Efficient Evaluation of Radial Queries using the Target Tree Michael D. Morse Jignesh M. Patel William I. Grosky Department of Electrical Engineering and Computer Science Dept. of Computer Science University of Michigan, University of Michigan-Dearborn {mmorse, jignesh}@eecs.umich.edu
[email protected] Abstract from a number of chosen points on the surface of the brain and end in the tumor. In this paper, we propose a novel indexing structure, We use this problem to motivate the efficient called the target tree, which is designed to efficiently evaluation of a new type of spatial query, which we call a answer a new type of spatial query, called a radial query. radial query, which will allow for the efficient evaluation A radial query seeks to find all objects in the spatial data of surgical trajectories in brain surgeries. The radial set that intersect with line segments emanating from a query is represented by a line in multi-dimensional space. single, designated target point. Many existing and The results of the query are all objects in the data set that emerging biomedical applications use radial queries, intersect the line. An example of such a query is shown in including surgical planning in neurosurgery. Traditional Figure 1. The data set contains four spatial objects, A, B, spatial indexing structures such as the R*-tree and C, and D. The radial query is the line emanating from the quadtree perform poorly on such radial queries. A target origin (the target point), and the result of this query is the tree uses a regular hierarchical decomposition of space set that contains the objects A and B.