America's National Laboratory System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Department of Energy's Nanoscale Science Research
The Department of Energy’s Nanoscale Science Research Centers (NSRCs) E. W. Plummer1,2 1Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996 2Condensed Matter Sciences Division, Oak Ridge National laboratory, Oak Ridge, TN 37831 The Department of Energy, Office of CNMS will become fully operational, hosting Basic Energy Sciences has undertaken a ~300 users and long-term collaborators. million dollar project to construct five NSRCs at CNMS has mounted an ambitious the major DOE laboratories. The NSRCs will program in advanced instrument for serve the nanoscience and nanotechnology characterization of nanoscale materials. I will community. The five NSRC are: describe the instruments being purchased or • Center for Nanoscale Materials (CNM) at constructed. The ORNL NSRC has focused on Argonne National Laboratory fabrication of nanostruture materials with the (nano.anl.gov), Nanofabrication Research Laboratory being the • Center for Functional Nanomaterials (CFM) centerpiece. The various growth and fabrication at Brookhaven National Laboratory capabilities will be described. Finally, I will (www.cfn.bnl.gov), illustrate the opportunities available for the • The Molecular Foundry at Lawerence scientific community to take advantage of the Berkeley National Laboratory capabilities at the CNMS, either as a short-term (foundry.lbl.gov), user or as a long-term partner. • Center for Integrated Nanotechnologies (CINT) at Sandia National Laboratory and Los Alamos National Laboratory (cint.lanl.gov) and, • Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (www.cnms.ornl.gov). The role of the NSRSs in the mission of DOE will be described, followed by a brief description of the focus areas of each of the centers. -
Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration (MEITNER) Overview
Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration (MEITNER) Overview B. PROGRAM OVERVIEW 1. Summary Nuclear reactor plants are complex systems where many types and scales of technologies must work together seamlessly. Design choices at each of those scales and for each of those technologies impact the rest of the system in terms of functionality, cost, and constructability. For nuclear energy to contribute in the coming decades, the next generation of nuclear reactor plants need to simultaneously achieve “walkaway” safe and secure operation, extremely low construction capital costs, and dramatically shorter construction and commissioning times than currently-available plants. To attain these goals, new, innovative, enabling technologies for existing advanced reactor designs are needed. The development of these enabling technologies requires understanding the inter-relatedness of design choices. Thus, ARPA-E encourages a rethinking of how pieces of the nuclear reactor system fit together when developing these enabling technologies. Through the MEITNER1 (Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration) program, ARPA-E seeks to identify and develop innovative technologies to enable the advanced nuclear reactor design community to mature their designs for future commercial deployment. These enabling technologies can establish the basis for a modern, domestic supply chain supporting nuclear technology. As provided in this FOA, ARPA-E will select multiple Awardees (Prime Recipients) to develop -
A Bold New Approach for Space Exploration and Discovery
Office of Science and Technology Policy National Aeronautics and Space Administration FACT SHEET A Bold New Approach for Space Exploration and Discovery • Adds $6 billion to NASA’s budget over five years and draws upon American ingenuity to enable us to embark on an ambitious 21st century program of human space exploration and observation of the Earth and the Universe. • Ends NASA’s Constellation program, which was planning to use an approach similar to the Apollo program to return astronauts to the Moon 50 years after that program’s triumphs. An independent panel found that Constellation was years behind schedule and would require large budget increases to land even a handful of astronauts back on the Moon before 2030. Instead, we are launching a bold new effort that invests in American ingenuity to develop more capable and innovative technologies for future space exploration. • In consultation with our partners, extends operation of the International Space Station likely to 2020 or beyond and enhances its utilization, bringing nations together in a common pursuit of discovery in space. • Initiates several new programs to transform the state of the art in space technologies, including flagship exploration technology development and demonstration programs, investments in early-stage advanced concepts, potential “game-changing” technologies, and new propulsion technologies – all intended to increase the reach and reduce the costs of future human space exploration as well as other NASA, government, and commercial space activities. • Enhances the Nation’s global climate change research and monitoring system, accelerating decadal survey missions and re-flying a satellite that will identify global carbon sources and sinks. -
The U.S. Department of Energy's Ten-Year-Plans for the Office Of
U.S. DEPARTMENT OF ENERGY The U.S. Department of Energy’s Ten-Year-Plans for the Office of Science National Laboratories FY 2019 FY 2019 Annual Laboratory Plans for the Office of Science National Laboratories i Table of Contents Introduction ................................................................................................................................................................1 Ames Laboratory ........................................................................................................................................................3 Lab-at-a-Glance ......................................................................................................................................................3 Mission and Overview ............................................................................................................................................3 Core Capabilities .....................................................................................................................................................4 Science Strategy for the Future ..............................................................................................................................8 Infrastructure .........................................................................................................................................................8 Argonne National Laboratory ................................................................................................................................. -
Second Annual DOE Joint Genome Institute User Meeting
Second Annual DOE Joint Genome Institute User Meeting Sponsored By U.S. Department of Energy Office of Science March 28–30, 2007 Marriott Hotel Walnut Creek, California Contents Speaker Presentations Abstracts alphabetical by speaker....................................................................................... 1 Poster Presentations Posters alphabetical by first author. *Presenting author. .................................................. 11 Attendees Current as of March 9, 2007 ............................................................................................. 69 Author Index ................................................................................................................... 77 iii iv Speaker Presentations Abstracts alphabetical by speaker. The JGI Aspergillus niger Genome Project Scott E. Baker ([email protected]) Fungal Biotechnology Team, Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland, WA Aspergillus niger is an economically important filamentous ascomycete fungus that is used in industry for its prodigious production of citric acid and a number of enzymes. The DOE Joint Genome Institute has sequenced the genome of A. niger ATCC 1015, a wildtype strain and the source of the first patented microbial fermentation process for citric acid production. Preliminary annotation indicates the presence of over 250 glycosyl hydrolases. These enzymes are crucial for the degradation of lignocellulosic biomass into simple sugars and other chemical building blocks. -
DOE Human Genome Program Contractor-Grantee Workshop VIII
Human Genome Prozram U.S. Department of Energy Office of Biological and Environmental Research SC-72 GTN Germantown, MD 20874-1290 301/903-6488, Fax: 3011903-8521 E-mail: [email protected] A limited number of print copies are available. Contact: Sheryl Martin Human Genome Management Information System Oak Ridge National Laboratory 1060 Commerce Park, MS 6480 Oak Ridge, TN 37830 865/576-6669, Fax: 865/574-9888 E-mail: [email protected] An electronic version of this document will be available on February 27, 2000, at the Human Genome Project Infonnation Web site under Publications (http:llwww.ornl.gov/hgmis). Abstracts for this publication were submitted via the web. DOE/SC-0002 DOE Human Genome Program Contractor-Grantee Workshop VIII February 27-March 2, 2000 Santa Fe, New Mexico Date Published: February 2000 Prepared for the U.S. Department ofEnergy Office of Science Office of Biological and Environmental Research Washington, DC 20874-1290 Prepa.-ed by Human Genome Management Information System Oak Ridge National Labomtory Oak Ridge, 1N 37830 Managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPAR1MENT OF ENERGY UNDER CONI'RACT DE-AC05-960R22464 Contents1 Introduction to Contractor-Grantee Workshop VIII . 1 Sequencing . 3 1. Sequence Analysis of HUman Chromosome 19 Anne Olsen, Paul Predki, Ken Frankel, Laurie Gordon, Astrid Terry, Matt Nolan, Mark Wagner, Amy Brower, Andrea Aerts, Marne! Bondoc, Kristen Kadner, Manesh Shah, Richard Mural, Miriam Land, Denise Schmoyer, Sergey Petrov, Doug Hyatt, Morey Parang, Jay Snoddy, Ed Uberbacher, and the JGI Production Sequencing Team . 3 2. Draft Sequencing Procedures for Chromosome 16 Sequencing Mark 0. -
Strategic Plan
Table of Contents 1. Executive Summary .................................................................... 1 2. Introduction ............................................................................... 2 2.1 Foundry Research Facilities and Themes ....................................... 3 2.2 User Program ................................................................................. 4 2.3 Vision for the Future ...................................................................... 5 2.4 Planning Process ............................................................................ 5 3. Plans to Leverage Emerging Scientific Opportunities ................. 6 3.1 Combinatorial Nanoscience ........................................................... 6 3.2 Functional Nanointerfaces ........................................................... 11 3.3 Multimodal Nanoscale Imaging ................................................... 15 3.4 Single-Digit Nanofabrication and Assembly ................................. 20 4. Strengthening Scientific and User Resources ........................... 23 4.1 Enhancement of Foundry Expertise ............................................. 23 4.2 Enhancement of Equipment Resources ....................................... 25 4.3 Enhancement of User Outreach, Engagement, and Services ....... 26 Molecular Foundry Strategic Plan 1. Executive Summary The Molecular Foundry is a knowledge-based User Facility for nanoscale science at Lawrence Berkeley National Laboratory (LBNL), supported by the Department of Energy -
Alessandro Alabastri
Alessandro Alabastri TI Research Assistant Professor, ECE Dept., Rice University E-mail: [email protected], Web: http://alabastri.rice.edu Research: photothermal effects and transport mechanisms in micro/nano-systems APPOINTMENTS Apr. 2015 – present Rice University, ECE Department – Houston, TX (USA) Texas Instruments Research Assistant Professor (July 2018 – present) NEWT Postdoctoral Leadership Fellow (Oct. 2016 – Jul. 2018) Advisors: Prof. Peter Nordlander and Prof. Naomi Halas Postdoctoral Fellow (Apr. 2015 – Oct. 2016) Advisor: Prof. Peter Nordlander Additional appointments: Consultant for Syzygy Plasmonics, Inc and Nanospectra Biosciences, Inc for photo-induced heat dissipation and thermal transport modeling. Jan. 2015 – Apr. 2015 Lawrence Berkeley National Laboratory – Berkeley, CA (USA) Visiting Researcher at the Molecular Foundry (User Program) Advisors: Prof. Remo Proietti Zaccaria (IIT) and Dr. Stefano Cabrini (LBNL) Apr. 2014 – Apr. 2015 Italian Institute of Technology – Genoa (Italy) Postdoctoral fellow – Nanostructures and Neuroscience Departments Advisor: Prof. Remo Proietti Zaccaria EDUCATION Jan. 2011 – Apr. 2014 - PhD in Nanosciences Italian Institute of Technology and University of Genoa - Genova (Italy) Thesis: “Modeling the optical response of plasmonic nanostructures: electric permittivity, magnetic permeability and the influence of temperature” Advisors: Prof. Enzo Di Fabrizio and Prof. Remo Proietti Zaccaria Sep. 2007 – Oct. 2009 - MSc in Engineering Physics Polytechnic University of Milan – Milan -
Agency Information
Quadrennial Technology Review 2015 Chapter 1: Energy Challenges Supplemental Information Additional Information on Energy Challenges Agency Information Representative DOE Science and Energy Program Workshops U.S. DEPARTMENT OF ENERGY Quadrennial Technology Review 2015 Agency Information Chapter 1: Supplemental Information Agency Information Many Federal Departments and Agencies conduct research, development, demonstration, and deployment (RDD&D) activities, policy and regulatory activities, and other actions related to clean energy technologies, as do many State Agencies. The following websites provide a starting point for examining some of the excellent work done by these Federal Agencies—with a primary focus on RDD&D activities, as well as those providing data and information helpful for informing those activities. State and local activities are not covered here. This is not a complete list across agencies or within agencies, only a starting point. For all of these agencies, searching their websites for the energy-related topics of interest is the best way to get up-to-date information. For regulatory and policy issues, the work done by the Quadrennial Energy Review provides a useful overview and framework.1 AGENCY/DIVISION and URL: Executive Office of the President (EOP) https://www.whitehouse.gov/administration/eop Council on Environmental Quality (CEQ) https://www.whitehouse.gov/administration/eop/ceq National Security Council (NSC) https://www.whitehouse.gov/administration/eop/nsc Office of Management and Budget (OMB) https://www.whitehouse.gov/omb Office of Science and Technology Policy (OSTP) https://www.whitehouse.gov/administration/eop/ostp U.S. Department of Agriculture (USDA) http://www.usda.gov/wps/portal/usda/usdahome http://www.usda.gov/wps/portal/usda/usdahome?navid=ENERGY http://www.usda.gov/oce/energy/ http://www.ars.usda.gov/research/programs/programs.htm?NP_CODE=307 http://www.usda.gov/oce/reports/index.htm#renewable http://www.rd.usda.gov/about-rd/agencies/rural-utilities-service U.S. -
National Laboratories Subcommittee (Pdf)
The Regents of the University of California NATIONAL LABORATORIES SUBCOMMITTEE January 24, 2018 The National Laboratories Subcommittee met on the above date at Mission Bay Conference Center, San Francisco. Members present: Regents De Le Peña, Mancia, Napolitano, Ortiz Oakley, Pérez, and Tauscher; Chancellor Block In attendance: Secretary and Chief of Staff Shaw, Vice Presidents Budil and Ellis, Deputy General Counsel Woodall, and Recording Secretary McCarthy The meeting convened at 3:15 p.m. with Subcommittee Vice Chair De La Peña presiding. He acknowledged the dedicated service of Committee Chair Pattiz, who for ten years was chair of the Boards of Directors of the Los Alamos National Security LLC and the Lawrence Livermore National Security LLC. He had served in these roles with passion and distinction, affirming the importance of UC’s work with the National Laboratories. 1. APPROVAL OF MINUTES OF PREVIOUS MEETING Upon motion duly made and seconded, the minutes of the meeting of November 15, 2017 were approved. 2. PRESENTATION ON THE STATE OF THE LAWRENCE BERKELEY NATIONAL LABORATORY [Background material was provided to Regents in advance of the meeting, and a copy is on file in the Office of the Secretary and Chief of Staff.] Vice President Budil expressed appreciation for Committee Chair Pattiz’ leadership and tireless advocacy over the past decade for the National Laboratories and the University’s role in the Los Alamos National Security LLC and the Lawrence Livermore National Security LLC. Ms. Budil introduced Lawrence Berkeley National Laboratory (LBNL) Director Michael Witherell, who said he had been privileged to lead LBNL for two years. -
DOE Designated User Facilities
DOE Designated User Facilities Multiple Laboratories • ARM Climate Research Facility Argonne National Laboratory • Advanced Photon Source (APS) • Electron Microscopy Center for Materials Research • Argonne Tandem Linac Accelerator System (ATLAS) • Center for Nanoscale Materials (CNM) • Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory • National Synchrotron Light Source (NSLS) • Accelerator Test Facility (ATF) • Relativistic Heavy Ion Collider (RHIC) • Center for Functional Nanomaterials (CFN) • National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory • Fermilab Accelerator Complex Idaho National Laboratory • Advanced Test Reactor ** • Wireless National User Facility (WNUF) Lawrence Berkeley National Laboratory • Energy Sciences Network( ESnet) ** • Joint Genome Institute (JGI) - Production Genomics Facility(PGF)** (joint with LLNL, LANL, ORNL and PNNL) • Advanced Light Source (ALS) • National Center for Electron Microscopy (NCEM) • Molecular Foundry • National Energy Research Scientific Computing Center (NERSC)* • 88 inch cyclotron* ** Los Alamos National Laboratory • Lujan at Los Alamos Neutron Science Center (LANSCE) National Renewable Energy Laboratory • Energy Systems Integration Facility (ESIF) Oak Ridge National Laboratory • Center for Nanophase Materials Sciences (CNMS) • High Flux Isotope Reactor (HFIR) • Manufacturing Demonstration Facility (MDF) • Spallation Neutron Source (SNS) • Oak Ridge Leadership Computing Facility (OLCF) Pacific Northwest National -
6.61.2.5 Essential Earth Learning Concepts for Teachers and Students
6.61.2.5 Essential Earth Learning Concepts for Teachers and Students Mario M. Yanez Executive Director of Earth Learning, Inc. in Miami, FL [email protected] Keywords: Change, Interdependence, Earth, Evolution, Humanity, Learning, Life Community, Sustainability Contents 1.0 Introduction 2.0 Essential Concepts 2.1 There is no environment 2.2 Earth is alive 2.3 Evolution is not a theory 2.4 Earth is learning and teaching 2.5 Earth is Slow, Culture is Fast 2.6 Earth is Primary, Humans are Derivative 2.7 Sustainability requires living in place 2.8 Earth is a recycling planet 2.9 There are no second chances 2.10 Humanity must be the change 3.0 Conclusion Glossary: Bioregion A unique but integral geographical subsystem of Earth, most often a watershed, that provides a contextual container for life, one whose living boundaries are permeable and exist for the purpose of identity not separation. Carrying Capacity The ability of a bioregion or the planet to sustain given populations and their associated consumption and waste production. Co-evolution When two or more entities adapt to each other in a given place over long periods of time; requires the acquisition of local knowledge of what works and what does not work Ecological footprint A representation of the amount of land, ocean, energy, and natural materials necessary to feed human activities and assimilate their waste for any given population. Linear Progress The misconception that it is possible and necessary for humans to achieve unlimited material growth and accumulation of material wealth; linear progress is a consumptive practice, which ignores that we live on one materially finite planet who’s ecosystems are being altered, drastically diminishing their capacity to support life.