Grothendieck’S Life and Work

Total Page:16

File Type:pdf, Size:1020Kb

Grothendieck’S Life and Work Caleb Ji Part 1: Upbringing (1928{1949) Elements of Grothendieck's life and work Part 2: Mathematics (1949{1970) Caleb Ji Part 3: Freedom (1970{1991) Part 4: Hermitage (1991{2014) Four stages of life Caleb Ji Part 1: Upbringing (1928{1949) Part 2: Mathematics (1949{1970) Part 3: Freedom (1970{1991) Part 4: (a) 1928-1949 (b) 1949-1970 Hermitage (1991{2014) (c) 1970-1991 (d) 1991-2014 Parents Caleb Ji Part 1: Upbringing (1928{1949) Part 2: Mathematics (1949{1970) Part 3: Freedom (1970{1991) Part 4: Hermitage (1991{2014) Figure: Sascha and Hanka \I will take your wife away from you!" Sascha to Alf Raddatz upon seeing a picture of Hanka Childhood Caleb Ji Left in Hamburg with the Heydorns, his foster family at the age of 5 Part 1: Upbringing Reunited with parents in Paris at 11 (1928{1949) Part 2: Father soon murdered in Auschwitz, sent to concentration Mathematics (1949{1970) camps with his mother to live in poverty Part 3: Freedom Once ran away intending to assassinate Hitler (1970{1991) Part 4: Hermitage (1991{2014) Childhood (quotations from R´ecolteset Semailles) Caleb Ji \I don't recall anyone ever being bored at school. There was Part 1: Upbringing the magic of numbers and the magic of words, signs and (1928{1949) sounds. And the magic of rhyme, in songs or little poems." Part 2: Mathematics (1949{1970) Part 3: Freedom \I became thoroughly absorbed in whatever interested me, to (1970{1991) the detriment of all else, without concerning myself with Part 4: Hermitage winning the appreciation of the teacher." (1991{2014) Student at Montpellier (1945{1948) Caleb Ji Part 1: Upbringing (1928{1949) Part 2: What I found most unsatisfactory in my mathematics Mathematics (1949{1970) textbooks was the absence of any serious attempt to tackle the Part 3: meaning of the idea of the arc-length of a curve, or the area of Freedom (1970{1991) a surface or the volume of a solid. I resolved therefore to make Part 4: up for this defect once I found time to do so. In fact I devoted Hermitage (1991{2014) most of my energy to this when I became a student at the University of Montpellier, between 1945 and 1948. [...] In applying myself to this problem at the age of 17 and fresh out of the lyc´ee,I believed that I could succeed in my objective in a matter of weeks. As it was, it preoccupied me fully three years. Arrival in Paris (1948) Caleb Ji Received a scholarship to study in Paris thanks to Andr´e Part 1: Magnier Upbringing (1928{1949) Attended the famous Cartan seminar Part 2: Mathematics (1949{1970) Part 3: I discovered the existence of a mathematical world when I got Freedom (1970{1991) to Paris in 1948, at the age of 20, with not much more in my Part 4: thin suitcase than a bachelor's degree in science and a Hermitage (1991{2014) closely-written manuscript using both sides of the paper and without margins (paper was expensive!), representing three years of solitary reflections on what (I later learned) was known as \measure theory" or \the Lebesgue integral". Since I had never met another, I believed until the day I arrived in the capital, that I was the only person in the world to \do mathematics", the only mathematician. Cartan Seminar Caleb Ji \[Henri Cartan] welcomed me with that benevolent courtesy Part 1: Upbringing that was typical of him [..] He probably didn't even realize the (1928{1949) extent of my ignorance [...] In any case, his benevolence was Part 2: Mathematics obviously directed towards my person, not towards my (1949{1970) knowledge or possible gifts, nor (later) towards reputation or Part 3: Freedom fame." (1970{1991) Part 4: Hermitage (1991{2014) Figure: Henri Cartan and Jean-Pierre Serre Bourbaki Caleb Ji Part 1: Upbringing \[...] the rest of the Bourbaki gang would arrive together, like a (1928{1949) noisy group of friends: Dieudonne, Schwartz, Godement, Part 2: Mathematics Delsarte." (1949{1970) Part 3: Freedom (1970{1991) Part 4: Hermitage (1991{2014) Figure: Andre Weil Figure: Claude Chevalley PhD in Nancy: functional analysis (1949-1953) Caleb Ji Worked with Jean Dieudonn´eand Laurent Schwartz Part 1: Upbringing Solved all 14 of their problems on locally convex (1928{1949) topological vector spaces Part 2: Mathematics Develops the concept of nuclear spaces in his thesis, (1949{1970) proceeding to revolutionize functional analysis Part 3: Freedom (1970{1991) Part 4: Hermitage (1991{2014) Figure: Jean Dieudonn´e Figure: Laurent Schwartz PhD in Nancy: functional analysis (1949-1953) Caleb Ji Part 1: Upbringing (1928{1949) Part 2: Mathematics (1949{1970) Part 3: Freedom (1970{1991) Part 4: Hermitage (1991{2014) Figure: PRODUITS TENSORIELS TOPOLOGIQUES ET ESPACES NUCLEAIRES,´ 336 p., Memoirs of the AMS \When, in 1953, it was time to grant him a doctor's degree, it was necessary to choose from among six papers he had written, any one of which was at the level of a good dissertation." { Jean Dieudonn´e A new life in Brazil: 1953-1955 Caleb Ji Part 1: Upbringing (1928{1949) Spent two years in S˘aoPaulo Part 2: Mathematics Subsisted on milk, bread, and bananas (1949{1970) Part 3: Frightful family fiasco on trip to Paris Freedom (1970{1991) Tying up loose ends, beginning to work on topology Part 4: Hermitage (1991{2014) \So now I can finally leave the field of topological vector spaces with no regrets, and start seriously working on algebraic topology." New work in Kansas: 1955 Visiting research associate professor at the University of Caleb Ji Kansas in 1955 Part 1: Upbringing Wrote \A General Theory of Fibre Spaces with Structure (1928{1949) Sheaf" Part 2: Mathematics (1949{1970) Wrote \Sur quelques points d'alg`ebre homologique" Part 3: Began correspondence with Jean-Pierre Serre Freedom (1970{1991) Part 4: Hermitage (1991{2014) The T^ohokupaper Sur quelques points d'alg`ebre homologique, published in Caleb Ji T^ohoku,1957 Part 1: Upbringing Grew from Grothendieck's attempt to reconstruct the (1928{1949) Cartan-Eilenberg book on homological algebra Part 2: Mathematics (1949{1970) Introduced abelian categories Part 3: Gave a general framework for cohomology through derived Freedom (1970{1991) functors, which worked for sheaves Part 4: Hermitage (1991{2014) Return to France Caleb Ji Part 1: Upbringing (1928{1949) Obtains a position at the CNRS, moves back to Paris in Part 2: 1956 Mathematics (1949{1970) Continued to work deeper in topology and algebraic Part 3: geometry Freedom (1970{1991) Part 4: Hermitage \\I was sure something first-rate would come out of him. But (1991{2014) then what came out was even much higher than I had expected. It was his version of Riemann-Roch, and that's a fantastic theorem. This is really a masterpiece of mathematics." { Armand Borel Grothendieck-Riemann-Roch Caleb Ji Part 1: Theorem (Riemann-Roch) Upbringing (1928{1949) For a compact Riemann surface with canonical divisor K and Part 2: Mathematics genus g, for any divisor D we have (1949{1970) Part 3: Freedom l(D) − l(K − D) = deg(D) − g + 1: (1970{1991) Part 4: Hermitage (1991{2014) Theorem (Grothendieck-Riemann-Roch) Let X,Y be locally of finite type over S. Let F be a finite locally free sheaf on X of rank r. Let f : X ! Y be a proper smooth morphism. Then • • ch(f!F )td(Y ) = f∗(ch(F )td(X )): Grothendieck-Riemann-Roch Caleb Ji "Witches Kitchen 1971. Riemann-Roch Theorem: The final Part 1: Upbringing cry: The diagram is commutative! To give an approximate (1928{1949) sense to the statement about f : X ! Y , I had to abuse the Part 2: Mathematics listeners' patience for almost two hours. Black on white (in (1949{1970) Springer lecture notes) it probably takes about 400, 500 pages. Part 3: Freedom A gripping example of how our thirst for knowledge and (1970{1991) discovery indulges itself more and more in a logical delirium far Part 4: Hermitage removed from life, while life itself is going to Hell in a thousand (1991{2014) ways and is under the threat of final extermination. High time to change our course!" 1957-1958: the beginning of a new era Caleb Ji Part 1: Upbringing (1928{1949) Part 2: \1957 was the year in which I began to develop the theme Mathematics (1949{1970) \Riemann-Roch" (Grothendieck version) - which almost Part 3: overnight made me into a big \movie star". It was also the Freedom (1970{1991) year of my mother's death and thereby the inception of a great Part 4: break in my life story. They figure among the most intensely Hermitage (1991{2014) creative years of my entire life, not only in mathematics. I'd worked almost exclusively in mathematics for 12 years. In that year there was the sense that I'd perhaps done what there was to do in mathematics and that it was time to try something else. 1957-1958: the beginning of a new era Caleb Ji Part 1: Upbringing (1928{1949) Part 2: Mathematics "The following year (1958) is probably the most fertile of all (1949{1970) my years as a mathematician. This was the year which saw the Part 3: Freedom birth of the two central themes of the new geometry through (1970{1991) the launching of the theory of schemes (the subject of my Part 4: Hermitage paper at the International Congress of Mathematicians at (1991{2014) Edinborough in the summer of that year) and the appearamce of the concept of a \site", a provisional technical form of the crucial notion of the topos." The 1958 ICM address Caleb Ji Inspired by Serre's FAC, announces the introduction of cohomology into algebraic geometry Part 1: Upbringing (1928{1949) Mentions the Weil conjectures as a future goal Part 2: Introduced schemes and gives immediate applications Mathematics (1949{1970) Part 3: Freedom (1970{1991) Part 4: Hermitage (1991{2014) Figure: Grothendieck's address Schemes Caleb Ji Part 1: Definition (affine scheme) Upbringing (1928{1949) Given any commutative ring A, define the affine scheme Spec A Part 2: Mathematics to be the locally ringed space consisting of the prime ideals of (1949{1970) A equipped with the topology of closed sets being those Part 3: Freedom containing a fixed subset of A.
Recommended publications
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • Alexander Grothendieck: a Country Known Only by Name Pierre Cartier
    Alexander Grothendieck: A Country Known Only by Name Pierre Cartier To the memory of Monique Cartier (1932–2007) This article originally appeared in Inference: International Review of Science, (inference-review.com), volume 1, issue 1, October 15, 2014), in both French and English. It was translated from French by the editors of Inference and is reprinted here with their permission. An earlier version and translation of this Cartier essay also appeared under the title “A Country of which Nothing is Known but the Name: Grothendieck and ‘Motives’,” in Leila Schneps, ed., Alexandre Grothendieck: A Mathematical Portrait (Somerville, MA: International Press, 2014), 269–88. Alexander Grothendieck died on November 19, 2014. The Notices is planning a memorial article for a future issue. here is no need to introduce Alexander deepening of the concept of a geometric point.1 Such Grothendieck to mathematicians: he is research may seem trifling, but the metaphysi- one of the great scientists of the twenti- cal stakes are considerable; the philosophical eth century. His personality should not problems it engenders are still far from solved. be confused with his reputation among In its ultimate form, this research, Grothendieck’s Tgossips, that of a man on the margin of society, proudest, revolved around the concept of a motive, who undertook the deliberate destruction of his or pattern, viewed as a beacon illuminating all the work, or at any rate the conscious destruction of incarnations of a given object through their various his own scientific school, even though it had been ephemeral cloaks. But this concept also represents enthusiastically accepted and developed by first- the point at which his incomplete work opened rank colleagues and disciples.
    [Show full text]
  • Occasion of Receiving the Seki-Takakazu Prize
    特集:日本数学会関孝和賞受賞 On the occasion of receiving the Seki-Takakazu Prize Jean-Pierre Bourguignon, the director of IHÉS A brief introduction to the Institut des Hautes Études Scientifiques The Institut des Hautes Études Scientifiques (IHÉS) was founded in 1958 by Léon MOTCHANE, an industrialist with a passion for mathematics, whose ambition was to create a research centre in Europe, counterpart to the renowned Institute for Advanced Study (IAS), Princeton, United States. IHÉS became a foundation acknowledged in the public interest in 1981. Like its model, IHÉS has a small number of Permanent Professors (5 presently), and hosts every year some 250 visitors coming from all around the world. A Scientific Council consisting of the Director, the Permanent Professors, the Léon Motchane professor and an equal number of external members is in charge of defining the scientific strategy of the Institute. The foundation is managed by an 18 member international Board of Directors selected for their expertise in science or in management. The French Minister of Research or their representative and the General Director of CNRS are members of the Board. IHÉS accounts are audited and certified by an international accountancy firm, Deloitte, Touche & Tomatsu. Its resources come from many different sources: half of its budget is provided by a contract with the French government, but institutions from some 10 countries, companies, foundations provide the other half, together with the income from the endowment of the Institute. Some 50 years after its creation, the high quality of its Permanent Professors and of its selected visiting researchers has established IHÉS as a research institute of world stature.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • Cohomology Theory of Lie Groups and Lie Algebras
    COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS BY CLAUDE CHEVALLEY AND SAMUEL EILENBERG Introduction The present paper lays no claim to deep originality. Its main purpose is to give a systematic treatment of the methods by which topological questions concerning compact Lie groups may be reduced to algebraic questions con- cerning Lie algebras^). This reduction proceeds in three steps: (1) replacing questions on homology groups by questions on differential forms. This is accomplished by de Rham's theorems(2) (which, incidentally, seem to have been conjectured by Cartan for this very purpose); (2) replacing the con- sideration of arbitrary differential forms by that of invariant differential forms: this is accomplished by using invariant integration on the group manifold; (3) replacing the consideration of invariant differential forms by that of alternating multilinear forms on the Lie algebra of the group. We study here the question not only of the topological nature of the whole group, but also of the manifolds on which the group operates. Chapter I is concerned essentially with step 2 of the list above (step 1 depending here, as in the case of the whole group, on de Rham's theorems). Besides consider- ing invariant forms, we also introduce "equivariant" forms, defined in terms of a suitable linear representation of the group; Theorem 2.2 states that, when this representation does not contain the trivial representation, equi- variant forms are of no use for topology; however, it states this negative result in the form of a positive property of equivariant forms which is of interest by itself, since it is the key to Levi's theorem (cf.
    [Show full text]
  • Interview with Henri Cartan, Volume 46, Number 7
    fea-cartan.qxp 6/8/99 4:50 PM Page 782 Interview with Henri Cartan The following interview was conducted on March 19–20, 1999, in Paris by Notices senior writer and deputy editor Allyn Jackson. Biographical Sketch in 1975. Cartan is a member of the Académie des Henri Cartan is one of Sciences of Paris and of twelve other academies in the first-rank mathe- Europe, the United States, and Japan. He has re- maticians of the twen- ceived honorary doc- tieth century. He has torates from several had a lasting impact universities, and also through his research, the Wolf Prize in which spans a wide va- Mathematics in 1980. riety of areas, as well Early Years as through his teach- ing, his students, and Notices: Let’s start at the famed Séminaire the beginning of your Cartan. He is one of the life. What are your founding members of earliest memories of Bourbaki. His book Ho- mathematical inter- mological Algebra, writ- est? ten with Samuel Eilen- Cartan: I have al- berg and first published ways been interested Henri Cartan’s father, Élie Photograph by Sophie Caretta. in 1956, is still in print in mathematics. But Cartan. Henri Cartan, 1996. and remains a standard I don’t think it was reference. because my father The son of Élie Cartan, who is considered to be was a mathematician. I had no doubt that I could the founder of modern differential geometry, Henri become a mathematician. I had many teachers, Cartan was born on July 8, 1904, in Nancy, France. good or not so good.
    [Show full text]
  • Title: Algebraic Group Representations, and Related Topics a Lecture by Len Scott, Mcconnell/Bernard Professor of Mathemtics, the University of Virginia
    Title: Algebraic group representations, and related topics a lecture by Len Scott, McConnell/Bernard Professor of Mathemtics, The University of Virginia. Abstract: This lecture will survey the theory of algebraic group representations in positive characteristic, with some attention to its historical development, and its relationship to the theory of finite group representations. Other topics of a Lie-theoretic nature will also be discussed in this context, including at least brief mention of characteristic 0 infinite dimensional Lie algebra representations in both the classical and affine cases, quantum groups, perverse sheaves, and rings of differential operators. Much of the focus will be on irreducible representations, but some attention will be given to other classes of indecomposable representations, and there will be some discussion of homological issues, as time permits. CHAPTER VI Linear Algebraic Groups in the 20th Century The interest in linear algebraic groups was revived in the 1940s by C. Chevalley and E. Kolchin. The most salient features of their contributions are outlined in Chapter VII and VIII. Even though they are put there to suit the broader context, I shall as a rule refer to those chapters, rather than repeat their contents. Some of it will be recalled, however, mainly to round out a narrative which will also take into account, more than there, the work of other authors. §1. Linear algebraic groups in characteristic zero. Replicas 1.1. As we saw in Chapter V, §4, Ludwig Maurer thoroughly analyzed the properties of the Lie algebra of a complex linear algebraic group. This was Cheval­ ey's starting point.
    [Show full text]
  • Alexander Grothendieck Heng Li
    Alexander Grothendieck Heng Li Alexander Grothendieck's life Alexander Grothendieck was a German born French mathematician. Grothendieck was born on March 28, 1928 in Berlin. His parents were Johanna Grothendieck and Alexander Schapiro. When he was five years old, Hitler became the Chancellor of the German Reich, and called to boycott all Jewish businesses, and ordered civil servants who were not of the Aryan race to retire. Grothendieck's father was a Russian Jew and at that time, he used the name Tanaroff to hide his Jewish Identity. Even with a Russian name it is still too dangerous for Jewish people to stay in Berlin. In May 1933, his father, Alexander Schapiro, left to Paris because the rise of Nazism. In December of the same year, his mother left Grothendieck with a foster family Heydorns in Hamburg, and joined Schapiro in Paris. While Alexander Grothendieck was with his foster family, Grothendieck's parents went to Spain and partici- pated in the Spanish Civil War. After the Spanish Civil War, Johanna(Hanka) Grothendieck and Alexander Schapiro returned to France. In Hamburg, Alexander Grothendieck attended to elementary schools and stud- ied at the Gymnasium (a secondary school). The Heydorns family are a part of the resistance against Hitler; they consider that it was too dangerous for young Grothendieck to stay in Germany, so in 1939 the Heydorns sent him to France to join his parents. However, because of the outbreak of World War II all German in France were required by law to be sent to special internment camps. Grothendieck and his parents were arrested and sent to the camp, but fortunately young Alexander Grothendieck was allowed to continue his education at a village school that was a few miles away from the camp.
    [Show full text]
  • Life and Work of Egbert Brieskorn (1936-2013)
    Life and work of Egbert Brieskorn (1936 – 2013)1 Gert-Martin Greuel, Walter Purkert Brieskorn 2007 Egbert Brieskorn died on July 11, 2013, a few days after his 77th birthday. He was an impressive personality who left a lasting impression on anyone who knew him, be it in or out of mathematics. Brieskorn was a great mathematician, but his interests, knowledge, and activities went far beyond mathematics. In the following article, which is strongly influenced by the authors’ many years of personal ties with Brieskorn, we try to give a deeper insight into the life and work of Brieskorn. In doing so, we highlight both his personal commitment to peace and the environment as well as his long–standing exploration of the life and work of Felix Hausdorff and the publication of Hausdorff ’s Collected Works. The focus of the article, however, is on the presentation of his remarkable and influential mathematical work. The first author (GMG) has spent significant parts of his scientific career as a arXiv:1711.09600v1 [math.AG] 27 Nov 2017 graduate and doctoral student with Brieskorn in Göttingen and later as his assistant in Bonn. He describes in the first two parts, partly from the memory of personal cooperation, aspects of Brieskorn’s life and of his political and social commitment. In addition, in the section on Brieskorn’s mathematical work, he explains in detail 1Translation of the German article ”Leben und Werk von Egbert Brieskorn (1936 – 2013)”, Jahresber. Dtsch. Math.–Ver. 118, No. 3, 143-178 (2016). 1 the main scientific results of his publications.
    [Show full text]
  • Theory of Lie Groups I
    854 NATURE December 20. 1947 Vol. t60 Theory of lie Groups, I deficiency is especially well treated, and the chapters By Claude Chevalley. (Princeton Mathematical on feeding experiments contain one of the best Series.) Pp. xii + 217. (Princeton, N.J.: Princeton reasoned discussions on the pros and cons of the University Press; London: Oxford University paired-feeding technique. In the author's view this Press, 1946.) 20s. net. method would appear to find its largest usefulness N recent years great advances have been made in in comparisons in which food consumption is not I our knowledge of the fundamental structures of markedly restricted by the conditions imposed, and analysis, particularly of algebra and topology, and in which the measure is in terms of the specific an exposition of Lie groups from the modern point effect of the nutrient under study, instead of the more of view is timely. This is given admirably in the general measure of increase in weight. It is considered book under review, which could well have been called that there are many problems concerning which the "Lie Groups in the Large". To make such a treatment use of separate experiments of both ad libitum and intelligible it is necessary to re-examine from the new controlled feeding will give much more information point of view such subjects as the classical linear than either procedure alone. groups, topological groups and their underlying The chapters on growth, reproduction, lactation topological spaces, and analytic manifolds. Excellent and work production are likewise excellent. In its accounts of these, with the study of integral manifolds clarity and brevity this work has few equals.
    [Show full text]
  • The Top Mathematics Award
    Fields told me and which I later verified in Sweden, namely, that Nobel hated the mathematician Mittag- Leffler and that mathematics would not be one of the do- mains in which the Nobel prizes would The Top Mathematics be available." Award Whatever the reason, Nobel had lit- tle esteem for mathematics. He was Florin Diacuy a practical man who ignored basic re- search. He never understood its impor- tance and long term consequences. But Fields did, and he meant to do his best John Charles Fields to promote it. Fields was born in Hamilton, Ontario in 1863. At the age of 21, he graduated from the University of Toronto Fields Medal with a B.A. in mathematics. Three years later, he fin- ished his Ph.D. at Johns Hopkins University and was then There is no Nobel Prize for mathematics. Its top award, appointed professor at Allegheny College in Pennsylvania, the Fields Medal, bears the name of a Canadian. where he taught from 1889 to 1892. But soon his dream In 1896, the Swedish inventor Al- of pursuing research faded away. North America was not fred Nobel died rich and famous. His ready to fund novel ideas in science. Then, an opportunity will provided for the establishment of to leave for Europe arose. a prize fund. Starting in 1901 the For the next 10 years, Fields studied in Paris and Berlin annual interest was awarded yearly with some of the best mathematicians of his time. Af- for the most important contributions ter feeling accomplished, he returned home|his country to physics, chemistry, physiology or needed him.
    [Show full text]
  • On Chevalley's Z-Form
    Indian J. Pure Appl. Math., 46(5): 695-700, October 2015 °c Indian National Science Academy DOI: 10.1007/s13226-015-0134-7 ON CHEVALLEY’S Z-FORM M. S. Raghunathan National Centre for Mathematics, Indian Institute of Technology, Mumbai 400 076, India e-mail: msr@math.iitb.ac.in (Received 28 October 2014; accepted 18 December 2014) We give a new proof of the existence of a Chevalley basis for a semisimple Lie algebra over C. Key words : Chevalley basis; semisimple Lie algebras. 1. INTRODUCTION Let g be a complex semisimple Lie algebra. In a path-breaking paper [2], Chevalley exhibitted a basis B of g (known as Chevalley basis since then) such that the structural constants of g with respect to the basis B are integers. The basis moreover consists of a basis of a Cartan subalgebra t (on which the roots take integral values) together with root vectors of g with respect to t. The structural constants were determined explicitly (up to signs) in terms of the structure of the root system of g. Tits [3] provided a more elegant approach to obtain Chevalley’s results which essentially exploited geometric properties of the root system. Casselman [1] used the methods of Tits to extend the Chevalley theorem to the Kac-Moody case. In this note we prove Chevalley’s theorem through an approach different from those of Chevalley and Tits. Let G be the simply connected algebraic group corresponding to g. Let T be a maximal torus (the Lie subalgebra t corresponding to it is a Cartan subalgebra of G).
    [Show full text]