Paper. Printing on recycled paper helps save our natural
    [Show full text]
  • Blanket Bogs
    SCOTTISH INVERTEBRATE HABITAT MANAGEMENT Blanket bogs Claish Moss © Scottish Natural Heritage Introduction that may also provide important sub-habitats. Britain has about 10-15% of the total global area Invertebrates in upland moorland or bog habitats of blanket bog, making it one of the most are an essential component of the diet of many important international locations for this habitat. bird species; cranefly larvae and adults have 80-85% of Britain’s blanket bog habitat is found in been shown to be important food for grouse Scotland, covering 1.8 million hectares, and chicks and breeding waders, such as Golden representing 23% of the country’s land area. This plover. Adult grouse may also eat craneflies to makes Scotland an internationally important supplement their diet of heather shoots. country for blanket bog. Managing habitats to benefit these invertebrates Blanket bog is found in cool, wet, typically is thus likely to have a significant impact on the oceanic climates, where it can cover whole survival of upland birds. landscapes, such as in the North-West of In addition, the Scottish Invertebrate Species Scotland. Peat accumulates slowly over many Knowledge Dossiers: Pseudoscorpiones years and can reach depths exceeding 5m, indicated the possibility that the Bog chelifer although 0.5-3m is more typical. Blanket bog is (Microbisium brevifemoratum ) is likely to occur in “ombrotrophic”, that is, the water and mineral Scottish bogs—highlighting that there may yet be supply comes entirely from atmospheric sources unrecorded species in this important Scottish (rainwater, mist, cloud-cover). The water habitat (Legg, 2010). chemistry is nutrient-poor and acidic and the Support for management described in this habitat is dominated by acid-loving plant document is available through Scotland Rural communities, especially Sphagnum mosses.
    [Show full text]
  • Lowland Raised Bog (UK BAP Priority Habitat Description)
    UK Biodiversity Action Plan Priority Habitat Descriptions Lowland Raised Bog From: UK Biodiversity Action Plan; Priority Habitat Descriptions. BRIG (ed. Ant Maddock) 2008. This document is available from: http://jncc.defra.gov.uk/page-5706 For more information about the UK Biodiversity Action Plan (UK BAP) visit http://www.jncc.defra.gov.uk/page-5155 Please note: this document was uploaded in November 2016, and replaces an earlier version, in order to correct a broken web-link. No other changes have been made. The earlier version can be viewed and downloaded from The National Archives: http://webarchive.nationalarchives.gov.uk/20150302161254/http://jncc.defra.gov.uk/page- 5706 Lowland Raised Bog The definition of this habitat remains unchanged from the pre-existing Habitat Action Plan (https://webarchive.nationalarchives.gov.uk/20110303150026/http://www.ukbap.org.uk/UKPl ans.aspx?ID=20, a summary of which appears below. Lowland raised bogs are peatland ecosystems which develop primarily, but not exclusively, in lowland areas such as the head of estuaries, along river flood-plains and in topographic depressions. In such locations drainage may be impeded by a high groundwater table, or by low permeability substrata such as estuarine, glacial or lacustrine clays. The resultant waterlogging provides anaerobic conditions which slow down the decomposition of plant material which in turn leads to an accumulation of peat. Continued accrual of peat elevates the bog surface above regional groundwater levels to form a gently-curving dome from which the term ‘raised’ bog is derived. The thickness of the peat mantle varies considerably but can exceed 12m.
    [Show full text]
  • Lowland Raised Bog, Duddon Mosses NNR, Cumbria
    Lowland raised bog, Duddon Mosses NNR, Cumbria. © Natural England/Jacqueline Ogden 17. Lowland raised bog Climate Change Sensitivity: Medium Climate Change Adaptation Manual Evidence to support nature conservation in a changing climate 159 Introduction An intact, fully functioning lowland raised bog is expected to be relatively resilient to projected climate change, although both changes to patterns of rainfall, including extreme events and summer warming, will place increasing pressure on the habitat. In England, however, there are no raised bogs in this condition. The impact of historic and current land management has a significant impact on the vulnerability of sites. Damage through peat cutting or drainage (both on and off-site) that alters the hydrology of sites has significant adverse impacts on the ability of the bog to withstand reduced rainfall and extreme events such as drought. Degraded bogs are also more vulnerable to climate change impacts on the quality and quantity of ground water. In England, most remaining lowland raised bog habitat is found on the central or core area of the original dome. Surrounding this is an area of degraded peatland, often now under alternative land use, making the remaining bog increasingly vulnerable to off-site impacts and land-use change. Habitat Description Lowland raised bogs are peatland ecosystems which develop primarily in lowland areas such as at the head of estuaries, along river flood-plains and in topographic depressions. In such locations drainage has been impeded by a high groundwater table or by low permeability of the substrata. The resultant water-logging provides anaerobic conditions which slow down the decomposition of plant material, which in turn leads to an accumulation of peat.
    [Show full text]
  • Peat from Penguins to Palm Trees
    Organic Soils in the UK Overseas Territories and Crown Dependencies. Peat from Penguins to Palm Trees Janet Moxley [email protected] (CEH), Chris Evans (CEH), Nicole Archer (BGS), Mary-Ann Smyth (Crichton Carbon Centre) Introduction The UK has 14 Overseas Territories (OTs) and 3 Crown Dependencies (CDs). The Falkland Islands contain large areas of organic soils, with smaller areas in the Isle of Man and the Caribbean OTs. Where sufficient data are available GHG emissions from the OTs and CDs which have ratified or are likely to ratify the UN Framework Convention on Climate Change and the Kyoto Protocol are included in the UK GHG inventory. We review current understanding of organic soils in these areas. The Falkland Islands Estimates of peat area vary between 282 kha (BGS and CEH, unpublished data) and 548 kha (Wilson et al, 1993). The BGS/CEH estimate assumes that all valley-bottom deposits, and 33% of upland organo-mineral soils on shallow slopes, are peat, based on new field survey data. Falkland peatlands comprise a mixture of upland blanket bog covered with Astelia pumila, White grass (Cortadelia pilosa), Diddle Dee (Empetrum rubrum), and white grass-dominated valley mire. Rainfall is low, resulting in only low presence of Sphagnum magellanicum, and (combined with high wind speeds) in high susceptibility to erosion. The main pressures are from grazing by large numbers of sheep, use of prescribed fire for vegetation management, dredging of stream channels to increase drainage, wildfires, effects of historic bomb craters, domestic peat extraction, and the use of turf banks as windbreaks. Peat distribution has been mapped, but peat condition has not been documented.
    [Show full text]